Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (1): 14-30    DOI: 10.1016/j.jia.2022.08.097
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Antioxidant lignans sesamin and sesamolin in sesame (Sesamum indicum L.): a comprehensive review and future prospects

Senouwa Segla Koffi DOSSOU1, 2, XU Fang-tao1, Komivi DOSSA3, 4, ZHOU Rong1, ZHAO Ying-zhong1, WANG Lin-hai1

1 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, P.R.China

2 Laboratory of Plant Biotechnology and Physiology, University of Lomé, Lome 01 BP 1515, Togo

3 French Agricultural Research Center for International Development (CIRAD), Genetic Improvement and Adaptation of Mediterranean and Tropical Plants-UMR AGAP Institute, Montpellier F-34398, France    

4 UMR AGAP Institute, University of Montpellier, CIRAD, French National Research Institute for Agriculture, Food and Environment (INRAE), Montpellier F-34398, France

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

芝麻(Sesamum indicum L.)是一种具有较高营养价值和收益的经济作物,种植在世界80多个国家。在世界范围内,芝麻籽不仅是一种重要的食用油料,而且富含其他作物所缺少的抗氧化木脂素类化合物芝麻素和芝麻林素等。随着芝麻素等成分越来越多的的药理、保健功能被发现和证实,国际芝麻需求不断增加。当前,培育高芝麻素或高木酯素品种已成为主要育种目标之一,总结芝麻素和芝麻林素研究进展,探讨研究热点和存在的问题,对促进广大研究人员协同开展相关研究具有重要意义。本文系统梳理总结了芝麻素和芝麻林素在芝麻品种资源中的含量变异、生物合成途径、关联分子标记、调控基因位点等方面研究进展,并对其在芝麻自身生长发育中潜在的功能作用和最新研究发现的药理作用进行了论述。此外,综述还提出并讨论了未来对于开展分子育种,选育高芝麻素或高木酯素新品种急需开展的一些研究任务。芝麻素和芝麻林素在芝麻应对外界胁迫,包括生物和非生物逆境方面都表现出积极作用。芝麻素和芝麻林素还具有多种药理作用,对人民健康有益,如抗氧化、抗癌、抗炎、抗增殖、抗高血压等作用。尽管已报道有40多种植物中存在芝麻素或木酯素,但因含量较低或分子结构差异,未能像在芝麻中获得重视。芝麻中芝麻素和芝麻林素含量变异范围较大,一般在0.05~12.17mg/g和0 ~10mg/g之间,但多数含量仍比较低。尽管芝麻素和芝麻林素的合成代谢途径已基本清楚,但对于其含量变异的调控基因位点研究仍旧不足,目前尚未有调控功能明确的基因被鉴定,高含量育种仍旧缺乏高效的生物技术手段。



Abstract  

Sesame (Sesamum indicum L.) is a significantly lucrative cash crop for millions of small-holder farmers.  Its seeds are an important source of a highly appreciated vegetable oil globally and two clinically essential antioxidant lignans, sesamin and sesamolin.  Accordingly, many countries import millions of tons of sesame seed every year.  The demand for lignan-rich sesame seeds has been increasing in recent years due to the continuous discovery of several pharmacological attributes of sesamin and sesamolin.  To meet this demand, the sesame breeder’s primary objective is to release sesame cultivars that are enriched in oil and lignans.  Thus, it is necessary to summarize the information related to the sesamin and sesamolin contents in sesame in order to promote the joint efforts of specialized research teams on this important oilseed crop.  In this article, we present the current knowledge on the sesamin and sesamolin contents in S. indicum L. with respect to the updated biosynthesis pathway, associated markers, governing loci, available variability in sesame germplasm, the in planta potential roles of these compounds in sesame, and the newly discovered pharmacological attributes.  In addition, we propose and discuss some required studies that might facilitate genomics-assisted breeding of high lignan content sesame varieties.

Keywords:  Sesamum indicum        lignan biosynthesis        antioxidants        molecular breeding        sesamin and sesamolin  
Received: 19 July 2021   Accepted: 13 September 2021
Fund: This study was supported by the Open Project of Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, China (KF2020004 and KF2022002), the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2016-OCRI),  the Key Research Projects of Hubei Province, China (2020BBA045 and 2020BHB028), the Science and Technology Innovation Project of Hubei Province, China (2021-620-000-001-035), the China Agriculture Research System of MOF and MARA (CARS-14), and the Fundamental Research Funds for Central Non-profit Scientific Institution, China (Y2022XK11).
About author:  Correspondence WANG Lin-hai, E-mail: linhai827@163.com

Cite this article: 

Senouwa Segla Koffi DOSSOU, XU Fang-tao, Komivi DOSSA, ZHOU Rong, ZHAO Ying-zhong, WANG Lin-hai. 2023. Antioxidant lignans sesamin and sesamolin in sesame (Sesamum indicum L.): a comprehensive review and future prospects. Journal of Integrative Agriculture, 22(1): 14-30.

Abe-Kanoh N, Kunimoto Y, Takemoto D, Ono Y, Shibata H, Ohnishi K, Kawai Y. 2019. Sesamin catechol glucuronides exert anti-inflammatory effects by suppressing interferon β and inducible nitric oxide synthase expression through deconjugation in macrophage-like J774.1 cells. Journal of Agricultural and Food Chemistry, 67, 7640–7649. 
Ajit G, Uma D, Manonmani S, Vinothkumar B, Rajesh S. 2019. Diversity analysis of sesame lignans in 40 sesame collections in Tamil Nadu, India. International Journal of Current Microbiology and Applied Sciences, 8, 2329–2336. 
Akhila H, Suhara Beevy S. 2015. Quantification of seed oil and evaluation of antioxidant properties in the wild and cultivated species of Sesamum L. (Pedaliaceae). International Journal of Pharmacy and Pharmaceutical Sciences, 7, 136–142.
Albernaz L C, Deville A, Dubost L, de Paula J E, Bodo B, Grellier P, Espindola L S, Mambu L. 2012. Spiranthenones A and B, tetraprenylated phloroglucinol derivatives from the leaves of Spiranthera odoratissima. Planta Medica, 78, 459–464. 
Bedigian D, Seigler D S, Harlan J R. 1985. Sesamin, sesamolin and the origin of sesame. Biochemical Systematics and Ecology, 13, 133–139. 
Bordon M G, Meriles S P, Ribotta P D, Martinez M L. 2019. Enhancement of composition and oxidative stability of Chia (Salvia hispanica L.) seed oil by blending with specialty oils. Journal of Food Science, 84, 1035–1044. 
Bussey III R O, Sy-Cordero A A, Figueroa M, Carter F S, Falkinham III J O, Oberlies N H, Cech N B. 2014. Antimycobacterial furofuran lignans from the roots of Anemopsis californica. Planta Medica, 80, 498–501. 
Cetera P, Auria M D, Mecca M, Todaro L, Cetera P, Auria M D, Mecca M, Gallic L T. 2018. Gallic acid as main product in the water extractives of Quercus frainetto ten. Natural Product Research, 33, 2864–2867. 
Chandra K, Sinha A, Arumugam N. 2019. Gene isolation, heterologous expression, purification and functional confirmation of sesamin synthase from Sesamum indicum L. Biotechnology Reports, 22, e00336. 
Chen G, Zhao W, Li Y, Zhou D, Ding J, Lin B, Li W, Yang Y, Liu J, Hou Y, Li N. 2020. Bioactive chemical constituents from the seed testa of Vernicia fordii as potential neuroinflammatory inhibitors. Phytochemistry, 171, 112233. 
Cheng F C, Jinn T R, Hou R C, Tzen J T. 2006. Neuroprotective effects of sesamin and sesamolin on gerbil brain in cerebral ischemia. International Journal of Biomedical Science, 2, 284–288. 
Chowdhury S, Basu A, Kundu S. 2014. A new high-frequency Agrobacterium-mediated transformation technique for Sesamum indicum L. using de-embryonated cotyledon as explant. Protoplasma, 251, 1175–1190. 
Dar A A, Arumugam N. 2013. Lignans of sesame: Purification methods, biological activities and biosynthesis - A review. Bioorganic Chemistry, 50, 1–10.
Dar A A, Kancharla P K, Chandra K, Sodhi Y S, Arumugam N. 2019. Assessment of variability in lignan and fatty acid content in the germplasm of Sesamum indicum L. Journal of Food Science and Technology, 56, 976–986. 
Dar A A, Verma N K, Arumugam N. 2015. An updated method for isolation, purification and characterization of clinically important antioxidant lignans - Sesamin and sesamolin, from sesame oil. Industrial Crops and Products, 64, 201–208. 
Davin L B, Lewis N G. 2000. Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiology, 123, 453–461. 
Davin L B, Lewis N G. 2005. Dirigent phenoxy radical coupling: Advances and challenges. Current Opinion in Biotechnology, 16, 398–406.
Davin L B, Wang H Bin, Crowell A L, Bedgar D L, Martin D M, Sarkanen S, Lewis N G. 1997. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science, 275, 362–366. 
Deng S, Zhou J L, Fang H S, Nie Z G, Chen S, Peng H. 2018. Sesamin protects the femoral head from osteonecrosis by inhibiting ROS-induced osteoblast apoptosis in Rat Model. Frontiers in Physiology, 9, 1–8. 
Dossa K, Diouf D, Wang L, Wei X, Zhang Y, Niang M, Fonceka D, Yu J, Mmadi M A, Yehouessi L W, Liao B, Zhang X, Cisse N. 2017a. The emerging oilseed crop Sesamum indicum enters the “Omics” era. Frontiers in Plant Science, 8, 1–16. 
Dossa K, Li D, Zhou R, Yu J, Wang L, Zhang Y, You J, Liu A, Mmadi M A, Fonceka D, Diouf D, Cissé N, Wei X, Zhang X. 2019a. The genetic basis of drought tolerance in the high oil crop Sesamum indicum. Plant Biotechnology Journal, 17, 1788–1803. 
Dossa K, Mmadi M A, Zhou R, Zhang T, Su R. 2019b. Depicting the core transcriptome modulating multiple abiotic stresses responses in sesame (Sesamum indicum L .). International Journal o f Molecular Sciences, 20, 3930. 
Dossa K, Mmadi M A, Zhou R, Zhou Q, Yang M, Cisse N, Diouf D, Wang L, Zhang X. 2018a. The contrasting response to drought and waterlogging is underpinned by divergent DNA methylation programs associated with transcript accumulation in sesame. Plant Science, 277, 207–217.
Dossa K, Wei X, Niang M, Liu P, Zhang Y, Wang L, Liao B, Cissé N, Zhang X, Diouf D. 2018b. Near-infrared reflectance spectroscopy reveals wide variation in major components of sesame seeds from Africa and Asia. Crop Journal, 6, 202–206. 
Dossa K, Yehouessi L W, Likeng-Li-Ngue B C, Diouf D, Liao B, Zhang X, Cissé N, Bell J M. 2017b. Comprehensive screening of some west and central African sesame genotypes for drought resistance probing by agromorphological, physiological, biochemical and seed quality traits. Agronomy, 7, 1–18. 
Dossa K, You J, Wang L, Zhang Y, Li D, Zhou R, Yu J, Wei X, Zhu X, Jiang S, Gao Y, Mmadi M A, Zhang X. 2019c. Transcriptomic profiling of sesame during waterlogging and recovery. Scientific Data, 6, 204. 
El-roby A M, Hammad K S M, Galal S M. 2020. Enhancing oxidative stability of sunflower oil with sesame (Sesamum Indicum) coat ultrasonic extract rich in polyphenols. Journal of Food Processing and Preservation, 44, 1–9. 
Elleuch M, Bedigian D, Maazoun B, Besbes S, Blecker C, Attia H. 2014. Improving halva quality with dietary fibres of sesame seed coats and date pulp, enriched with emulsifier. Food Chemistry, 145, 765–771. 
Fan D, Yang Z, Liu F Y, Jin Y G, Zhang N, Ni J, Yuan Y, Liao H H, Wu Q Q, Xu M, Deng W, Tang Q Z. 2017. Sesamin protects against cardiac remodeling via Sirt3/ROS pathway. Cell Physiology and Biochemistry, 44, 2212–2227.
Fukuda Y. 1985. Studies on antioxidative substances in sesame seed. Agricultural and Biological Chemistry, 49, 301–306.
García J E, Gómez L, Mendoza-de-gives P, Rivera-corona J L, Millán-orozco J. 2018. Anthelmintic efficacy of hydro-methanolic extracts of Larrea tridentata against larvae of Haemonchus contortus. Tropical Animal Health and Production, 50, 1099–1105.
Guo T, Su D, Huang Y, Wang Y, Li Y. 2015. Ultrasound-assisted aqueous two-phase system for extraction and enrichment of Zanthoxylum armatum Lignans. Molecules, 20, 15273–15286. 
Guterres Z R, Garcez F R, Garcez W S, Silva L M G E, Silva A F G. 2014. Evaluation of the genotoxic activity of ethanol extract and secondary metabolites isolated from Aiouea trinervis Meisn. (Lauraceae). Genetics and Molecular Research, 13, 972–979. 
Ha T J, Lee M H, Seo W D, Baek I Y, Kang J E, Lee J H. 2017. Changes occurring in nutritional components (phytochemicals and free amino acid) of raw and sprouted seeds of white and black sesame (Sesamum indicum L.) and screening of their antioxidant activities. Food Science and Biotechnology, 26, 71–78. 
Harada E, Murata J, Ono E, Toyonaga H, Shiraishi A, Hideshima K, Yamamoto M P, Horikawa M. 2020. (+)-Sesamin-oxidising CYP92B14 shapes specialised lignan metabolism in sesame. Plant Journal, 104, 1117–1128. 
Hashempour-Baltork F, Torbati M, Azadmard-Damirchi S, Savage G P. 2018. Quality properties of puffed corn snacks incorporated with sesame seed powder. Food Science and Nutrition, 6, 85–93. 
Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, Kobayashi A. 2010. Comparison of sesamin contents and CYP81Q1 gene expressions in aboveground vegetative organs between two Japanese sesame (Sesamum indicum L.) varieties differing in seed sesamin contents. Plant Science, 178, 510–516. 
Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, Kobayashi A. 2012. Effect of photoperiod on growth of the plants, and sesamin content and CYP81Q1 gene expression in the leaves of sesame (Sesamum indicum L.). Environmental and Experimental Botany, 75, 212–219.
Hata N, Hayashi Y, Ono E, Satake H, Kobayashi A, Muranaka T, Okazawa A. 2013. Differences in plant growth and leaf sesamin content of the lignan-rich sesame variety “Gomazou” under continuous light of different wavelengths. Plant Biotechnology, 30, 1–8. 
Henrique C Y, Bertanha C S, Alvarenga T A, Silva M L A, Cunha W R, Januário A H, Pauletti P M. 2016. RP-HPLC method for estimation of sesamin in two Zanthoxylum species. Journal of Liquid Chromatography and Related Technologies, 39, 65–69. 
Horii S, Ishii T. 2014. Effect of arbuscular mycorrhizal fungi and their partner bacteria on the growth of sesame plants and the concentration of sesamin in the seeds. American Journal of Plant Sciences, 5, 3066–3072. 
Hussain S A, Hameed A, Ajmal I, Nosheen S, Suleria H A R, Song Y. 2018. Effects of sesame seed extract as a natural antioxidant on the oxidative stability of sunflower oil. Journal of Food Science and Technology, 55, 4099–4110. 
Jeong E J, Kim N, Heo J, Lee Y, Rho J, Kim Y C, Sung S H. 2015. Antifibrotic compounds from Liriodendron tulipifera attenuating HSC-T6 proliferation and TNF-α production in RAW264.7 cells. Biological and Pharmaceutical Bulletin, 38, 228–234.
Jiao J, Davin L  B, Lewis N G. 1998. Furanofuran lignan metabolism as a function of seed. Pergamon, 49, 387–394.
Jin L, Schmiech M, El M, Zhang X, Syrovets T, Simmet T. 2020. A comparative study on root and bark extracts of Eleutherococcus senticosus and their effects on human macrophages. Phytomedicine, 68, 153181. 
Kaigongi M M, Lukhoba C W, Yaouba S, Makunga N P, Githiomi J, Yenesew A. 2020. Activities of the root bark extract and isolated chemical constituents of Zanthoxylum paracanthum. Plants, 9, 1–15. 
Kancharla P K, Arumugam N. 2020. Variation of oil, sesamin, and sesamolin content in the germplasm of the ancient oilseed crop Sesamum indicum L. Journal of the American Oil Chemists’ Society, 97, 475–483. 
Karshenas M, Goli M, Zamindar N. 2018. The effect of replacing egg yolk with sesame–peanut defatted meal milk on the physicochemical, colorimetry, and rheological properties of low-cholesterol mayonnaise. Food Science and Nutrition, 6, 824–833. 
Kartinee N, Rahmani M, Ismail A, Aspollah M, Cheng G, Ee L, Nasir N, Awang K. 2013. Antioxidant activity-guided separation of coumarins and lignan from Melicope glabra (Rutaceae). Food Chemistry, 139, 87–92. 
Kassim N K, Cee L P, Ismail A, Awang K. 2018. Isolation of antioxidative compounds from micromelum minutum guided by preparative thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl (PTLC-DPPH) bioautography method. Food Chemistry, 272, 185–191.
Kato M J, Chu A, Davin L B, Lewis N G. 1998. Biosynthesis of antioxidant lignans in Sesamum indicum seeds. Phytochemistry, 47, 583–591. 
Ke T, Dong C, Mao H, Zhao Y, Chen H, Liu H, Dong X, Tong C, Liu S. 2011. Analysis of expression sequence tags from a full-length-enriched cDNA library of developing sesame seeds (Sesamum indicum). BMC Plant Biology, 11, 180.
Keowkase R, Shoomarom N, Bunargin W, Sitthithaworn W, Weerapreeyakul N. 2018. Sesamin and sesamolin reduce amyloid-β toxicity in a transgenic Caenorhabditis elegans. Biomedicine and Pharmacotherapy, 107, 656–664. 
Kermani G S, Saeidi G, Sabzalian M R, Gianinetti A. 2019. Drought stress influenced sesamin and sesamolin content and polyphenolic components in sesame (Sesamum indicum L.) populations with contrasting seed coat colors. Food Chemistry, 289, 360–368.
Khuimphukhieo I, Khaengkhan P. 2018. Combining ability and heterosis of sesamin and sesamolin content in sesame. Sabrao Journal of Breeding and Genetics, 50, 180–191.
Kim A Y, Yun C I, Lee J G, Kim Y J. 2020. Determination and daily intake estimation of lignans in sesame seeds and sesame oil products in Korea. Foods, 9, 1–11. 
Kim J H, Seo W D, Lee S K, Lee Y B, Park C H, Ryu H W, Lee J H. 2014. Comparative assessment of compositional components, antioxidant effects, and lignan extractions from Korean white and black sesame (Sesamum indicum L.) seeds for different crop years. Journal of Functional Foods, 7, 495–505. 
Kim K S, Lee J R, Lee J S. 2006. Determination of sesamin and sesamolin in sesame (Sesamum indicum L.) seeds using UV spectrophotometer and HPLC. Korean Journal of Crop Science, 51, 95–100. 
Kim K S, Park S H, Shim K B, Ryu S N. 2004. Use of near-infrared spectroscopy for estimating lignan glucosides contents in intact sesame seeds. Journal of Crop Science and Biotechnology, 10, 185–192.
Kim S, Ahn Y. 2017. Larvicidal activity of lignans and alkaloid identified in Zanthoxylum piperitum bark toward insecticide-susceptible and wild Culex pipiens pallens and Aedes aegypti. Parasites and Vectors, 10, 1–10. 
Kim S U, Oh K W, Lee M H, Lee B K, Pae S B, Hwang C D, Kim M S, Baek I Y, Lee J D. 2014. Variation of lignan content for sesame seed across origin and growing environments. Korean Journal of Crop Science, 59, 151–161. 
Kim Y H, Kim E Y, Rodriguez I, Nam Y H, Jeong S Y, Hong B N, Choung S Y, Kang T H. 2020. Sesamum indicum L. oil and sesamin induce auditory-protective effects through changes in hearing loss-related gene expression. Journal of Medicinal Food, 23, 491–498. 
Kole C. 2019. Genomic Designing of Climate-Smart Oilseed Crops (issue 100). Cham Springer International Publishing, Springer Nature Switzerland. p. 498.
Kugo H, Miyamoto C, Sawaragi A, Hoshino K, Hamatani Y, Matsumura S, Yoshioka Y, Moriyama T, Zaima N. 2019. Sesame extract attenuates the degradation of collagen and elastin fibers in the vascular walls of nicotine-administered mice. Journal of Oleo Science, 68, 79–85. 
Kumazaki T, Yamada Y, Karaya S, Kawamura M, Hirano T, Yasumoto S, Katsuta M, Michiyama H. 2009. Effects of day length and air and soil temperatures on sesamin and sesamolin contents of sesame seed. Plant Production Science, 12, 481–491. 
Kuo P C, Kao Z H, Lee S W, Wu S N. 2020. Effects of sesamin, the major furofuran lignan of sesame oil, on the amplitude and gating of voltage-gated Na+ and K+ currents. Molecules, 25, 3062.
Le T D, Nakahara Y, Ueda M, Okumura K, Hirai J, Sato Y, Takemoto D, Tomimori N, Ono Y, Nakai M, Shibata H, Inoue Y H. 2019. Sesamin suppresses aging phenotypes in adult muscular and nervous systems and intestines in a drosophila senescence-accelerated model. European Review for Medical and Pharmacological Sciences, 23, 1826–1839. 
Lee J K. 2020. Sesamolin promotes cytolysis and migration activity of natural killer cells via dendritic cells. Archives of Pharmacal Research, 43, 462–474. 
Li C, Miao H, Wei L, Zhang T, Han X, Zhang H. 2014. Association mapping of seed oil and protein content in Sesamum indicum L. using SSR markers. PLoS ONE, 9, e105757.
Li K, Lv C. 2020. Intradiscal injection of sesamin protects from lesion-induced degeneration. Connective Tissue Research, 61, 594–603. 
Li N, Zhao M, Liu T, Dong L, Cheng Q, Wu J, Wang L, Chen X, Zhang C, Lu W, Xu P, Zhang S. 2017. A novel soybean dirigent gene GmDIR22 contributes to promotion of lignan biosynthesis and enhances resistance to Phytophthora sojae. Frontiers in Plant Science, 8, 1–12. 
Li X, Li L, Wang J, Wang T, Wang L. 2014. Two new lignans with antioxidative activities from Jatropha curcas. Natural Product Research, 28, 37–41. 
Li Y, Ma W, Qi B, Rokayya S, Li D, Wang J, Feng H, Sui X, Jiang L. 2014. Blending of soybean oil with selected vegetable oils: Impact on oxidative stability and radical scavenging activity. Asian Pacific Journal of Cancer Prevention, 15, 2583–2589. 
Lin X, Zhou L, Li T, Brennan C, Fu X, Liu R H. 2017. Phenolic content, antioxidant and antiproliferative activities of six varieties of white sesame seeds (Sesamum indicum L.). RSC Advances, 7, 5751–5758. 
Liu Q, Luo L, Zheng L. 2018. Lignins: Biosynthesis and biological functions in plants. International Journal of Molecular Sciences, 19, 335.
Liu W, Chen Y, Chen D, Wu Y, Gao Y, Li J, Zhong W, Jiang L. 2018. A new pair of enantiomeric lignans from the fruits of Morinda citrifolia and their absolute configuration. Natural Product Research, 32, 933–938.
Liu Y L, Xu Z M, Yang G Y, Yang D X, Ding J, Chen H, Yuan F, Tian H L. 2017. Sesamin alleviates blood-brain barrier disruption in mice with experimental traumatic brain injury. Acta Pharmacologica Sinica, 38, 1445–1455. 
Lu Q, Li C, Wu G. 2019. Insight into the inhibitory effects of Zanthoxylum nitidum against Helicobacter pylori urease and jack bean urease: Kinetics and mechanism. Journal of Ethnopharmacology, 249, 112419. 
Ma Z P, Zhang Z F, Yang Y F, Yang Y. 2019. Sesamin promotes osteoblastic differentiation and protects rats from osteoporosis. Medical Science Monitor, 25, 5312–5320. 
Maeda H, Dudareva N. 2012. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology, 63, 73–105. 
Majdalawieh A F, Dalibalta S, Yousef S M. 2020. Effects of sesamin on fatty acid and cholesterol metabolism, macrophage cholesterol homeostasis and serum lipid profile: A comprehensive review. European Journal of Pharmacology, 885, 173417.
Majdalawieh A F, Mansour Z R. 2019. Sesamol, a major lignan in sesame seeds (Sesamum indicum): Anti-cancer properties and mechanisms of action. European Journal of Pharmacology, 855, 75–89. 
Majdalawieh A F, Massri M, Nasrallah G K. 2017. A comprehensive review on the anti-cancer properties and mechanisms of action of sesamin, a lignan in sesame seeds (Sesamum indicum). European Journal of Pharmacology, 815, 512–521.
Martins A, Mignon R, Bastos M, Batista D, Neng N R, Nogueira J M F, Vizetto-duarte C, Custódio L, Varela J, Rauter A P. 2014. In vitro antitumoral activity of compounds isolated from Artemisia gorgonum Webb. Phytotherapy Research, 28, 1329–1334. 
Mbaze L M, Lado J A, Wansi J D, Shiao T C, Chiozem D D, Mesaik M A, Choudhary M I, Lacaille-Dubois M A, Wandji J, Roy R, Sewald N. 2009. Oxidative burst inhibitory and cytotoxic amides and lignans from the stem bark of Fagara heitzii (Rutaceae). Phytochemistry, 70, 1442–1447. 
Mbaze L M, Poumale H M P, Wansi J D, Lado J A, Khan S N, Iqbal M C, Ngadjui B T, Laatsch H. 2007. α-Glucosidase inhibitory pentacyclic triterpenes from the stem bark of Fagara tessmannii (Rutaceae). Phytochemistry, 68, 591–595.
Mei H, Wei A, Liu Y, Wang C, Du Z, Zheng Y. 2013. Variation and correlation analysis of sesamin, oil and protein contents in sesame germplasm resources. China Oils and Fats, 38, 87–90. (in Chinese)
Meselhy M R. 2003. Constituents from Moghat, the roots of Glossostemon bruguieri (Desf.). Molecules, 8, 614–621.
Mikropoulou E V, Petrakis E A, Argyropoulou A, Mitakou S, Halabalaki M, Skaltsounis L A. 2019. Quantification of bioactive lignans in sesame seeds using HPTLC densitometry: Comparative evaluation by HPLC-PDA. Food Chemistry, 288, 1–7. 
Miyake Y, Fukumoto S, Okada M, Sakaida K, Nakamura Y, Osawa T. 2005. Antioxidative catechol lignans converted from sesamin and sesaminol triglucoside by culturing with Aspergillus. Journal of Agricultural and Food Chemistry, 53, 22–27. 
Mmadi M A, Dossa K, Wang L, Zhou R, Wang Y, Cisse N, Sy M O, Zhang X. 2017. Functional characterization of the versatile MYB gene family uncovered their important roles in plant development and responses to drought and waterlogging in sesame. Genes, 8, 1–18. 
Moazzami A A, Andersson R E, Kamal-Eldin A. 2006. HPLC analysis of sesaminol glucosides in sesame seeds. Journal of Agricultural and Food Chemistry, 54, 633–638. 
Moazzami A A, Stefanie H L, Kamal-Eldin A. 2007. Lignan contents in sesame seeds and products. European Journal of Lipid Science and Technology, 109, 1022–1027. 
Mohamed S M, Chaurasiya N D, Mohamed N M, Bayoumi S A L, Tekwani B L, Ross S A. 2020. Promising selective MAO-B inhibition by sesamin, a lignan from Zanthoxylum flavum stems. Saudi Pharmaceutical Journal, 28, 409–413. 
Moussavi N, Malterud K E, Mikolo B, Dawes D, Chandre F, Corbel V, Massamba D, Overgaard H J, Wangensteen H. 2015. Identification of chemical constituents of Zanthoxylum heitzii stem bark and their insecticidal activity against the malaria mosquito Anopheles gambiae. Parasites and Vectors, 8, 1–8. 
Mukhija M, Lal K, Nath A. 2014. Bioactive lignans from Zanthoxylum alatum Roxb. stem bark with cytotoxic potential. Journal of Ethnopharmacology, 152, 106–112.
Murata J, Ono E, Yoroizuka S, Toyonaga H, Shiraishi A, Mori S, Tera M, Azuma T, Nagano A J, Nakayasu M, Mizutani M, Wakasugi T, Yamamoto M P, Horikawa M. 2017. Oxidative rearrangement of (+)-sesamin by CYP92B14 co-generates twin dietary lignans in sesame. Nature Communications, 8, 1–10. 
Muthulakshmi C, Pavithra S, Selvi S. 2017. Evaluation of sesame (Sesamum indicum L.) germplasm collection of Tamil Nadu for α-linolenic acid, sesamin and sesamol content. African Journal of Biotechnology, 16, 1308–1313. 
Nakatani Y, Yaguchi Y, Komura T, Nakadai M, Terao K, Kage-Nakadai E, Nishikawa Y. 2018. Sesamin extends lifespan through pathways related to dietary restriction in Caenorhabditis elegans. European Journal of Nutrition, 57, 1137–1146. 
Narakornsak S, Aungsuchawan S, Pothacharoen P, Markmee R, Tancharoen W, Laowanitwattana T, Thaojamnong C, Peerapapong L, Boonma N, Tasuya W, Keawdee J, Poovachiranon N. 2017. Sesamin encouraging effects on chondrogenic differentiation of human amniotic fluid-derived mesenchymal stem cells. Acta Histochemica, 119, 451–461.
Nasirullah, Latha R B. 2009. Storage stability of sunflower oil with added natural antioxidant concentrate from sesame seed oil. Journal of Oleo Science, 58, 453–459. 
Ngo Q T, Lee H, Nguyen V T, Ah J, Hee M, Sun B. 2017. Phytochemistry chemical constituents from the fruits of Ligustrum japonicum and their inhibitory effects on T cell activation. Phytochemistry, 141, 147–155. 
Niu J, Zhang X, Qin P, Yang Y, Tian S, Yang H, Lu M. 2018. Simultaneous determination of melatonin, l-tryptophan, and two l-tryptophan-derived esters in food by HPLC with graphene Oxide/SiO2 nanocomposite as the adsorbent. Food Analytical Methods, 11, 2438–2446. 
Ono E, Nakai M, Fukui Y, Tomimori N, Fukuchi-Mizutani M, Saito M, Satake H, Tanaka T, Katsuta M, Umezawa T, Tanaka Y. 2006. Formation of two methylenedioxy bridges by a sesamum CYP81Q protein yielding a furofuran lignan, (+)-sesamin. Proceedings of the National Academy of Sciences of the United States of America, 103, 10116–10121. 
Ono E, Waki T, Oikawa D, Murata J, Shiraishi A, Toyonaga H, Kato M, Ogata N, Takahashi S, Yamaguchi M A, Horikawa M, Nakayama T. 2020. Glycoside-specific glycosyltransferases catalyze regio-selective sequential glucosylations for a sesame lignan, sesaminol triglucoside. Plant Journal, 101, 1221–1233. 
Pan L, Matthew S, Lantvit D D, Zhang X, Ninh T N, Chai H, De Blanco E J C, Soejarto D D, Swanson S M, Kinghorn A D. 2011. Bioassay-guided isolation of constituents of Piper sarmentosum using a mitochondrial transmembrane potential assay. Journal of Natural Products, 74, 2193–2199. 
Pathak N, Bhaduri A, Bhat K V, Rai A K. 2015. Tracking sesamin synthase gene expression through seed maturity in wild and cultivated sesame species - A domestication footprint. Plant Biology, 17, 1039–1046. 
Pathak N, Rai A K, Kumari R, Bhat K V. 2014. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacognosy Reviews, 8, 147–155. 
Radhakrishnan R, Kang S M, Baek I Y, Lee I J. 2014. Characterization of plant growth-promoting traits of Penicillium species against the effects of high soil salinity and root disease. Journal of Plant Interactions, 9, 754–762. 
Radhakrishnan R, Pae S B, Shim K B, Baek I Y. 2013. Penicillium sp. mitigates Fusarium-induced biotic stress in sesame plants. Biotechnology Letters, 35, 1073–1078. 
Ramstein G P, Jensen S E, Buckler E S. 2019. Breaking the curse of dimensionality to identify causal variants in Breeding 4. Theoretical and Applied Genetics, 132, 559–567. 
Rangkadilok N, Pholphana N, Mahidol C, Wongyai W, Saengsooksree K, Nookabkaew S, Satayavivad J. 2010. Variation of sesamin, sesamolin and tocopherols in sesame (Sesamum indicum L.) seeds and oil products in Thailand. Food Chemistry, 122, 724–730. 
Samita F, Ochieng C O, Owuor P O, Manguro O A, Midiwo J O, Samita F, Ochieng C O, Owuor P O. 2016. Isolation of a new β-carboline alkaloid from aerial parts of Triclisia sacleuxii and its antibacterial and cytotoxicity effects. Natural Product Research, 31, 529–536.
Sartorelli P, Carvalho C S, Quero J, Lorenzi H, Tempone A G, Paulo D S, Paulo D S. 2010. Antitrypanosomal activity of a diterpene and lignans isolated from Aristolochia cymbifera. Planta Medica, 76, 1454–1456. 
Satake H, Koyama T, Bahabadi S E, Matsumoto E, Ono E, Murata J. 2015. Essences in metabolic engineering of lignan biosynthesis. Metabolites, 5, 270–290. 
Shahidi F, Liyana-Pathirana C M, Wall D S. 2006. Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chemistry, 99, 478–483. 
Shi L, Liu R, Jin Q, Wang G. 2017. The contents of lignans in sesame seeds and commercial sesame oils of China. Journal of the American Oil Chemists’ Society, 94, 1035–1044.
Shittu L A J, Bankole M A, Ogundipe O A, Falade A K, Shittu R K, Bankole M N, Ahmed T A, Tayo A O, Ashiru O A. 2007. Weight reduction with improvement of serum lipid profile and ratios of Sesamum radiatum leaves diet in a non-obese sprague dawley rats. African Journal of Biotechnology, 6, 2428–2433.
Shittu L A J, Shittu R K, Adesite S O, Ajala M O, Bankole M A, Benebo A S, Tayo A O, Ogundipe O A, Ashiru O A. 2008. Sesamum radiatum phytoestrogens stimulate spermatogenic activity and improve sperm quality in adult male sprague dawley rat testis. International Journal of Morphology, 26, 643–652. 
Srisayam M, Weerapreeyakul N, Kanokmedhakul K. 2017. Inhibition of two stages of melanin synthesis by sesamol, sesamin and sesamolin. Asian Pacific Journal of Tropical Biomedicine, 7, 886–895. 
Suh M C, Kim M J, Hur C G, Bae J M, Park Y I, Chung C H, Kang C W, Ohlrogge J B. 2003. Comparative analysis of expressed sequence tags from Sesamum indicum and Arabidopsis thaliana developing seeds. Plant Molecular Biology, 52, 1107–1123. 
Suja K P, Abraham J T, Thamizh S N, Jayalekshmy A, Arumughan C. 2004. Antioxidant efficacy of sesame cake extract in vegetable oil protection. Food Chemistry, 84, 393–400. 
Tera M, Koyama T, Murata J, Furukawa A, Mori S, Azuma T, Watanabe T, Hori K, Okazawa A, Kabe Y, Suematsu M, Satake H, Ono E, Horikawa M. 2019. Identification of a binding protein for sesamin and characterization of its roles in plant growth. Scientific Reports, 9, 1–10. 
Thuy T D, Phan N N, Wang C Y, Yu H G, Wang S Y, Huang P L, Do Y Y, Lin Y C. 2017. Novel therapeutic effects of sesamin on diabetes-induced cardiac dysfunction. Molecular Medicine Reports, 15, 2949–2956. 
Tiwari S, Kumar S, Gontia I. 2011. Biotechnological approaches for sesame (Sesamum indicum L.) and niger (Guizotia abyssinica L.f. Cass.). Asia-Pacific Journal of Molecular Biology and Biotechnology, 19, 2–9.
Usman S M, Viswanathan P L, Manonmani S, Uma D. 2020. Genetic studies on sesamin and sesamolin content and other yield attributing characters in sesame (Sesamum indicum L.). Electronic Journal of Plant Breeding, 11, 132–138. 
Uzun B, Arslan Ç, Furat Ş. 2008. Variation in fatty acid compositions, oil content and oil yield in a germplasm collection of sesame (Sesamum indicum L.). Journal of the American Oil Chemists’ Society, 85, 1135–1142. 
Wang D, Zhang L, Huang X, Wang X, Yang R, Mao J, Wang X, Wang X, Zhang Q, Li P. 2018. Identification of nutritional components in black sesame determined by widely targeted metabolomics and traditional chinese medicines. Molecules, 23, 1–12. 
Wang L, Dossa K, You J, Zhang Y, Li D, Zhou R, Yu J, Wei X, Zhu X, Jiang S, Gao Y, Mmadi M A, Zhang X. 2020. High-resolution temporal transcriptome sequencing unravels ERF and WRKY as the master players in the regulatory networks underlying sesame responses to waterlogging and recovery. Genomics, 113, 276–290.
Wang L, Li D, Zhang Y, Gao Y, Yu J, Wei X, Zhang X. 2016. Tolerant and susceptible sesame genotypes reveal waterlogging stress response patterns. PLoS ONE, 11, 1–18. 
Wang L, Li D H, Qi X Q, Zhang Y X, Ding X, Wang L H, Wei W L, Gao Y, Zhang X R. 2014a. Association analysis of sesamin and sesamolin in the core sesame (Sesamum indicum L.) germplasm. Chinese Journal of Oil Crop Sciences, 36, 32–37. (in Chinese)
Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C, Zhang Y, Zhang X, Wang Y, Hua W, Li D, Li D, Li F, Yu J, Xu C, Han X, Huang S, Tai S, Wang J, Zhang X. 2014b. Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biology, 15, R39.
Wang L, Zhang Y, Li P, Wang X, Zhang W, Wei W, Zhang X. 2012. HPLC analysis of seed sesamin and sesamolin variation in a sesame germplasm collection in China. Journal of the American Oil Chemists’ Society, 89, 1011–1020. 
Wei X, Liu K, Zhang Y, Feng Q, Wang L, Zhao Y, Li D, Zhao Q, Zhu X, Zhu X, Li W, Fan D, Gao Y, Lu Y, Zhang X, Tang X, Zhou C, Zhu C, Liu L, Zhang X. 2015. Genetic discovery for oil production and quality in sesame. Nature Communications, 6, 1–10. 
Wei X, Qiu J, Yong K, Fan J, Zhang Q, Hua H, Liu J, Wang Q, Olsen K M, Han B, Huang X. 2021. A quantitative genomics map of rice provides genetic insights and guides breeding. Nature Genetics, 53, 243–253. 
Williamson K S, Morris J B, Pye Q N, Kamat C D, Hensley K. 2008. A survey of sesamin and composition of tocopherol variability from seeds of eleven diverse sesame (Sesamum indicum L.) genotypes using HPLC-PAD-ECD. Phytochemical Analysis, 19, 311–322. 
Wu K, Wu W X, Yang M M, Liu H Y, Hao G C, Zhao Y Z. 2017. QTL mapping for oil, protein and sesamin contents in seeds of white sesame. Acta Agronomica Sinica, 43, 1003–1011. (in Chinese)
Wu M S, Aquino L B B, Barbaza M Y U, Hsieh C L, De Castro-Cruz K A, Yang L L, Tsai P W. 2019. Anti-inflammatory and anticancer properties of bioactive compounds from Sesamum indicum L. - A review. Molecules, 24, 1–28. 
Xu F, Zhou R, Dossou S S K, Song S, Wang L. 2021. Fine mapping of a major pleiotropic QTL associated with sesamin and sesamolin variation in sesame (Sesamum indicum L.). Plants, 10, 1–14. 
Yasumoto S, Katsuta M. 2006. Breeding a high-lignan-content sesame cultivar in the prospect of promoting metabolic functionality. Japan Agricultural Research Quarterly, 40, 123–129. 
Yasumoto S, Sugiura M, Komaki K, Katsuta M. 2005. Change in sesamin and sesamolin contents of sesame (Sesamum indicum L.) seeds during maturation and their accurate evaluation of the contents. Japanese Journal of Crop Science, 74, 165–171.
Zatuski D, Mendyk E, Smolarz H D. 2015. Identification of MMP-1 and MMP-9 inhibitors from the roots of Eleutherococcus divaricatus, and the PAMPA test. Natural Product Research, 30, 595–599.
Zhang Y, Li D, Zhou R, Wang X, Dossa K, Wang L, Zhang Y. 2019. Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress. BMC Plant Biology, 19, 66. 
Zhang Y, Luo Z, Wang D, He F, Li D. 2014. Phytochemical profiles and antioxidant and antimicrobial activities of the leaves of Zanthoxylum bungeanum. The Scientific World Journal, 181072.
Zhao T T, Shin K S, Park H J, Kim K S, Lee K E, Cho Y J, Lee M K. 2016. Effects of (–)-sesamin on chronic stress-induced memory deficits in mice. Neuroscience Letters, 634, 114–118. 
Zhao Y, Wang Q, Jia M, Fu S, Pan J, Chu C, Liu X, Liu X, Liu Z. 2019. (+)-Sesamin attenuates chronic unpredictable mild stress-induced depressive-like behaviors and memory deficits via suppression of neuroinflammation. Journal of Nutritional Biochemistry, 64, 61–71. 
Zhou L, Lin X, Abbasi A M, Zheng B. 2016. Phytochemical contents and antioxidant and antiproliferative activities of selected black and white sesame seeds. BioMed Research International, 8495630.
Zhu X, Dai Q, Mu J, Cai W, Guo Y, Xu Z, Zhang Z, Wang Z. 2018. Comparative assessment of lignan and total phenolic contents in sesame seeds and antioxidant capacity of sesame extracts from different producing areas in Anhui Province. Farm Products Processing, 8, 461. (in Chinese) 

[1] Iram SHAFIQ, Sajad HUSSAIN, Muhammad Ali RAZA, Nasir IQBAL, Muhammad Ahsan ASGHAR, Ali RAZA, FAN Yuan-fang, Maryam MUMTAZ, Muhammad SHOAIB, Muhammad ANSAR, Abdul MANAF, YANG Wen-yu, YANG Feng. Crop photosynthetic response to light quality and light intensity[J]. >Journal of Integrative Agriculture, 2021, 20(1): 4-23.
[2] HE Wei, ZHAO Hui-min, YANG Xiao-wei, ZHANG Rui, WANG Jing-jing. Patent analysis provides insights into the history of cotton molecular breeding worldwide over the last 50 years[J]. >Journal of Integrative Agriculture, 2019, 18(3): 539-552.
No Suggested Reading articles found!