Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Novel AP-SNPs mitigate cadmium stress by regulating carbon-nitrogen metabolism and antioxidant defense system in rice

Zaid Khan1, 2*, Songpo Duan1*, Fan Xianting1, Sajjad Ahmad1, Chuan Jin3, Chunmei Yang1, Mohammad Nauman Khan4, Kangkang Zhang5, Hong Shen1# 

1 College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China

2 School of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen 518000, China

3 Hainan Baoting Tropical Rainforest Ecosystem Observation and Research Station, School of Ecology, Hainan University, Haikou 570228, China

4 Research Center for Physiology and Ecology and Green Cultivation of Tropical Crops, College of Tropical Crops, Hainan University, Haikou 570228, China

5 MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430000, China

 Highlights 

1. AP-SNPs present a sustainable approach decreasing cadmium exposure in agricultural systems.

2. AP-SNPs enhanced selenium uptake, gene expression, and coordinated activation of metabolic pathways.

3. Enhance oxidative defense, nutritional metabolism, and photosynthetic efficiency to increase rice growth in cadmium-polluted areas.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

硒因其能缓解水稻中的镉(Cd)毒性而为人所知,但藻类多糖-纳米硒(AP-SNPs)通过调节碳氮代谢来减轻Cd胁迫的机制尚不清楚。本研究发现,处理7天和14AP-SNPs通过促进硒的吸收与转运以及上调硒编码基因(OsPT2OsNIP2;OsSULTR1;2)的转录水平,改善了水稻根系和叶片细胞的超微结构、提高了叶片气孔开度和光合特性,并减少Cd从根部向地上部转运。研究发现AP-SNPs通过上调碳氮代谢相关基因(OsRbcS2OsCS1OsAGPL1OsAMT1OsNRT2.1OsNR2OsGS1  OsGOGAT1)的转录水平,促进了碳氮代谢代谢物和酶浓度。与胁迫相比,AP-SNPs处理7天和14,根系SODPODCAT活性分别提高11-13%8-10%和8-12%,从而抵消Cd胁迫下活性氧造成的损伤。此外,AP-SNPs 还能促进水稻的碳氮代谢、改善生理状态、增强抗氧化防御系统,并在7天14天处理时,使水稻根部和地上部镉含量分别降低12-23%和30-39%,总含量和镉转运系数分别降低28-46%和14-27%。偏最小二乘模型(PLSM)Mantel检验的显著相关矩阵进一步量化了上述发现,并表明AP-SNPs可作为一种绿色可持续的生物制剂,通过调节水稻的碳氮代谢和抗氧化防御系统,来最大限度地减少从根部向地上部的转运及其进入食物链的风险。



Abstract  

Selenium (Se) is known for alleviating cadmium (Cd) toxicity in rice (Oryza sativa L.), but algal polysaccharides-selenium nanoparticles (AP-SNPs) mitigating Cd stress by regulating carbon-nitrogen metabolism is unknown.  Herein, we found that AP-SNPs improved root and leaf cell ultrastructure, leaf stomatal and photosynthetic traits and reduced the Cd translocation from roots to shoots via Se absorption, translocation as well as upregulating the transcription factors of Se encoding genes OsPT2, OsNIP 2;1, and OsSULTR1;2 at 7 and 14 days after treatment (DAT).  The findings showed that AP-SNPs promoted the concentrations of metabolites and enzymes of carbon-nitrogen metabolism by upregulating the transcript levels of OsRbcS2, OsCS1, OsAGPL1, OsAMT1, OsNRT2.1, OsNR2, OsGS1, and OsGOGAT1 genes.  Additionally, AP-SNPs addition increased the levels of SOD by 11-13%, POD by 10-8%, and CAT by 8-12%, respectively, at 7 and 14 DAT to counteract the damage of reactive oxygen species (ROS) under Cd stress.  The results revealed that AP-SNPs promoted the carbon and nitrogen metabolism, physiological status, and antioxidant defense system of rice and decreased the Cd content in rice root by 12-23%, rice shoot 30-39%, total Cd content 28-46%, and Cd translocation factor 14-27%, respectively at 7 and 14 DAT.  The significant correlation matrixes of the partial least square model (PLSM) and Mantel test further quantify the above findings and imply that AP-SNPs can be a green and sustainable biological compound that regulates carbon-nitrogen metabolism and the antioxidant defense system of rice to minimize Cd transfer from roots to shoots and the food web.

Keywords:  cadmium       algal polysaccharides-selenium nanoparticles       carbon and nitrogen metabolism       antioxidants       gene expression  
Online: 07 July 2025  
Fund: 

This work was financially supported by the Guangdong Basic and Applied Basic Research Foundation (2024A1515011927), the National Key Research and Development Program of China (2016YFD0200405-5), and the Natural Science Foundation of Guangdong Province, China (2021A1515010566).

About author:  #Correspondence Hong Shen, E-mail: hshen@scau.edu.cn *These authors contributed equally to this study

Cite this article: 

Zaid Khan, Songpo Duan, Fan Xianting, Sajjad Ahmad, Chuan Jin, Chunmei Yang, Mohammad Nauman Khan, Kangkang Zhang, Hong Shen. 2025. Novel AP-SNPs mitigate cadmium stress by regulating carbon-nitrogen metabolism and antioxidant defense system in rice. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.07.009

Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum M F, Irshad M K. 2015. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicology and Environmental Safety, 119, 186–197.

Aebi H. 1984. Catalase in Vitro. Methods in Enzymology105, 121–126.

Ahmad P, Sarwat M, Bhat N A, Wani M R, Kazi A G, Tran L S P. 2015. Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS ONE10, 1–17.

Alyemeni M N, Ahanger M A, Wijaya L, Alam P, Bhardwaj R, Ahmad P. 2018. Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. Protoplasma255, 459–469.

Beauchamp C, Fridovich I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry44, 276–287.

Cao B, Zhang Q, Guo J, Guo R, Fan X, Bi Y. 2021. Synthesis and evaluation of Grateloupia Livida polysaccharides-functionalized selenium nanoparticles. International Journal of Biological Macromolecules191, 832–839.

Castro J, Vera J, González A, Moenne A. 2012. Oligo-carrageenans stimulate growth by enhancing photosynthesis, basal metabolism, and cell cycle in tobacco plants (var. Burley). Journal of Plant Growth Regulation31, 173–185.

Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel M H, Masclaux-Daubresse C. 2004. Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiology45, 1681–1693.

Chen D, Chen D, Xue R, Long J, Lin X, Lin Y, Jia L, Zeng R, Song Y. 2019. Effects of boron, silicon and their interactions on cadmium accumulation and toxicity in rice plants. Journal of Hazardous Materials367, 447–455.

Choudhury F K, Rivero R M, Blumwald E, Mittler R. 2017. Reactive oxygen species, abiotic stress and stress combination. Plant Journal90, 856–867.

Cui G, Zhang Y, Zhang W, Lang D, Zhang X, Li Z, Zhang X. 2019. Response of carbon and nitrogen metabolism and secondary metabolites to drought stress and salt stress in plants. Journal of Plant Biology62, 387–399.

Dionisio-Sese M L, Tobita S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Science135, 1–9.

Djanaguiraman M, Belliraj N, Bossmann S H, Prasad P V V. 2018. High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega3, 2479–2491.

Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M. 2012. Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotiana tabacumPlant Growth Regulation68, 525–531.

Duan W, Wang Q, Zhang H, Xie B, Li A, Hou F, Dong S, Wang B, Qin Z, Zhang L. 2018. Comparative study on carbon–nitrogen metabolism and endogenous hormone contents in normal and overgrown sweetpotato. South African Journal of Botany115, 199–207.

Farooq M A, Islam F, Ayyaz A, Chen W, Noor Y, Hu W, Hannan F, Zhou W. 2022. Mitigation effects of exogenous melatonin-selenium nanoparticles on arsenic-induced stress in Brassica napusEnvironmental Pollution292, 118473.

Feng T, Chen S S, Gao D Q, Liu G Q, Bai H X, Li A, Peng L X, Ren Z Y. 2015. Selenium improves photosynthesis and protects photosystem II in pear (Pyrus bretschneideri), grape (Vitis vinifera), and peach (Prunus persica). Photosynthetica53, 609–612.

Foyer C H, Noctor G, Hodges M. 2011. Respiration and nitrogen assimilation: Targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. Journal of Experimental Botany62, 1467–1482.

Gao J, Zhao T, Tsang D C W, Zhao N, Wei H, Feng M, Liu K, Zhang W, Qiu R. 2020. Effects of Zn in sludge-derived biochar on Cd immobilization and biological uptake by lettuce. Science of the Total Environment714, 136721.

Gouia H, Suzuki A, Brulfert J, Ghorbal M H. 2003. Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. Journal of Plant Physiology160, 367–376.

Guo T R, Zhang G P, Zhang Y H. 2007. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids and Surfaces B (Biointerfaces)57, 182–188.

Hashem A, Abd-Allah E F, Alqarawi A A, Egamberdieva D. 2016. Bioremediation of adverse impact of cadmium toxicity on Cassia italica Mill by arbuscular mycorrhizal fungi. Saudi Journal of Biological Sciences23, 39–47.

Heath R L, Packer L. 1968. Photoperoxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics125, 189–198.

Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E. 2010. A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. Journal of Experimental Botany61, 521–535.

Hossain M A, Hasanuzzaman M, Fujita M. 2010. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants16, 259–272.

Huang H, Li M, Rizwan M, Dai Z, Yuan Y, Hossain M M, Cao M, Xiong S, Tu S. 2021. Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants. Journal of Hazardous Materials401, 123393.

Jia X, Liu Q, Zou S, Xu X, Zhang L. 2015. Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity. Carbohydrate Polymers117, 434–442.

Jiang Y, Wei C, Jiao Q, Li G, Alyemeni M N, Ahmad P, Shah T, Fahad S, Zhang J, Zhao Y, Liu F, Liu S, Liu H. 2023. Interactive effect of silicon and zinc on cadmium toxicity alleviation in wheat plants. Journal of Hazardous Materials458, 131933.

Kang Y, Qin H, Wang G, Lei B, Yang X, Zhong M. 2024. Selenium nanoparticles mitigate cadmium stress in tomato through enhanced accumulation and transport of sulfate/selenite and polyamines. Journal of Agricultural and Food Chemistry72, 1473–1486.

Kaur M, Sharma S. 2018. Influence of selenite and selenate on growth, leaf physiology and antioxidant defense system in wheat (Triticum aestivum L.). Journal of the Science of Food and Agriculture98, 5700–5710.

Khan M I R, Iqbal N, Masood A, Per T S, Khan N A. 2013. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal and Behavior8.

Khan M I R, Nazir F, Asgher M, Per T S, Khan N A. 2015. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. Journal of Plant Physiology173, 9–18.

Khan Z, Nauman Khan M, Luo T, Zhang K, Zhu K, Rana M S, Hu L, Jiang Y. 2021. Compensation of high nitrogen toxicity and nitrogen deficiency with biochar amendment through enhancement of soil fertility and nitrogen use efficiency promoted rice growth and yield. GCB Bioenergy1765, 1784.

Khan Z, Thounaojam T C, Chowdhury D, Upadhyaya H. 2023. The role of selenium and nano selenium on physiological responses in plant: A review. Plant Growth Regulation100, 409–433.

Khosropour E, Weisany W, Tahir N A, Hakimi L. 2022. Vermicompost and biochar can alleviate cadmium stress through minimizing its uptake and optimizing biochemical properties in Berberis integerrima bunge. Environmental Science and Pollution Research29, 17476–17486.

Kong Y, Xu X, Zhu L. 2013. Cyanobactericidal effect of Streptomyces sp. HJC-D1 on Microcystis aeruginosaPLoS ONE8, 1–8.

Lawlor D W. 2002. Carbon and nitrogen assimilation in relation to yield: Mechanisms are the key to understanding production systems. Journal of Experimental Botany53, 773–787.

Li J, He Z, Liang Y, Peng T, Hu Z. 2022. Insights into algal polysaccharides: A review of their structure, depolymerases, and metabolic pathways. Journal of Agricultural and Food Chemistry70, 1749–1765.

Lin L, Zhou W, Dai H, Cao F, Zhang G, Wu F. 2012. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Journal of Hazardous Materials235–236, 343–351.

Menon S, Shrudhi S D, Agarwal H, Shanmugam V K. 2019. Efficacy of biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloids and Interface Science Communications29, 1–8.

Morales-Espinoza M C, Cadenas-pliego G, Marissa P, Delia A, Cabrera M, Fuente D. 2019. Se nanoparticles induce changes in the growth, antioxidant responses, and fruit quality of tomato developed under NaCl stress. Molecules24, 3030.

Moreira J B, Santos T D, Cruz C G, da Silveira J T, de Carvalho L F, de Morais M G, Costa J A V. 2023. Algal polysaccharides-based nanomaterials: General aspects and potential applications in food and biomedical fields. Polysaccharides4, 371–389.

Nwugo C C, Huerta A J. 2008. Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. Plant and Soil311, 73–86.

Griffith O W. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry106, 207–212.

Parry M A J, Andralojc P J, Mitchell R A C, Madgwick P J, Keys A J. 2003. Manipulation of Rubisco: The amount, activity, function and regulation. Journal of Experimental Botany54, 1321–1333.

Peña-Datoli M, Hidalgo-Moreno C M I, González-Hernández V A, Alcántar-González E G, Etchevers-Barra J D. 2016. Maize (Zea mays L.) seed coating with chitosan and sodium alginate and its effect on root development. Agrociencia50, 1091–1106.

Qi W Y, Li Q, Chen H, Liu J, Xing S F, Xu M, Yan Z, Song C, Wang S G. 2021. Selenium nanoparticles ameliorate Brassica napus L. cadmium toxicity by inhibiting the respiratory burst and scavenging reactive oxygen species. Journal of Hazardous Materials417, 125900.

Qiao Y, Yin L, Wang B, Ke Q, Deng X, Wang S. 2019. Melatonin promotes plant growth by increasing nitrogen uptake and assimilation under nitrogen deficient condition in winter wheat. Plant Physiology and Biochemistry139, 342–349.

Qin X, Nie Z, Liu H, Zhao P, Qin S, Shi Z. 2018. Influence of selenium on root morphology and photosynthetic characteristics of winter wheat under cadmium stress. Environmental and Experimental Botany150, 232–239.

Ren J, Xie T, Wang Y, Li H, Liu T, Zhang S, Yin L, Wang S, Deng X, Ke Q. 2020. Coordinated regulation of carbon and nitrogen assimilation confers drought tolerance in maize (Zea mays L.). Environmental and Experimental Botany176, 104086.

Riaz M, Kamran M, Rizwan M, Ali S, Parveen A, Malik Z, Wang X. 2021. Cadmium uptake and translocation: Selenium and silicon roles in Cd detoxification for the production of low Cd crops: A critical review. Chemosphere273, 129690.

Rizwan M, Ali S, Hussain A, Ali Q, Shakoor M B, Zia-ur-Rehman M, Farid M, Asma M. 2017. Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere187, 35–42.

Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold D L, Polle A. 2001. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiology127, 887–898.

Somagattu P, Chinnannan K, Yammanuru H, Reddy U K, Nimmakayala P. 2024. Selenium dynamics in plants: Uptake, transport, toxicity, and sustainable management strategies. Science of the Total Environment949, 175033.

Tang L, Luo X, Wang M, Wang Z, Guo J, Kong F, Bi Y. 2021. Synthesis, characterization, in vitro antioxidant and hypoglycemic activities of selenium nanoparticles decorated with polysaccharides of Gracilaria lemaneiformisInternational Journal of Biological Macromolecules193, 923–932.

Tu Y, Jiang A, Gan L, Hossain M, Zhang J, Peng B, Xiong Y, Song Z, Cai D, Xu W, Zhang J, He Y. 2014. Genome duplication improves rice root resistance to salt stress. Rice7, 1–13.

Wan Y, Yu Y, Wang Q, Qiao Y, Li H. 2016. Cadmium uptake dynamics and translocation in rice seedling: Influence of different forms of selenium. Ecotoxicology and Environmental Safety133, 127–134.

Wang C, Rong H, Zhang X, Shi W, Hong X, Liu W, Cao T, Yu X, Yu Q. 2020. Effects and mechanisms of foliar application of silicon and selenium composite sols on diminishing cadmium and lead translocation and affiliated physiological and biochemical responses in hybrid rice (Oryza sativa L.) exposed to cadmium and lead. Chemosphere251, 126347.  

Wang J, Jiang Y, Sun J, She J, Yin M, Fang F, Xiao T, Song G, Liu J. 2020. Geochemical transfer of cadmium in river sediments near a lead-zinc smelter. Ecotoxicology and Environmental Safety196, 110529.

Wang L, Li X, Tsang D C W, Jin F, Hou D. 2020. Green remediation of Cd and Hg contaminated soil using humic acid modified montmorillonite: Immobilization performance under accelerated ageing conditions. Journal of Hazardous Materials387, 122005.

Wang T, Zhao H, Bi Y, Fan X. 2021. Preparation and antioxidant activity of selenium nanoparticles decorated by polysaccharides from Sargassum fusiformeJournal of Food Science86, 977–986.

Wu Z, Jiang Q, Yan T, Zhang X, Xu S, Shi H, Deng T, Li F, Du Y, Du R, Hu C, Wang X, Wang F. 2020. Ammonium nutrition mitigates cadmium toxicity in rice (Oryza sativa L.) through improving antioxidase system and the glutathione-ascorbate cycle efficiency. Ecotoxicology and Environmental Safety189, 110010.

Wu Z, Yin X, Bañuelos G S, Lin Z Q, Liu Y, Li M, Yuan L. 2016. Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.). Frontiers in Plant Science7, 1–10.

Xia X, Ling L, Zhang W. 2017. Genesis of pure Se(0) nano- and micro-structures in wastewater with nanoscale zero-valent iron (nZVI). Environmental Science (Nano)4, 52–59.

Xie T, Gu W, Liguo Z, Li C, Li W, Wei S. 2018. Exogenous DCPTA ameliorates the soil drought effect on nitrogen metabolism in maize (Zea mays) during the pre-female inflorescence emergence stage. bioRxiv, 1–20.

Yang C, Wang C, Khan Z, Duan S, Li Z, Shen H. 2023. Algal polysaccharides–Selenium nanoparticles regulate the uptake and distribution of selenium in rice plants. Frontiers in Plant Science14, 1–13.

Zembala M, Filek M, Walas S, Mrowiec H, Kornaś A, Miszalski Z, Hartikainen H. 2010. Effect of selenium on macro-and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant and Soil329, 457–468.

Zeng F K, Liu H, Liu G. 2014. Physicochemical properties of starch extracted from Colocasia esculenta (L.) Schott (Bun-long taro) grown in Hunan, China. Starch/Staerke66, 142–148.

Zhang X Z. 1992. The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. In: Zhang X Z, ed., Research Methodology of Crop Physiology. Agriculture Press, Beijing. pp. 208-211

Zhang X F, Hu Z H, Yan T X, Lu R R, Peng C L, Li S S, Jing Y X. 2019. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in maize (Zea mays). Ecotoxicology and Environmental Safety171, 352–360.

Zhao H, Liu C, Song J, Fan X. 2022. Pilot study of toxicological safety evaluation in acute and 28-day studies of selenium nanoparticles decorated by polysaccharides from Sargassum fusiforme in Kunming mice. Journal of Food Science87, 4264–4279.

Zhao Y, Hu C, Wu Z, Liu X, Cai M, Jia W, Zhao X. 2019. Selenium reduces cadmium accumulation in seed by increasing cadmium retention in root of oilseed rape (Brassica napus L.). Environmental and Experimental Botany158, 161–170.

Zhong C, Bai Z G, Zhu L F, Zhang J H, Zhu C Q, Huang J L, Jin Q Y, Cao X C. 2019. Nitrogen-mediated alleviation of photosynthetic inhibition under moderate water deficit stress in rice (Oryza sativa L.). Environmental and Experimental Botany157, 269–282.

Zhu Q, Kong L, Shan Y, Yao X, Zhang H, Xie F, Ao X. 2019. Effect of biochar on grain yield and leaf photosynthetic physiology of soybean (Glycine max) cultivars with different phosphorus efficiencies. Journal of Integrative Agriculture18, 2242–2254.

[1] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information unravels the mechanisms of improved drought tolerance by drought-priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[2] Lijiao Ge, Weihao Miao, Kuolin Duan, Tong Sun, Xinyan Fang, Zhiyong Guan, Jiafu Jiang, Sumei Chen, Weimin Fang, Fadi Chen, Shuang Zhao. Comparative transcriptome analysis identifies key regulators of nitrogen use efficiency in chrysanthemum[J]. >Journal of Integrative Agriculture, 2025, 24(1): 176-195.
[3] Zhengyuan Xu, Lingzhen Ye, Qiufang Shen, Guoping Zhang. Advances in the study of waterlogging tolerance in plants[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2877-2897.
[4] YANG Wei-bing, ZHANG Sheng-quan, HOU Qi-ling, GAO Jian-gang, WANG Han-Xia, CHEN Xian-Chao, LIAO Xiang-zheng, ZHANG Feng-ting, ZHAO Chang-ping, QIN Zhi-lie.

Transcriptomic and metabolomic analysis provides insights into lignin biosynthesis and accumulation and differences in lodging resistance in hybrid wheat [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1105-1117.

[5] Xiaoyan Cui, Ke Yang, Weiyun Zhang, Liyang Zhang, Ding Li, Wei Wu, Yun Hu, Tingting Li, Xugang Luo. Dietary manganese supplementation inhibits abdominal fat deposition possibly by regulating gene expression and enzyme activity involved in lipid metabolism in the abdominal fat of broilers[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4161-4171.
[6] Muhammad Mobeen Tahir, Li Fan, Zhimin Liu, Humayun Raza, Usman Aziz, Asad Shehzaib, Shaohuan Li, Yinnan He, Yicen Lu, Xiaoying Ren, Dong Zhang, Jiangping Mao. Physiological and molecular mechanisms of cytokinin involvement in nitrate-mediated adventitious root formation in apples[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4046-4057.
[7] Honghua Su, Menglu Wu, Yong Yang, Yan Deng, Yizhong Yang, Qingming Sun. Tissue distribution of cadmium and its effect on reproduction in Spodoptera exigua[J]. >Journal of Integrative Agriculture, 2024, 23(1): 195-204.
[8] Atiqur RAHMAN, Md. Hasan Sofiur RAHMAN, Md. Shakil UDDIN, Naima SULTANA, Shirin AKHTER, Ujjal Kumar NATH, Shamsun Nahar BEGUM, Md. Mazadul ISLAM, Afroz NAZNIN, Md. Nurul AMIN, Sharif AHMED, Akbar HOSAIN. Advances in DNA methylation and its role in cytoplasmic male sterility in higher plants[J]. >Journal of Integrative Agriculture, 2024, 23(1): 1-19.
[9] ZHAO Shu-ping, DENG Kang-ming, ZHU Ya-mei, JIANG Tao, WU Peng, FENG Kai, LI Liang-jun.

Optimization of slow-release fertilizer application improves lotus rhizome quality by affecting the physicochemical properties of starch [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1045-1057.

[10] MA Yu-xin, ZHOU Zhi-jun, CAO Hong-zhe, ZHOU Fan, SI He-long, ZANG Jin-ping, XING Ji-hong, ZHANG Kang, DONG Jin-gao. Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2 and ZmSTP20 in maize disease resistance[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3458-3473.
[11] TANG Li-li, FU Bo-min, WU Yang, CAI Fu-chen, MA Yi-bing. Linking atmospheric emission and deposition to accumulation of soil cadmium in the Middle-Lower Yangtze Plain, China[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3170-3181.
[12] Senouwa Segla Koffi DOSSOU, XU Fang-tao, Komivi DOSSA, ZHOU Rong, ZHAO Ying-zhong, WANG Lin-hai. Antioxidant lignans sesamin and sesamolin in sesame (Sesamum indicum L.): a comprehensive review and future prospects[J]. >Journal of Integrative Agriculture, 2023, 22(1): 14-30.
[13] ZHANG Yan-mei, AO De, LEI Kai-wen, XI Lin, Jerry W SPEARS, SHI Hai-tao, HUANG Yan-ling, YANG Fa-long. Dietary copper supplementation modulates performance and lipid metabolism in meat goat kids[J]. >Journal of Integrative Agriculture, 2023, 22(1): 214-221.
[14] JIANG Yong, MA Xin-yan, XIE Ming, ZHOU Zheng-kui, TANG Jing, CHANG Guo-bin, CHEN Guo-hong, HOU Shui-sheng. Dietary threonine deficiency affects expression of genes involved in lipid metabolism in adipose tissues of Pekin ducks in a genotype-dependent manner[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2691-2699.
[15] RONG Hao, YANG Wen-jing, XIE Tao, WANG Yue, WANG Xia-qin, JIANG Jin-jin, WANG You-ping. Transcriptional profiling between yellow- and black-seeded Brassica napus reveals molecular modulations on flavonoid and fatty acid content[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2211-2226.
No Suggested Reading articles found!