Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (12): 4046-4057    DOI: 10.1016/j.jia.2024.07.045
Special Issue: 园艺作物基因功能与分子调控机制Horticulture — Gene function · Molecular mechanism
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Physiological and molecular mechanisms of cytokinin involvement in nitrate-mediated adventitious root formation in apples

Muhammad Mobeen Tahir1*, Li Fan1*, Zhimin Liu1, Humayun Raza2, Usman Aziz3, Asad Shehzaib1, Shaohuan Li1, Yinnan He1, Yicen Lu1, Xiaoying Ren1, Dong Zhang1#, Jiangping Mao1#

1 College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, China

2 Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, The Islamic Republic of Pakistan  

3 National Cotton Breeding Institute, The Islamia University of Bahawalpur, Bahawalpur 63100, The Islamic Republic of Pakistan

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

硝酸盐被认为促进苹果不定根AR的形成但细胞分裂素 (CK) 是否参与硝酸盐介导的不定根形成尚不明确。本试验以苹果GL-3组培苗为材料对其进行不同硝酸盐组合处理。结果显示,T1 (硝酸盐0.95 g/L + 6-BA 0.5 mg/L) T3 (6-BA 0.5 mg/L) 处理显著抑制不定根的形成T2 (硝酸盐0.95 g/L) T4 (硝酸盐0.95 g/L +洛伐他汀 0.5 mg/L) 处理均促进不定根的形成。然而,T4产生的不定根较少且短,说明适量CK对不定根的正常发育是必需的,这也表明,这些不定根是由于硝酸盐的存在而产生的。进一步解剖观察发现,抑制CK生物合成延迟了不定根原基的形成。T2处理显著提高了其内源IAAZR的含量,而T4处理内源ABAGABR含量较高。同时,T2处理MdNRT1.1MdNRT2.1在第3天和第8天表达量较高,MdRR2MdCKX5在第8天和第16天表达量较高。此外,较高的IAA水平诱导MdWOX11的表达,从而上调MdLBD16MdLBD29的表达。这些基因的联合表达通过上调细胞周期相关基因 (MdCYCD1;1MdCYCD3;1诱导不定根的发生综上本研究发现特定的基因和激素硝酸盐- CK介导的苹果不定根的发生中发挥重要作用



Abstract  
Potassium nitrate (KNO3) promotes adventitious root (AR) formation in apple stem cuttings.  However, evidence for the possible involvement of cytokinin (CK) in KNO3-mediated AR formation in apples is still lacking.  In this study, we cultured GL-3 apple microshoots in different treatment combinations.  While the T1 (KNO3 9.4 mmol L–1+6-benzyl adenine (6-BA) 2.22 μmol L–1) and T3 (6-BA 2.22 μmol L–1) treatments completely inhibited AR formation, the control, T2 (KNO3 9.4 mmol L–1), and T4 (KNO3 9.4 mmol L–1+lovastatin (Lov) 1.24 μmol L–1) treatments developed ARs.  However, T4-treated microshoots developed fewer and shorter ARs, indicating that optimum CK synthesis is needed for normal AR growth.  This also suggests that these fewer and shorter ARs developed because of the presence of KNO3 in the same medium.  The anatomy of the stem basal part indicated that the inhibition of CK biosynthesis delayed AR primordia formation.  The endogenous levels of indole‐3‐acetic acid (IAA) and zeatin riboside (ZR) were higher in T2-treated microshoots, while the abscisic acid (ABA), gibberellic acid 3 (GA3), and brassinosteroid (BR) levels were higher in T4-treated microshoots.  The expression levels of MdNRT1.1 and MdNRT2.1 were higher in T2-treated microshoots at 3 and 8 days, while MdRR2 and MdCKX5 were higher at 8 and 16 days, respectively.  Furthermore, higher IAA levels increased MdWOX11 expression, which in turn increased MdLBD16 and MdLBD29 expression in response to T2.  The combined expression of these genes stimulated adventitious rooting by upregulating cell cycle-related genes (MdCYCD1;1 and MdCYCD3;1) in response to T2 treatment.  This study shows that specific genes and hormonal pathways contribute to KNO3-CK-mediated adventitious rooting in apples.


Keywords:  adventitious root (AR)       cytokinin (CK)        potassium nitrate (KNO3)        crosstalk        hormones        gene expression  
Received: 17 August 2023   Accepted: 17 June 2024
Fund: 
This work was financially supported by the National Natural Science Foundation of China (32372675, 32372657, 32102359), the National Key Research and Development Project, China (2023YFD2301002), the Young Talent Fund of Association for Science and Technology in Shaanxi, China (20240218), the Science and Technology Major Project of Xinjiang Production and Construction Corps, China (2023AB077), the Chinese Universities Scientific Fund (2452023005), the China Apple Research System (CARS-27), the Cyrus Tang Foundation, and the Fundamental Research Funds for the Central Universities, China.
About author:  #Correspondence Jianping Mao, E-mail: mjp588@nwafu.edu.cn; Dong Zhang, E-mail: afant@nwsuaf.edu.cn *These authors contributed equally to this study.

Cite this article: 

Muhammad Mobeen Tahir, Li Fan, Zhimin Liu, Humayun Raza, Usman Aziz, Asad Shehzaib, Shaohuan Li, Yinnan He, Yicen Lu, Xiaoying Ren, Dong Zhang, Jiangping Mao. 2024. Physiological and molecular mechanisms of cytokinin involvement in nitrate-mediated adventitious root formation in apples. Journal of Integrative Agriculture, 23(12): 4046-4057.

Bai T, Dong Z, Zheng X, Song S, Jiao J, Wang M, Song C. 2020. Auxin and its interaction with ethylene control adventitious root formation and development in apple rootstock. Frontiers in Plant Science11, 574881.

Bellini C, Pacurar D I, Perrone I. 2014. Adventitious roots and lateral roots: Similarities and differences. Annual Review of Plant Biology65, 639–666.

Chandler J W, Werr W. 2015. Cytokinin–auxin crosstalk in cell type specification. Trends in Plant Science20, 291–300.

Della Rovere F, Fattorini L, D’angeli S, Veloccia A, Falasca G, Altamura M. 2013. Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of Arabidopsis. Annals of Botany112, 1395–1407.

Druege U, Hilo A, Pérez-Pérez J M, Klopotek Y, Acosta M, Shahinnia F, Zerche S, Franken P, Hajirezaei M R. 2019. Molecular and physiological control of adventitious rooting in cuttings: Phytohormone action meets resource allocation. Annals of Botany123, 929–949.

Fan S, Zhang D, Zhang L, Gao C, Xin M, Tahir M M, Li Y, Ma J, Han M. 2017. Comprehensive analysis of GASA family members in the Malus domestica genome: Identification, characterization, and their expressions in response to apple flower induction. BMC Genomics18, 1–19.

Fraisier V, Gojon A, Tillard P, DanielVedele F. 2000. Constitutive expression of a putative highaffinity nitrate transporter in Nicotiana plumbaginifolia: Evidence for posttranscriptional regulation by a reduced nitrogen source. The Plant Journal23, 489–496.

Gonzali S, Novi G, Loreti E, Paolicchi F, Poggi A, Alpi A, Perata P. 2005. A turanoseinsensitive mutant suggests a role for WOX5 in auxin homeostasis in Arabidopsis thalianaThe Plant Journal44, 633–645.

Guan L, Murphy A S, Peer W A, Gan L, Li Y, Cheng Z M. 2015. Physiological and molecular regulation of adventitious root formation. Critical Reviews in Plant Sciences34, 506–521.

Hu X, Xu L. 2016. Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiology172, 2363–2373.

Jones B, Gunnerås S A, Petersson S V, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K. 2010. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. The Plant Cell22, 2956–2969.

Kiba T, Kudo T, Kojima M, Sakakibara H. 2011. Hormonal control of nitrogen acquisition: Roles of auxin, abscisic acid, and cytokinin. Journal of Experimental Botany62, 1399–1409.

De Klerk G J, Brugge J T, Marinova S. 1997. Effectiveness of indoleacetic acid, indolebutyric acid and naphthaleneacetic acid during adventitious root formation in vitro in Malus ‘Jork 9’. Plant CellTissue and Organ Culture49, 39–44.

De Klerk G J, Hanecakova J, Jasik J. 2001. The role of cytokinins in rooting of stem slices cut from apple microcuttings. Plant Biosystems135, 79–84.

Krapp A, David L C, Chardin C, Girin T, Marmagne A, Leprince A S, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F. 2014. Nitrate transport and signalling in Arabidopsis. Journal of Experimental Botany65, 789–798.

Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K. 2010. Nitrate-regulated auxin transport by NRT1. 1 defines a mechanism for nutrient sensing in plants. Developmental Cell18, 927–937.

Krouk G, Ruffel S, Gutiérrez R A, Gojon A, Crawford N M, Coruzzi G M, Lacombe B. 2011. A framework integrating plant growth with hormones and nutrients. Trends in Plant Science16, 178–182.

Kuroha T, Kato H, Asami T, Yoshida S, Kamada H, Satoh S. 2002. A transzeatin riboside in root xylem sap negatively regulates adventitious root formation on cucumber hypocotyls. Journal of Experimental Botany53, 2193–2200.

Li S, Tahir M M, Wu T, Xie L, Zhang X, Mao J, Ayyoub A, Xing L, Zhang D, Shao Y. 2022. Transcriptome analysis reveals multiple genes and complex hormonal-mediated interactions with PEG during adventitious root formation in apple. International Journal of Molecular Sciences23, 976.

Li S W, Shi R F, Leng Y. 2015. De novo characterization of the mung bean transcriptome and transcriptomic analysis of adventitious rooting in seedlings using RNA-Seq. PLoS ONE10, e0132969.

Li Y, Li J, Yan Y, Liu W, Zhang W, Gao L, Tian Y. 2018. Knock-down of CsNRT2. 1, a cucumber nitrate transporter, reduces nitrate uptake, root length, and lateral root number at low external nitrate concentration. Frontiers in Plant Science9, 722.

Liu B, Wang L, Zhang J, Li J, Zheng H, Chen J, Lu M. 2014. WUSCHEL-related Homeobox genes in Populus tomentosa: Diversified expression patterns and a functional similarity in adventitious root formation. BMC Genomics15, 1–14.

Liu J, Sheng L, Xu Y, Li J, Yang Z, Huang H, Xu L. 2014. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in ArabidopsisThe Plant Cell26, 1081–1093.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Luo X, Chen Z, Gao J, Gong Z. 2014. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis. The Plant Journal79, 44–55.

Mähönen A P, Higuchi M, Törmäkangas K, Miyawaki K, Pischke M S, Sussman M R, Helariutta Y, Kakimoto T. 2006. Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Current Biology16, 1116–1122.

Mao J, Niu C, Li K, Fan L, Liu Z, Li S, Ma D, Tahir M M, Xing L, Zhao C. 2023. Cytokinin-responsive MdTCP17 interacts with MdWOX11 to repress adventitious root primordium formation in apple rootstocks. The Plant Cell35, 1202–1221.

Mao J, Zhang D, Meng Y, Li K, Wang H, Han M. 2019. Inhibition of adventitious root development in apple rootstocks by cytokinin is based on its suppression of adventitious root primordia formation. Physiologia Plantarum166, 663–676.

Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H. 2011. The main auxin biosynthesis pathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America108, 18512–18517.

Mauriat M, Petterle A, Bellini C, Moritz T. 2014. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. The Plant Journal78, 372–384.

Naija S, Elloumi N, Jbir N, Ammar S, Kevers C. 2008. Anatomical and biochemical changes during adventitious rooting of apple rootstocks MM 106 cultured in vitroComptes Rendus Biologies331, 518–525.

O’Brien J A, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutiérrez R A. 2016. Nitrate transport, sensing, and responses in plants. Molecular Plant9, 837–856.

Pacifici E, Di Mambro R, Dello Ioio R, Costantino P, Sabatini S. 2018. Acidic cell elongation drives cell differentiation in the Arabidopsis root. The EMBO Journal37, e99134.

Patial S, Chandel J, Sharma N, Verma P. 2021. Influence of auxin on rooting in hardwood cuttings of apple (Malus×Domestica borkh.) clonal rootstock ‘M116’ under mist chamber conditions. Indian Journal of Ecology48, 429–433.

Rahayu Y S, Walch-Liu P, Neumann G, Römheld V, von Wirén N, Bangerth F. 2005. Root-derived cytokinins as long-distance signals for NO3-induced stimulation of leaf growth. Journal of Experimental Botany56, 1143–1152.

Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde B G, Gojon A. 2006a. The Arabidopsis NRT1. 1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proceedings of the National Academy of Sciences of the United States of America103, 19206–19211.

Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A. 2006b. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiology140, 909–921.

Rubio V, Bustos R, Irigoyen M L, Cardona-López X, Rojas-Triana M, Paz-Ares J. 2009. Plant hormones and nutrient signaling. Plant Molecular Biology69, 361–373.

Růžička K, Šimášková M, Duclercq J, Petrášek J, Zažímalová E, Simon S, Friml J, Van Montagu M C, Benková E. 2009. Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proceedings of the National Academy of Sciences of the United States of America106, 4284–4289.

Ryan E, Grierson C S, Cavell A, Steer M, Dolan L. 1998. TIP1 is required for both tip growth and non-tip growth in Arabidopsis. The New Phytologist138, 49–58.

Sakakibara H, Takei K, Hirose N. 2006. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends in Plant Science11, 440–448.

Sheng L, Hu X, Du Y, Zhang G, Huang H, Scheres B, Xu L. 2017. Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture. Development144, 3126–3133.

Smolka A, Welander M, Olsson P, Holefors A, Zhu L H. 2009. Involvement of the ARRO-1 gene in adventitious root formation in apple. Plant Science177, 710–715.

Sozzani R, Cui H, Moreno-Risueno M, Busch W, Van Norman J, Vernoux T, Brady S, Dewitte W, Murray J A H, Benfey P. 2010. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature466, 128–132.

Tahir M M, Chen S, Ma X, Li S, Zhang X, Shao Y, Shalmani A, Zhao C, Bao L, Zhang D. 2021a. Transcriptome analysis reveals the promotive effect of potassium by hormones and sugar signaling pathways during adventitious roots formation in the apple rootstock. Plant Physiology and Biochemistry165, 123–136.

Tahir M M, Li S, Liu Z, Fan L, Tang T, Zhang X, Mao J, Li K, Khan A, Shao Y. 2022a. Different miRNAs and hormones are involved in PEG-induced inhibition of adventitious root formation in apple. Scientia Horticulturae303, 111206.

Tahir M M, Li S, Mao J, Liu Y, Li K, Zhang X, Lu X, Ma X, Zhao C, Zhang D. 2021b. High nitrate inhibited adventitious roots formation in apple rootstock by altering hormonal contents and miRNAs expression profiles. Scientia Horticulturae286, 110230.

Tahir M M, Lu Z, Wang C, Shah K, Li S, Zhang X, Mao J, Liu Y, Shalmani A, Li K. 2021c. Nitrate application induces adventitious root growth by regulating gene expression patterns in apple rootstocks. Journal of Plant Growth Regulation41, 3467–3478.

Tahir M M, Mao J, Li S, Li K, Liu Y, Shao Y, Zhang D, Zhang X. 2022b. Insights into factors controlling adventitious root formation in apples. Horticulturae8, 276.

Tahir M M, Tong L, Fan L, Liu Z, Li S, Zhang X, Li K, Shao Y, Zhang D, Mao J. 2022c. Insights into the complicated networks contribute to adventitious rooting in transgenic MdWOX11 apple microshoots under nitrate treatments. PlantCell & Environment45, 3134–3156.

Tahir M M, Tong L, Xie L, Wu T, Ghani M I, Zhang X, Li S, Gao X, Tariq L, Zhang D. 2023. Identification of the HAK gene family reveals their critical response to potassium regulation during adventitious root formation in apple rootstock. Horticultural Plant Journal9, 45–59.

Tahir M M, Wang H, Ahmad B, Liu Y, Fan S, Li K, Lei C, Shah K, Li S, Zhang D. 2021d. Identification and characterization of NRT gene family reveals their critical response to nitrate regulation during adventitious root formation and development in apple rootstock. Scientia Horticulturae275, 109642.

Tahir M M, Zhang X, Shah K, Hayat F, Li S, Mao J, Liu Y, Shao Y, Zhang D. 2021e. Nitrate application affects root morphology by altering hormonal status and gene expression patterns in B9 apple rootstock nursery plants. Fruit Research1, 14.

Takatsuka H, Umeda M. 2014. Hormonal control of cell division and elongation along differentiation trajectories in roots. Journal of Experimental Botany65, 2633–2643.

Takei K, Sakakibara H, Taniguchi M, Sugiyama T. 2001. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator. Plant and Cell Physiology42, 85–93.

Thomas P, Lee M, Schiefelbein J. 2003. Molecular identification of prolinerich protein genes induced during root formation in grape (Vitis vinifera L.) stem cuttings. PlantCell & Environment26, 1497–1504.

Wang H, Tahir M M, Nawaz M A, Mao J, Li K, Wei Y, Ma D, Lu X, Zhao C, Zhang D. 2020. Spermidine application affects the adventitious root formation and root morphology of apple rootstock by altering the hormonal profile and regulating the gene expression pattern. Scientia Horticulturae266, 109310.

Wang J X, Yan X L, Pan R C. 2005. Relationship between adventitious root formation and plant hormones. Plant Physiology Communications41, 133–142.

Wang Y Y, Hsu P K, Tsay Y F. 2012. Uptake, allocation and signaling of nitrate. Trends in Plant Science17, 458–467.

Zaghlool S, Shehata S. 2002. Regulation of adventitious roots formation by auxin and cytokinin of derooted cucumber seedling in relation to auxin transport. In: Annals of Agricultural Science. Ain Shams University, Egypt.

Zhang X, Tahir M M, Li S, Mao J, Nawaz M A, Liu Y, Li K, Xing L, Niu J, Zhang D. 2021. Transcriptome analysis reveals the inhibitory nature of high nitrate during adventitious roots formation in the apple rootstock. Physiologia Plantarum173, 867–882.

Zhang X, Tahir M M, Li S, Tang T, Mao J, Li K, Shao Y, Yang W, Niu J, Zhang D. 2022. Effect of exogenous abscisic acid (ABA) on the morphology, phytohormones, and related gene expression of developing lateral roots in ‘Qingzhen 1’ apple plants. Plant CellTissue and Organ Culture (PCTOC), 148, 23–34.

[1] Lijiao Ge, Weihao Miao, Kuolin Duan, Tong Sun, Xinyan Fang, Zhiyong Guan, Jiafu Jiang, Sumei Chen, Weimin Fang, Fadi Chen, Shuang Zhao. Comparative transcriptome analysis identifies key regulators of nitrogen use efficiency in chrysanthemum[J]. >Journal of Integrative Agriculture, 2025, 24(1): 176-195.
[2] Zhengyuan Xu, Lingzhen Ye, Qiufang Shen, Guoping Zhang. Advances in the study of waterlogging tolerance in plants[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2877-2897.
[3] ZHAO Shu-ping, DENG Kang-ming, ZHU Ya-mei, JIANG Tao, WU Peng, FENG Kai, LI Liang-jun.

Optimization of slow-release fertilizer application improves lotus rhizome quality by affecting the physicochemical properties of starch [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1045-1057.

[4] MA Yu-xin, ZHOU Zhi-jun, CAO Hong-zhe, ZHOU Fan, SI He-long, ZANG Jin-ping, XING Ji-hong, ZHANG Kang, DONG Jin-gao. Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2 and ZmSTP20 in maize disease resistance[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3458-3473.
[5] FAN Xiao-xue, BIAN Zhong-hua, SONG Bo, XU Hai. Transcriptome analysis reveals the differential regulatory effects of red and blue light on nitrate metabolism in pakchoi (Brassica campestris L.)[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1015-1027.
[6] WANG Pei-pei, WANG Zhao-ke, GUAN Le, Muhammad Salman HAIDER, Maazullah NASIM, YUAN Yong-bing, LIU Geng-sen, LENG Xiang-peng. Versatile physiological functions of the Nudix hydrolase family in berry development and stress response in grapevine[J]. >Journal of Integrative Agriculture, 2022, 21(1): 91-112.
No Suggested Reading articles found!