Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Optimizing sowing dates increase solar radiation to mitigate maize lodging and yield variability: A five-year field study
Xinglong Wang1*, Fan Liu1*, Nan Zhao2, Xia Du1, Pijiang Yin1, Tongliang Li1, Tianqiong Lan1, Dongju Feng1, Fanlei Kong1#, Jichao Yuan1#

1 College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China

2 Weinan Academy of Agricultural Sciences, Weinan 714000, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  优化播期(SDs是调整玉米生产以适应气候变化和提高产量的潜在策略。然而,目前关于倒伏、产量与气候因子变化相关的研究鲜见报道因此,本研究旨在探讨不同播期下玉米生长季重要气候变量的变化规律和分布,及其对产量和倒伏的影响,以及玉米生长期影响倒伏的关键气候因素。本研究通过为期5(2015年、2016年、20192020年、2021的大田试验,评估不同播期条件下气候因子对四川盆地产量和倒伏的影响。结果表明,延迟播期倒伏率对玉米产量变异系数(3.31~10.50%)有显著影响。倒伏率每增加1%,产量降低58.05 kg hm-1拖迟播期降低了苗期至丝期的太阳辐射(Sr),太阳辐射变化解释34.7%的倒伏率变异。历史气象资料分析表明,1990-2021太阳辐射年际变化幅度为-8.7763 MJ m-2 yr-1,其中5月下旬至7月上旬的降低幅度尤为明显。VPA分析表明出苗期到生理成熟期和苗期至丝期的气候变量对不同SDs下产量的贡献率分别为43.9%53.2%,对倒伏率的贡献率分别为56.045.4%RF分析表明,SDs的变化主要影响基部节间形态的建成从而增加倒伏率的发生解释了69.79%倒伏变异。本研究阐明获得高产和稳产的最佳播种日期为3月下旬至4月中旬,这归因于苗期至丝期较高的太阳辐射综上所述,研究结果不仅解气候变化对玉米茎秆倒伏的影响提供重要见解,还为调整播期缓解玉米倒伏提供栽培理论依据

Abstract  Optimizing sowing dates (SDs) is a potential strategy for adjusting maize production to climate change and increasing yield.  However, there is still a lack of research on the combined effects of lodging and yield in relation to climatic variables across various SDs.  This study aims to investigate the changing patterns and distribution of important climatic variables during the maize growth season, their impact on yield and lodging, and the critical factors affecting lodging at crucial growth stages under different SD scenarios.  In this study, we assessed the impact of climate change on yield and lodging by conducting field experiments over 5 years (2015, 2016, 2019–2021) encompassing 25 SDs in the Sichuan basin, China.  Results demonstrated that the lodging rate had a significant effect on the coefficient of variation (CV, 3.31–10.50%) of maize yield.  A 1% increase in lodging rate, led to a decrease of 58.05 kg ha-1 in yield.  Changes in SDs notably affected solar radiation (Sr) from emergence to silking (E-R1).  Additionally, the study found that Sr explained 34.7% of the lodging rate variation in E-R1.  Analysis of historical meteorological data showed notable inter-annual variations in Sr trends, with a decline of -8.7763 MJ m-2 yr-1 from 1990 to 2021, especially noticeable from late May to early July.  Variation Partitioning Analysis (VPA) revealed that climatic variables during the period from emergence to physiological maturity (E-R6) and E-R1 explained 43.9 and 53.2% of yield, respectively, across different SDs.  These variables also contributed 56.0 and 45.4% to lodging.  Using Random Forest (RF) determined that changes in SDs significantly impacted lodging rates mainly through modifications in basal internode morphology, which explained 69.79% of the variation.  The study identified optimal sowing dates for achieving high and consistent yields, primarily occurring between late March and mid-April, attributed to increased Sr during E-R1.  Overall, this research provides valuable insights into the effects of climate change on stalk lodging and offers guidance on adjusting sowing dates to mitigate maize lodging rates.
Keywords:  sowing date       climatic variables              stalk lodging              maize yield  
Online: 25 April 2024  
Fund: This work was supported by the National Key Research and Development Project, China (2022YFD190160304), the Key Project of Sichuan Natural Science Foundation, China (2022NSFSC0013), the Sichuan Provincial Maize Innovation Team Building Project, China (SCCXTD-2023-02), and the National Science and Technology Support Projects, China (2015BAC05B05).
About author:  Xinglong Wang, E-mail: wangxl@sicau.edu.cn; Fan Liu, E-mail: 2020201024@stu.sicau.edu.cn; #Correspondence Jichao Yuan, Tel: +86-13980074156, E-mail: yuanjichao@sicau.edu.cn; Fanlei Kong, Tel:+86-18628222445, E-mail: kflstar@163.com * These authors contributed equally to this study.

Cite this article: 

Xinglong Wang, Fan Liu, Nan Zhao, Xia Du, Pijiang Yin, Tongliang Li, Tianqiong Lan, Dongju Feng, Fanlei Kong, Jichao Yuan. 2024. Optimizing sowing dates increase solar radiation to mitigate maize lodging and yield variability: A five-year field study. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.03.078

Acreche M M, Slafer G A. 2011. Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crops Research, 122, 40–48.

Ahmad I, Kamran M, Ali S, Bilegjargal B, Cai T, Ahmad S, Meng X P, Su W N, Liu T N, Han Q F. 2018. Uniconazole application strategies to improve lignin biosynthesis, lodging resistance and production of maize in semiarid regions. Field Crops Research, 222, 66–77.

Bonelli L B, Monzon P J, Cerrudo A, Rizzalli R H, Andrade F H. 2016. Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crops Research198, 215–225.

Berry P M, Baker C J, Hatley D, Dong R, Wang X, Blackburn G A, Miao Y, Sterling M, Whyatt J D. 2021. Development and application of a model for calculating the risk of stem and root lodging in maize. Field Crops Research, 262, 108037.

Chikov V I, Avvakumova N Y, Bakirova G G, Belova L A, Zaripova L M. 2001. Apoplastic transport of 14C-photosynthates measured under drought and nitrogen supply. Biologia Plantarum, 44, 517–521.

Dai X L, Wang Y C, Dong X C, Qian T F, Yin L J, Dong S X, Chu J P, He M R. 2017. Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat. The Crop Journal, 5, 541–552.

Dockter C, Gruszka D, Braumann I, Druka A, Druka I, Franckowiak J, Gough S P, Janeczko A, Kurowska M, Lundqvist J, Lundqvist U, Marzec M, Matyszczak I, Müller A H, Oklestkova J, Schulz B, Zakhrabekova S, Hansson M. 2014. Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiology, 166, 1912–1927.

Du X, Dou P, Chen X, Kong F L, Yuan J C. 2022. Effects of meteorological conditions on maize growth and yield in hilly area of Central Sichuan and optimization of sowing date: A case study of Zhongjiang, Sichuan. Journal of Hunan Agricultural University (Natural Sciences), 48, 257–264. (in Chinese)

Esechie H A, Rodriguez V, Al-Asmi H. 2004. Comparison of local and exotic maize varieties for stalk lodging components in a desert climate. European Journal of Agronomy, 21, 21–30.

Flint-Garcia S A, Jampatong C, Darrah L L, McMullen M D. 2003. Quantitative trait locus analysis of stalk strength in four maize populations. Crop Science, 43, 13–22.

Gao Z, Feng H Y, Liang X G, Lin S, Zhao X, Shen S, Du X, Cui Y H, Zhou S L. 2021. Adjusting the sowing date of spring maize did not mitigate against heat stress in the North China Plain. Agricultural and Forest Meteorology298–299, 108274.

Han X M, Hu C, Chen Y F, Qiao Y, Liu D H, Fan J, Li S L, Zhang Z. 2020. Crop yield stability and sustainability in a rice-wheat cropping system based on 34-year field experiment. European Journal of Agronomy, 113, 125965.

He Y Y, Wang K C, Zhou C L, Wild M. 2018. A revisit of global dimming and brightening based on the sunshine duration. Geophysical Research Letters, 45, 4281–4289.

Van Heerden P D R, Singels A, Paraskevopoulos A, Rossler R. 2015. Negative effects of lodging on irrigated sugarcane productivity—an experimental and crop modelling assessment. Field Crops Research, 180, 135–142.

Hou P, Liu Y E, Liu W M, Liu G Z, Xie R Z, Wang K R, Ming B, Wang Y H, Zhao R L, Zhang W J, Wang Y J, Bian S F, Ren H, Zhao X Y, Liu P, Chang J Z, Zhang G H, Liu J Y, Yuan L Z, Zhao H Y, et al. 2020. How to increase maize production without extra nitrogen input. Resources Conservation and Recycling, 160, 104913.

IPCC (Intergovernmental Panel on Climate Change). 2021. Climate Change 2021: The Physical Science Basis. Summary for Policymakers. Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.

Jiang S Z, Huang Y W, Zhao L, Cui B, Wang Y S, Hu X T, Zheng S S, Zou Q Y, Feng Y, Guo L. 2022. Effects of clouds and aerosols on ecosystem exchange, water and light use efficiency in a humid region orchard. Science of the Total Environment, 811, 152377.

Jin R, Li Z, Wang X L, Liu F, Kong F L, Liu Q L, Lan T Q, Feng D J, Yuan J C. 2023. Optimizing row spacing increases stalk lodging resistance by improving light distribution in dense maize populations. Agronomy, 13, 462.

Kamran M, Cui W W, Ahmad I, Meng X P, Zhang X D, Su W N, Chen J Z, Ahmad S, Fahad S, Han Q F, Liu T N. 2018. Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize. Plant Growth Regulation, 84, 317–332.

Khobra R, Sareen S, Meena B K, Kumar A, Tiwari V, Singh G P. 2019. Exploring the traits for lodging tolerance in wheat genotypes: a review. Physiology and Molecular Biology of Plants, 25, 1–12.

Li B B, Chen X M, Deng T, Zhao X, Li F, Zhang B C, Wang X, Shen S, Zhou S L. 2024. Timing effect of high temperature on the plasticity of internode and plant architecture in maize. Journal of Integrative Agriculture23, 551-565.

Li C Z, Li C J. 2021. Ridge-furrow with plastic film mulching system decreases the lodging risk for summer maize plants under different nitrogen fertilization rates and varieties in dry semi-humid areas. Field Crops Research, 263, 108056.

Li S Y, Wang Y X, Hu C D, Yan Y. 2015. Effect of strong wind lodging at pre-and post-tasseling stages on growth and yield of summer maize. Chinese Journal of Applied Ecology, 26, 2405–2413. (in Chinese)

Li T, Zhang X P, Liu Q, Yan P, Liu J, Chen Y Q, Sui P. 2022. Yield and yield stability of single cropping maize under different sowing dates and the corresponding changing trends of climatic variables. Field Crops Research, 285, 108589.

Li Y B, Tao F L. 2023. Rice yield response to climate variability diverges strongly among climate zones across China and is sensitive to trait variation. Field Crops Research, 301, 109034.

Liu F, Zhou F, Wang X L, Zhan X X, Guo Z X, Liu Q L, Wei G, Lan T Q, Feng D J, Kong F L, Yuan J C. 2023. Optimizing nitrogen management enhances stalk lodging resistance and grain yield in dense planting maize by improving canopy light distribution. European Journal of Agronomy, 148, 126871.

Liu Q, Yang Z P, Zhou W, Wang T, Fu Y, Yue X P, Chen H, Tao Y F, Deng F, Lei X L, Ren W J, Chen Y. 2023. Solar radiation utilization of five upland–paddy cropping systems in low-light regions promoted by diffuse radiation of paddy season. Agricultural and Forest Meteorology, 338, 109527.

Luo N, Meng Q F, Feng P Y, Qu Z R, Yu Y H, Liu D L, Müller C, Wang P. 2023. China can be self-sufficient in maize production by 2030 with optimal crop management. Nature Communications, 14, 2637.

Ma D L, Xie R Z, Liu X, Niu X K, Hou P, Wang K R, Lu Y L, Li S K. 2014. Lodging-related stalk characteristics of maize varieties in China since the 1950s. Crop Science, 54, 2805–2814.

Mi C Q, Zhang X D, Li S M, Yang J Y, Zhu D H, Yang Y. 2011. Assessment of environment lodging stress for maize using fuzzy synthetic evaluation. Mathematical and Computer Modelling, 54, 1053–1060.

Mercado L M, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox P M. 2009. Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458, 1014–1017.

Noor R B M, Caviness C E. 1980. Influence of induced lodging on pod distribution and seed yield in soybeans. Agronomy Journal, 72, 904–906.

Novacek M J, Mason S C, Galusha T D, Yaseen M. 2013. Twin rows minimally impact irrigated maize yield, morphology, and lodging. Agronomy Journal, 105, 268–276.

Niu Y N, Chen T X, Zhao C C, Zhou M X. 2022. Lodging prevention in cereals: Morphological, biochemical, anatomical traits and their molecular mechanisms, management and breeding strategies. Field Crops Research, 289, 10873.

Peng B, Guan K Y. 2021. Harmonizing climate-smart and sustainable agriculture. Nature Food, 2, 853–854.

Piñera-Chavez F J, Berry P M, Foulkes M J, Molero G, Reynolds M P. 2016. Avoiding lodging in irrigated spring wheat. II. Genetic variation of stem and root structural properties. Field Crops Research, 196, 64–74.

Rahimi-Moghaddam S, Kambouzia J, Deihimfard R. 2018. Adaptation strategies to lessen negative impact of climate change on grain maize under hot climatic conditions: A model-based assessment. Agricultural and Forest Meteorology, 253–254, 1–14.

Robertson D J, Smith S, Gardunia B, Cook D. 2014. An improved method for accurate phenotyping of corn stalk strength. Crop Science, 54, 2038–2044.

Sancho M A, de Forchetti S M, Pliego F, Valpuesta V, Quesada M A. 1996. Peroxidase activity and isoenzymes in the culture medium of NaCl adapted tomato suspension cells. Plant Cell Tissue and Organ Culture, 442, 161–167.

Sekhon R S, Joyner C N, Ackerman A J, McMahah C S, Cook D D, Robertson D J. 2020. Stalk bending strength is strongly associated with maize stalk lodging incidence across multiple environments. Field Crops Research, 249, 107737.

Shah A, Tanveer M, Rehman A, Anjum A, Iqbal J, Ahmad R. 2017. Lodging stress in cereal-effects and management: an overview. Environmental Science and Pollution Research, 24, 5222–5237.

Shao L P, Liu Z J, Li H Z, Zhang Y L, Dong M M, Guo X H, Zhang H, Huang B W, Ni R B, Li G, Cai C, Chen W P, Luo W H, Yin X Y. 2020. The impact of global dimming on crop yields is determined by the source–sink imbalance of carbon during grain filling. Global Change Biology, 27, 689–708.

Slewinski T L, Braun D M. 2010. Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Science, 178, 341–349.

Tian B J, Zhu J C, Nie Y S, Xu C L, Meng Q F, Wang P. 2019. Mitigating heat and chilling stress by adjusting the sowing date of maize in the North China Plain. Journal of Agronomy and Crop Science, 205, 77–87.

Tilman D, Balzer C, Hill J, Befort B L. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260–20264.

Tsimba R, Edmeades G O, Millner J P, Kemp P D. 2013. The effect of planting date on maize grain yields and yield components. Field Crops Research, 150, 135–144.

Vera C L, Duguid S D, Fox S L, Rashid K Y, Dribnenki J C P, Clarke F R. 2012. Short communication: comparative effect of lodging on seed yield of flax and wheat. Canadian Journal of Plant Science, 92, 39–43.

Vitantonio-Mazzi L N, Borrás L, Garibaldi L A, Pérez D H, Gallo S, Gamin B L. 2020. Management options for reducing maize yield gaps in contrasting sowing dates. Field Crops Research, 251, 107779.

Wang C, Hu D, Liu X B, She H Z, Ruan R W, Yang H, Yi Z L, Wu D Q. 2015. Effects of uniconazole on the lignin metabolism and lodging resistance of culm in common buckwheat (Fagopyrum esculentum M.). Field Crops Research, 180, 46–53.

Wang Q, Xue J, Chen J L, Fan Y H, Zhang G Q, Xie R Z, Ming B, Hou P, Wang K R, Li S K. 2020. Key indicators affecting maize stalk lodging resistance of different growth periods under different sowing dates. Journal of Integrative Agriculture, 19, 2419–2428.

Wang S, Li, H G, Dong Z Y, Wang C, Wei X, Long Y, Wan X Y. 2023. Genetic structure and molecular mechanism underlying the stalk lodging traits in maize (Zea mays L.). Computational and Structural Biotechnology Journal, 21, 485–494.

Weng F, Zhang W J, Wu X R, Xu X, Ding Y F, Li G H, Liu Z H, Wang S H. 2017. Impact of low-temperature, overcast and rainy weather during the reproductive growth stage on lodging resistance of rice. Scientific Reports, 7, 46596.

Wild M, Gilgen H, Roesch A, Ohmura A, Long C N, Dutton E G, Forgan B, Kallis A, Russak V, Tsvetkov A. 2005. From dimming to brightening: Decadal changes in solar radiation at Earth's surface. Science, 308, 847–850.

Wolfe D W, DeGaetano A T, Peck G M, Carey M, Ziska L H, Lea-Cox J, Kemanian A R, Hoffmann M P, Hollinger D Y. 2018. Unique challenges and opportunities for northeastern US crop production in a changing climate. Climatic Change, 146, 231–245.

Wu F Q, Guo S M, Huang W B, Han Y C, Wang Z B, Feng L, Wang G P, Li X F, Lei Y P, Yang B F, Xiong S W, Zhi X Y, Chen J L, Xin M H, Wang Y R, Li Y B. 2023. Adaptation of cotton production to climate change by sowing date optimization and precision resource management. Industrial Crops and Products, 203, 117167.

Wu W, Shah F, Ma B L. 2022. Understanding of crop lodging and agronomic strategies to improve the resilience of rapeseed production to climate change. Crop and Environment, 1, 133–144.

Xu C L, Gao Y B, Tian B J, Ren J H, Meng Q F, Wang P. 2017. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Research, 200, 71–79.

Xu Z, Lai T Z, Li S, Si D X, Zhang C C, Cui Z L, Chen X P. 2018. Promoting potassium allocation to stalk enhances stalk bending resistance of maize (Zea mays L.). Field Crops Research215, 200–206.

Xue J, Gao S, Fan Y H, Li L L, Ming B, Wang K R, Xie R Z, Hou P, Li S K. 2020a. Traits of plant morphology, stalk mechanical strength, and biomass accumulation in the selection of lodging-resistant maize cultivars. European Journal of Agronomy, 117, 126073.

Xue J, Gou L, Zhao Y S, Yao M N, Yao H S, Tian J S, Zhang W F. 2016a. Effects of light intensity within the canopy on maize lodging. Field Crops Research, 188, 133–141.

Xue J, Ming B, Xie R Z, Wang K R, Hou P, Li S K. 2020b. Evaluation of maize lodging resistance based on the critical wind speed of stalk breaking during the late growth stage. Plant Methods, 16, 1–12.

Xue J, Xie R Z, Zhang W F, Wang K R, Hou P, Ming B, Gou L, Li S K. 2017. Research progress on reduced lodging of high-yield and density maize. Journal of Integrative Agriculture, 16, 2717–2725.

Xue J, Zhao Y S, Gou L, Shi Z G, Yao M N, Zhang W F. 2016b. How high plant density of maize affects basal internode development and strength formation. Crop Science, 56, 3295–3306.

Yang Y S, Guo X X, Hou P, Xue J, Liu G Z, Liu W M, Wang Y H, Zhao R L, Ming B, Xie R Z, Wang K R, Li S K. 2020. Quantitative effects of solar radiation on maize lodging resistance mechanical properties. Field Crops Research, 255, 107906.

Zhan X X, Kong F L, Liu Q L, Lan T Q, Liu Y Q, Xu J Z, Ou Q, Chen L, Kessel G, Kempenaar C, Yuan J C. 2022. Maize basal internode development significantly affects stalk lodging resistance. Field Crops Research, 286, 108611.

Zhang J K. 2020. The Principle and Method of Crop Quality Analysis. Science Press, China. (in Chinese)

Zhang P, Gu S C, Wang Y Y, Yang R M, Yan Y, Zhang S, Sheng D C, Cui T, Huang S B, Wang P. 2021. Morphological and mechanical variables associated with lodging in maize (Zea mays L.). Field Crops Research, 269, 108178.

Zimmermann A, Webber H, Zhao G, Ewert F, Kros J, Wolf J, Britz W, de Vries W. 2017. Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements. Agricultural Systems, 157, 81–92.

Zuber M S, Loesch P J. 1966. Effects of years and locations stalk strength in corn (Zea mays L.). Agronomy Journal, 58, 173–175. 

[1] Dong Deng, Wenqi Wu, Canxing Duan, Suli Sun, Zhendong Zhu.

A novel pathogen Fusarium cuneirostrum causing common bean (Phaseolus vulgaris) root rot in China [J]. >Journal of Integrative Agriculture, 2024, 23(1): 166-176.

[2] Mu Zeng, Binhu Wang, Lei Liu, Yalan Yang, Zhonglin Tang. Genome-wide association study identifies 12 new genetic loci associated with growth traits in pigs[J]. >Journal of Integrative Agriculture, 2024, 23(1): 217-227.
[3] Jie Cheng, Xiukai Cao, Shengxuan Wang, Jiaqiang Zhang, Binglin Yue, Xiaoyan Zhang, Yongzhen Huang, Xianyong Lan, Gang Ren, Hong Chen. 3D genome organization and its study in livestock breeding[J]. >Journal of Integrative Agriculture, 2024, 23(1): 39-58.
[4] Xiaotong Guo, Xiangju Li, Zheng Li, Licun Peng, Jingchao Chen, Haiyan Yu, Hailan Cui. Effect of mutations on acetohydroxyacid synthase (AHAS) function in Cyperus difformis L.[J]. >Journal of Integrative Agriculture, 2024, 23(1): 177-186.
[5] Yanan Xu, Yue Wu, Yan Han, Jiqing Song, Wenying Zhang, Wei Han, Binhui Liu, Wenbo Bai. Effect of chemical regulators on the recovery of leaf physiology, dry matter accumulation and translocation, and yield-related characteristics in winter wheat following dry-hot wind[J]. >Journal of Integrative Agriculture, 2024, 23(1): 108-121.
[6] Simin Liao, Zhibin Xu, Xiaoli Fan, Qiang Zhou, Xiaofeng Liu, Cheng Jiang, Liangen Chen, Dian Lin, Bo Feng, Tao Wang.

Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(1): 77-92.

[7] Tingcheng Zhao, Aibin He, Mohammad Nauman Khan, Qi Yin, Shaokun Song, Lixiao Nie.

Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions [J]. >Journal of Integrative Agriculture, 2024, 23(1): 93-107.

[8] Atiqur RAHMAN, Md. Hasan Sofiur RAHMAN, Md. Shakil UDDIN, Naima SULTANA, Shirin AKHTER, Ujjal Kumar NATH, Shamsun Nahar BEGUM, Md. Mazadul ISLAM, Afroz NAZNIN, Md. Nurul AMIN, Sharif AHMED, Akbar HOSAIN. Advances in DNA methylation and its role in cytoplasmic male sterility in higher plants[J]. >Journal of Integrative Agriculture, 2024, 23(1): 1-19.
[9] Jingui Wei, Qiang Chai, Wen Yin, Hong Fan, Yao Guo, Falong Hu, Zhilong Fan, Qiming Wang. Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions[J]. >Journal of Integrative Agriculture, 2024, 23(1): 122-140.
[10] Wan Wang, Zhenjiang Zhang, Weldu Tesfagaber, Jiwen Zhang, Fang Li, Encheng Sun, Lijie Tang, Zhigao Bu, Yuanmao Zhu, Dongming Zhao. Establishment of an indirect immunofluorescence assay for the detection of African swine fever virus antibodies[J]. >Journal of Integrative Agriculture, 2024, 23(1): 228-238.
[11] Yanfei Song, Tai’an Tian, Yichai Chen, Keshi Zhang, Maofa Yang, Jianfeng Liu. A mite parasitoid, Pyemotes zhonghuajia, negatively impacts the fitness traits and immune response of the fall armyworm, Spodoptera frugiperda[J]. >Journal of Integrative Agriculture, 2024, 23(1): 205-216.
[12] Qi Zhang, Wenqin Zhan, Chao Li, Ling Chang, Yi Dong, Jiang Zhang.

Host-induced silencing of MpPar6 confers Myzus persicae resistance in transgenic rape plants [J]. >Journal of Integrative Agriculture, 2024, 23(1): 187-194.

[13] Jie Xue, Xianglin Zhang, Songchao Chen, Bifeng Hu, Nan Wang, Zhou Shi.

Quantifying the agreement and accuracy characteristics of four satellite-based LULC products for cropland classification in China [J]. >Journal of Integrative Agriculture, 2024, 23(1): 283-297.

[14] Qiuyan Yan, Linjia Wu, Fei Dong, Shuangdui Yan, Feng Li, Yaqin Jia, Jiancheng Zhang, Ruifu Zhang, Xiao Huang.

Subsoil tillage enhances wheat productivity, soil organic carbon and available nutrient status in dryland fields [J]. >Journal of Integrative Agriculture, 2024, 23(1): 251-266.

[15] Akmaral Baidyussen, Gulmira Khassanova, Maral Utebayev, Satyvaldy Jatayev, Rystay Kushanova, Sholpan Khalbayeva, Aigul Amangeldiyeva, Raushan Yerzhebayeva, Kulpash Bulatova, Carly Schramm, Peter Anderson, Colin L. D. Jenkins, Kathleen L. Soole, Yuri Shavrukov. Assessment of molecular markers and marker-assisted selection for drought tolerance in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2024, 23(1): 20-38.
No Suggested Reading articles found!