Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (7): 2080-2093    DOI: 10.1016/j.jia.2023.05.024
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide identification and function analysis of the sucrose phosphate synthase MdSPS gene family in apple
ZHANG Li-hua1, 2, ZHU Ling-cheng2, XYu1, LÜ Long1, LXing-guo1, LWen-hui1, LIU Wan-da3, MFeng-wang2, LMing-jun2#, HAN De-guo1#

1The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/National–Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, P.R.China

2State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, P.R.China

3Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150040, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

蔗糖磷酸合成酶(SPS是蔗糖合成途径中的限速酶,与磷酸蔗糖磷酸酶SPP形成复合体共同催化合成蔗糖,在植物生长发育过程中提供能量并在果实品质提升方面发挥着重要作用。目前,关于苹果SPS基因家族的进化模式及系统性分析的研究较少。本研究从苹果基因组GDDH13 v1.1中鉴定了7MdSPS基因和4MdSPP基因,并分析了其基因结构、基因启动子顺式元件、蛋白保守基序、亚细胞定位和生理生化特性。染色体定位和基因组复制分析表明,全基因组复制(WGD)和片段复制是MdSPS基因家族进化的主要方式,MdSPS基因Ka/Ks比值分析指出该家族成员在驯化过程中经历了较强的纯化选择。根据系统发育关系将SPS基因划分为3个亚家族,并观察到基因亚家族间古老的基因复制事件和差异显著的进化速率。此外,根据金冠富士秦冠蜜脆四个苹果品种果实发育过程中可溶性糖含量与SPS家族基因表达水平的相关性,鉴定了一个蔗糖积累相关的关键基因MdSPSA2.3随后通过病毒诱导MdSPSA2.3基因沉默证实了基因在苹果果实蔗糖积累中的重要功能。本研究为更好地阐明MdSPS基因在苹果果实发育过程中的生物学功能奠定了理论基础。


Sucrose phosphate synthase (SPS) is a rate-limiting enzyme that works in conjunction with sucrose-6-phosphate phosphatase (SPP) for sucrose synthesis, and it plays an essential role in energy provisioning during growth and development in plants as well as improving fruit quality.  However, studies on the systematic analysis and evolutionary pattern of the SPS gene family in apple are still lacking.  In the present study, a total of seven MdSPS and four MdSPP genes were identified from the Malus domestica genome GDDH13 v1.1.  The gene structures and their promoter cis-elements, protein conserved motifs, subcellular localizations, physiological functions and biochemical properties were analyzed.  A chromosomal location and gene-duplication analysis demonstrated that whole-genome duplication (WGD) and segmental duplication played vital roles in MdSPS gene family expansion.  The Ka/Ks ratio of pairwise MdSPS genes indicated that the members of this family have undergone strong purifying selection during domestication.  Furthermore, three SPS gene subfamilies were classified based on phylogenetic relationships, and old gene duplications and significantly divergent evolutionary rates were observed among the SPS gene subfamilies.  In addition, a major gene related to sucrose accumulation (MdSPSA2.3) was identified according to the highly consistent trends in the changes of its expression in four apple varieties (‘Golden Delicious’, ‘Fuji’, ‘Qinguan’ and ‘Honeycrisp’) and the correlation between gene expression and soluble sugar content during fruit development.  Furthermore, the virus-induced silencing of MdSPSA2.3 confirmed its function in sucrose accumulation in apple fruit.  The present study lays a theoretical foundation for better clarifying the biological functions of the MdSPS genes during apple fruit development.

Keywords:  apple        sucrose phosphate synthase        evolutionary pattern        expression profile        sugar accumulation  
Received: 23 December 2022   Accepted: 11 May 2023
Fund: This work was supported by the National Natural Science Foundation of China (32172521), the Excellent Youth Science Foundation of Heilongjiang Province, China (YQ2023C006), the Talent Introduction Program of Northeast Agricultural University of China, and the Collaborative Innovation System of the Agricultural Bio-economy in Heilongjiang Province, China.
About author:  #Correspondence HAN De-guo, Tel: +86-451-55191191, E-mail:; LI Ming-jun, Tel: +86-29-87082613, E-mail:

Cite this article: 

ZHANG Li-hua, ZHU Ling-cheng, XU Yu, LÜ Long, LI Xing-guo, LI Wen-hui, LIU Wan-da, MA Feng-wang, LI Ming-jun, HAN De-guo. 2023. Genome-wide identification and function analysis of the sucrose phosphate synthase MdSPS gene family in apple. Journal of Integrative Agriculture, 22(7): 2080-2093.

Akhunov E D, Sehgal S, Liang H, Wang S, Akhunova A R, Kaur G, Li W, Forrest K L, See D, Šimková H, Ma Y, Hayden M J, Luo M, Faris J D, Doležel J, Gill B S. 2012. Comparative analysis of syntenic genes in grass genomes reveals accelerated rates of gene structure and coding sequence evolution in polyploid wheat. Plant Physiology161, 252–265.

Bahaji A, Baroja-Fernández E, Ricarte-Bermejo A, Sánchez-López Á M, Muñoz F J, Romero J M, Ruiz M T, Baslam M, Almagro G, Sesma M T, Pozueta-Romero J. 2015. Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis. Plant Science238, 135–147.

Baxter C J, Foyer C H, Rolfe S A, Quick W P. 2001. A comparison of the carbohydrate composition and kinetic properties of sucrose phosphate synthase (SPS) in transgenic tobacco (Nicotiana tabacum) leaves expressing maize SPS protein with untransformed controls. Annals of Applied Biology138, 47–55.

Blanc G, Wolfe K H. 2004. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell16, 1679–1691.

Castleden C K, Aoki N, Gillespie V J, MacRae E A, Quick W P, Buchner P, Foyer C H, Furbank R T, Lunn J E. 2004. Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiology135, 1753–1764.

Causse M, Rocher J P, Henry A M, Charcosset A, Prioul J L, de Vienne D. 1995a. Genetic dissection of the relationship between carbon metabolism and early growth in maize, with emphasis on key-enzyme loci. Molecular Breeding1, 259–272.

Causse M, Rocher J P, Pelleschi S, Barrière Y, Vienne D, Prioul J. 1995b. Sucrose phosphate synthase: An enzyme with heterotic activity correlated with maize growth. Crop Science35, 995–1001.

Chagné D, Crowhurst R N, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P, Bianco L, Lu A, Storey R, Knäbel M, Saeed M, Montanari S, Kim Y K, Nicolini D, Larger S, Stefani E, et al. 2014. The draft genome sequence of european pear (Pyrus communis L. ‘Bartlett’). PLoS ONE9, e92644.

Chen L S, Cheng L. 2004. Photosynthetic enzymes and carbohydrate metabolism of apple leaves in response to nitrogen limitation. The Journal of Horticultural Science and Biotechnology79, 923–929.

Chen S, Hajirezaei M, Börnke F. 2005. Differential expression of sucrose-phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves. Plant Physiology139, 1163–1174.

Daccord N, Celton J M, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro E A, Gouzy J, Rees D J G, Guérif P, Muranty H, Durel C E, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics49, 1099–1106.

Duan Y, Yang L, Zhu H, Zhou J, Sun H, Gong H. 2021. Structure and expression analysis of sucrose phosphate synthase, sucrose synthase and invertase gene families in Solanum lycopersicumInternational Journal of Molecular Sciences22, 4698.

Eom J S, Choi S B, Ward J M, Jeon J S. 2012. The mechanism of phloem loading in rice (Oryza sativa). Molecules and Cells33, 431–438.

Espley R V, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten H J, Gardiner S E, Hellens R P, Allan A C. 2009. Multiple repeats of a promoter segment cause transcription factor autoregulation in red apples. Plant Cell21, 168–183.

Geng M T, Yao Y, Wang Y L, Wu X H, Sun C, Li R M, Fu S P, Duan R J, Liu J, Hu X W, Guo J C. 2017. Structure, expression, and functional analysis of the hexokinase gene family in cassava. International Journal of Molecular Sciences18, 1041.

Hirose T, Hashida Y, Aoki N, Okamura M, Yonekura M, Ohto C, Terao T, Ohsugi R. 2014. Analysis of gene-disruption mutants of a sucrose phosphate synthase gene in rice, OsSPS1, shows the importance of sucrose synthesis in pollen germination. Plant Science225, 102–106.

Huang D L, Qin C X, Gui Y Y, Zhao L H, Chen Z L, Wang M, Sun Y, Liao Q, Li Y R, Lakshmanan P. 2017. Role of the SPS gene families in the regulation of sucrose accumulation in sugarcane. Sugar Tech19, 117–124.

Huber S C, Huber J L. 1996. Role and regulation of sucrose-phosphate synthase in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology47, 431–444.

Ishimaru K, Ono K, Kashiwagi T. 2004. Identification of a new gene controlling plant height in rice using the candidate-gene strategy. Planta218, 388–395.

Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T. 2002. Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. Journal of Experimental Botany53, 61–71.

Li M, Feng F, Cheng L. 2012. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS ONE7, e33055.

Li M, Li D, Feng F, Zhang S, Ma F, Cheng L. 2016. Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple. Journal of Experimental Botany67, 5145–5157.

Li M, Li P, Ma F, Dandekar A M, Cheng L. 2018. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. Horticulture Research5, 60.

Lutfiyya L L, Xu N, D’Ordine R L, Morrell J A, Miller P W, Duff S M G. 2007. Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants. Journal of Plant Physiology164, 923–933.

Ma B, Yuan Y, Gao M, Qi T, Li M, Ma F. 2018a. Genome-wide identification, molecular evolution, and expression divergence of aluminum-activated malate transporters in apples. International Journal of Molecular Sciences19, 2807.

Ma B, Yuan Y, Gao M, Xing L, Li C, Li M, Ma F. 2018b. Genome-wide identification, classification, molecular evolution and expression analysis of malate dehydrogenases in apple. International Journal of Molecular Sciences19, 3312.

Nascimento J R O D, Cordenunsi B R, Lajolo F M, Alcocer M J C. 1997. Banana sucrose-phosphate synthase gene expression during fruit ripening. Planta203, 283–288.

Okamura M, Aoki N, Hirose T, Yonekura M, Ohto C, Ohsugi R. 2011. Tissue specificity and diurnal change in gene expression of the sucrose phosphate synthase gene family in rice. Plant Science181, 159–166.

Panchy N, Lehti-Shiu M, Shiu S H. 2016. Evolution of gene duplication in plants. Plant Physiology171, 2294–2316.

Patrick W J, Botha C F, Birch G R. 2013. Metabolic engineering of sugars and simple sugar derivatives in plants. Plant Biotechnology Journal11, 142–156.

Prioul J L, Pelleschi S, Sene M, Thevenot C, Causse M, de Vienne D, Leonardi A. 1999. From QTLs for enzyme activity to candidate genes in maize. Journal of Experimental Botany50, 1281–1288.

Rensing S A. 2014. Gene duplication as a driver of plant morphogenetic evolution. Current Opinion in Plant Biology17, 43–48.

Ruan Y L. 2014. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology65, 33–67.

Sturm A. 1999. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiology121, 1–8.

Sun J, Zhang J, Larue C T, Huber S C. 2011. Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1: Roles of SPS isoforms in photosynthesis. Plant Cell & Environment34, 592–604.

Taylor J S, Raes J. 2004. Duplication and divergence: The evolution of new genes and old ideas. Annual Review of Genetics38, 615–643.

VanBuren R, Bryant D, Bushakra J M, Vining K J, Edger P P, Rowley E R, Priest H D, Michael T P, Lyons E, Filichkin S A, Dossett M, Finn C E, Bassil N V, Mockler T C. 2016. The genome of black raspberry (Rubus occidentalis). Plant Journal, 87, 535–547.

Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar S K, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, et al. 2010. The genome of the domesticated apple (Malus×domestica Borkh.). Natrue Genetics42, 833–839.

Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E, Paris R, Aramini V, Gazza L, Rossini L, Bassi D, Troggio M, Shu S, Grimwood J, Tartarini S, Dettori M T, Schmutz J. 2017. The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics18, 225.

Volkert K, Debast S, Voll L M, Voll H, Schießl I, Hofmann J, Schneider S, Börnke F. 2014. Loss of the two major leaf isoforms of sucrose-phosphate synthase in Arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis. Journal of Experimental Botany65, 5217–5229.

Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. 2010. KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinformatics8, 77–80.

Wang D, Zhao J, Hu B, Li J, Qin Y, Chen L, Qin Y, Hu G. 2018. Identification and expression profile analysis of the sucrose phosphate synthase gene family in Litchi chinensis Sonn. PeerJ6, e4379.

Wang W, Zhou H, Ma B, Owiti A, Korban S S, Han Y. 2016. Divergent evolutionary pattern of sugar transporter genes is associated with the difference in sugar accumulation between grasses and eudicots. Scientific Reports6, 29153.

Worrell A C, Bruneau J M, Summerfelt K, Boersig M, Voelker T A. 1991. Expression of a maize sucrose phosphate synthase in tomato alters leaf carbohydrate partitioning. Plant Cell3, 1121–1130.

Xu X, Yang Y, Liu C, Sun Y, Zhang T, Hou M, Huang S, Yuan H. 2019. The evolutionary history of the sucrose synthase gene family in higher plants. BMC Plant Biology19, 566.

Yu X, Wang X, Fan J, Tian H, Zheng C. 2007. Cloning and characterization of a sucrose phosphate synthase-encoding gene from muskmelon. Journal of the American Society for Horticultural Science132, 557–562.

Zhang L, Ma B, Wang C, Chen X, Ruan Y L, Yuan Y, Ma F, Li M. 2022a. MdWRKY126 modulates malate accumulation in apple fruit by regulating the expression of the cytosolic malate dehydrogenase gene MdMDH5Plant Physiology188, 2059–2072.

Zhang L, Sun S, Liang Y, Li B, Ma S, Wang Z, Ma B, Li M. 2021. Nitrogen levels regulate sugar metabolism and transport in the shoot tips of crabapple plants. Frontiers in Plant Science12, 626149.

Zhang L, Wang C, Jia R, Yang N, Jin L, Zhu L, Ma B, Yao Y, Ma F, Li M. 2022b. Malate metabolism mediated by the cytoplasmic malate dehydrogenase gene MdcyMDH affects sucrose synthesis in apple fruit. Horticulture Research9, uhac194.

Zhu L, Su J, Jin Y, Zhao H, Tian X, Zhang C, Ma F, Li M, Ma B. 2021. Genome-wide identification, molecular evolution, and expression divergence of the hexokinase gene family in apple. Journal of Integrative Agriculture20, 2112–2125.

Zhu Y J, Komor E, Moore P H. 1997. Sucrose accumulation in the sugarcane stem is regulated by the difference between the activities of soluble acid invertase and sucrose phosphate synthase. Plant Physiology115, 609–616.

[1] HOU Qian-dong, HONG Yi, WEN Zhuang, SHANG Chun-qiong, LI Zheng-chun, CAI Xiao-wei, QIAO Guang, WEN Xiao-peng. Molecular characterization of the SAUR gene family in sweet cherry and functional analysis of PavSAUR55 in the process of abscission[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1720-1739.
[2] WANG Chu-kun, ZHAO Yu-wen, HAN Peng-liang, YU Jian-qiang, HAO Yu-jin, XU Qian, YOU Chun-xiang, HU Da-gang. Auxin response factor gene MdARF2 is involved in ABA signaling and salt stress response in apple[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2264-2274.
[3] ZHU Ling-cheng, SU Jing, JIN Yu-ru, ZHAO Hai-yan, TIAN Xiao-cheng, ZHANG Chen, MA Feng-wang, LI Ming-jun, MA Bai-quan. Genome-wide identification, molecular evolution, and expression divergence of the hexokinase gene family in apple[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2112-2125.
[4] ZHANG Qiang, ZHOU Bei-bei, LI Min-ji, WEI Qin-ping, HAN Zhen-hai. Multivariate analysis between meteorological factor and fruit quality of Fuji apple at different locations in China[J]. >Journal of Integrative Agriculture, 2018, 17(06): 1338-1347.
No Suggested Reading articles found!