Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Rational nitrogen application improves photosynthetic capacity and yield by prolonging the leaf source function of drip-irrigated rice

Zhiwen Song1*, Guodong Wang2*, Lei Zhao1, Qingyun Tang1, Xinjiang Zhang1, Qifeng Wu2#, Yuxiang Li1#

1 Key Laboratory of Oasis Ecological Agriculture, College of Agriculture, Shihezi University/Xinjiang Production and Construction Corps, Shihezi 832000, China

2 Key Laboratory of Water-saving Agriculture in Northwest Oasis/Key Laboratory of Efficient Utilization of Water and Fertilizer ResourcesMinistry of Agriculture and Rural Affairs/Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China

 Highlights 

l Under drip irrigation, a nitrogen (N) application rate of 300 kg ha⁻¹ increased the chlorophyll (Chl), leaf area index (LAI), and maximum net photosynthetic rate (Pnmax) and decreased the light compensation point (Ic) and dark respiration rate (Rd), thereby increasing the rice yield.

l In the high- nitrogen use efficiency (NUE) cultivar T-43, Chl a+b accumulation was promoted, light saturation point (Isat) and Pnmax were improved through increased N-metabolizing enzyme activity, and the leaf functional period was maintained via increased hormone contents and antioxidant enzyme activities, thus improving the photosynthetic ability.

l A relatively high abscisic acid (ABA) level in the low-NUE cultivar LX-3 accelerated the degradation of Chl b, increased the Chl a/b ratio, decreased the light interception ability, and increased Ic and Rd.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

氮不仅为籽粒发育提供营养支持,还通过调节叶片功能和延缓衰老,为高效光合作用和产量形成奠定基础。但在滴灌下,不同施氮量对水稻生殖生长阶段叶片功能的调控及与产量的关系尚不清楚。基于此,于20202021年,以氮高效(T-43)和氮低效(LX-3)品种为材料,设0、150、300和450 kg·ha1 4个施氮水平,分析滴灌水稻叶片形态、光合特性激素含量、抗氧化酶活性、生物量(Mass)及产量的响应差异。结果表明:1)施氮显著提高滴灌水稻产量(17.38%~74.03%),其中叶面积指数(LAI)、叶绿素a+b含量Chl a+b)、最大净光合速率(Pnmax)及物质积累量(Mass)均随施氮量呈先增后降趋势,并在N300处理下达到最优;而剑叶叶面积(LA则持续增加。(2)品种间,T-43更高LA氮代谢酶活性从而提高了Chl a+b含量、光饱和点(Isat)和物质积累LX-3的脱落酸(ABA含量,加速了Chl b降解导致Chl a/b升高,从而抑制了Pnmax3

结构方程模型进一步揭示,生长素(IAA)直接促进Pnmax从而提升了光合作用效率;而IAA和氮代谢酶正向促进Chl a+b积累,间接提高了LAI和氮素农学利用效率(NAE),进而增强了LAI0.477***)和Pnmax0.715***)对产量的正向贡献综上所述,在适宜施氮量(300kg·ha1)下,氮高效品种(T-43)可维持叶片功能期,并通过增加激素含量和抗氧化酶活性来提高光合能力。研究结果可为干旱区滴灌水稻高效生产提供理论依据



Abstract  

Nitrogen (N) not only provides nutritional support for grain development but also lays the foundation for efficient photosynthesis and yield formation by regulating leaf function and delaying senescence.  However, the regulation of leaf function during the reproductive growth stage and its relationship with yield under drip irrigation remain unclear.  Therefore, from 2020–2021, a cultivar with high nitrogen use efficiency (high-NUE) (T-43) and a low-NUE cultivar (LX-3) were used as the study materials and were grown under drip irrigation with four N fertilization levels (0, 150, 300, and 450 kg ha−1); the differences in leaf morphology, photosynthetic characteristics, hormone contents, antioxidant enzyme activities, biomass (mass), and yield were analysed.  The results revealed the following: (1) N application significantly increased the yield of drip-irrigated rice (17.38-74.03%), and with increasing N application rate, the leaf area index (LAI), chlorophyll a+b (Chl a+b) content, maximum net photosynthetic rate (Pnmax) and mass initially increased but then decreased, reaching optimum values under N300, whereas the flag leaf area (LA) continued to increase.  (2) Between the cultivars, T-43 presented relatively high LA and N-metabolizing enzyme activities, thereby increasing the Chl a+b content, light saturation point (Isat), and mass accumulation; LX-3 presented relatively high abscisic acid (ABA) content, and the accelerated degradation of Chl b resulted in an increased Chl a/b ratio, which inhibited Pnmax.  (3) Structural equation modelling (SEM) further revealed that indole-3-acetic acid (IAA) directly increased Pnmax to increase photosynthetic efficiency, whereas the positive promoting effect of IAA and N-metabolizing enzymes on Chl a+b indirectly increased the LAI and N agronomic efficiency (NAE), thus promoting the positive effects of LAI (0.477***) and Pnmax (0.715***) on yield.  In summary, under the appropriate N application rate (300 kg ha−1), in the high-NUE cultivar (T-43), the leaf functional period was maintained, and the photosynthetic capacity was increased via increased hormone contents and antioxidant enzyme activities.  The results of this study provide a theoretical basis for the efficient production of drip-irrigated rice in arid areas.

Keywords:  drip-irrigated rice       nitrogen utilization       leaves       light response       yield  
Online: 05 July 2025  
Fund: 

This work was supported by the National Natural Science Foundation of China (32360527 and 31460541) and the Bingtuan Science and Technology Program of Xinjiang (2022ZD054).

About author:  #Correspondence Yuxiang Li, E-mail: yxli@shzu.edu.cn; Qifeng Wu, E-mail: wqf-2005@163.com * Indicates the authors who contributed equally to this study.

Cite this article: 

Zhiwen Song, Guodong Wang, Lei Zhao, Qingyun Tang, Xinjiang Zhang, Qifeng Wu, Yuxiang Li. 2025. Rational nitrogen application improves photosynthetic capacity and yield by prolonging the leaf source function of drip-irrigated rice. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.07.006

Andrade F H, Uhart S A, Frugone M I. 1993. Intercepted radiation at flowering and kernel number in maize: Shade versus plant density effects. Crop Science, 33, 482–485.

Azarpour E, Moraditochaee M, Bozorgi H R. 2014. Effect of nitrogen fertilizer management on growth analysis of rice cultivars. International Journal of Biosciences4, 35–47.

Bai R X, Chen L, Zhang X J, Wei G H, Wei C Z. 2016. Effect of salinity and soil temperature on the growth and physiology of drip-irrigated rice seedlings. Archives of Agronomy and Soil Science, 63, 513–524.

Bunce J A. 1989. Growth rate, photosynthesis and respiration in relation to leaf area index. Annals of Botany, 63, 459–463.

Chen G, Zhao G H, Cheng W D, Zhang H L, Lu C N, Zhang H M, Shen Y Q, Wang B J, Shi W M. 2020. Rice nitrogen use efficiency does not link to ammonia volatilization in paddy fields. Science of the Total Environment, 741, 140433.

Chen Y K, Teng Z N, Yuan Y Q, Yi Z X, Zheng Q, Yu H H, Lv J H, Wang Y X, Duan M J, Zhang J H, Ye N H. 2022. Excessive nitrogen in field-grown rice suppresses grain filling of inferior spikelets by reducing the accumulation of cytokinin and auxin. Field Crops Research, 283, 108542.

Feng L Y, Raza M A, Li Z C, Chen Y K, Khalid M H B, Du J B, Liu W G, Wu X L, Song C, Yu L, Zhang Z W, Yuan S, Yang W Y, Yang F. 2019. The influence of light intensity and leaf movement on photosynthesis characteristics and carbon balance of soybean. Frontiers in Plant Science, 9, 1952.

Govindasamy P, Muthusamy S K, Bagavathiannan M, Mowrer J, Jagannadham P T K, Maity A, Halli H M, Sujayananad G K, Vadivel R, Das T K, Raj R, Pooniya V, Babu S, Rathore S S, Muralikrishnan L, Tiwari G. 2023. Nitrogen use efficiency-a key to enhance crop productivity under a changing climate. Frontiers in Plant Science, 14, 1121073.

He H B, Wang Q, Yang K, Niu M X, Wang L L, Wu H, You C C, Ke J, Zhu D Q, Wu L Q. 2021. Optimizing nitrogen distribution in source-sink organs at heading for high grain yield and high nitrogen use efficiency in Japonica rice. Agronomy Journal, 113, 4832–4849.

Honda S, Ohkubo S, San N S, Nakkasame A, Tomisawa K, Katsura K, Ookawa T, Nagano A J, Adachi S. 2021. Maintaining higher leaf photosynthesis after heading stage could promote biomass accumulation in rice. Scientific Reports, 11, 7579.

Hou M M, Yu M, Li Z Q, Ai Z Y, Chen J G. 2021. Molecular regulatory networks for improving nitrogen use efficiency in rice. International Journal of Molecular Sciences, 22, 9040.

Ju C X, Liu T, Sun C M. 2021. Panicle nitrogen strategies for nitrogen-efficient rice varieties at a moderate nitrogen application rate in the lower reaches of the Yangtze River, China. Agronomy, 11, 192.

Kossuth S V. 1986. Biochemical basis of plant breeding. Volume I: Carbon metabolism. Journal of Forest Science, 32, 1096–1097.

Lai Z L, Fan J L, Yang R, Xu X Y, Liu L J, Li S E, Zhang F C, Li Z J. 2022. Interactive effects of plant density and nitrogen rate on grain yield, economic benefit, water productivity and nitrogen use efficiency of drip-fertigated maize in northwest China. Agricultural Water Management, 263, 107453.

Lee S, Masclaux D C. 2021. Current understanding of leaf senescence in rice. International Journal of Molecular Sciences, 22, 4515.

Li N N, Li J H, Shi X J, Hao X Z, Shi F, Wang J, Luo H H, Tian L W. 2024. Improving nitrogen content in the carboxylation and electron transfer component can boost the reproductive biomass of filmless cotton in arid areas. Crop Science, 64, 1814–1830.

Liang Z, Bao A, Li H, Cai H. 2015. The effect of nitrogen level on rice growth, carbon-nitrogen metabolism, and gene expression. Biologia, 70, 1340–1350.

Liao G X, Yang Y H, Xiao W M, Mo Z W. 2023. Nitrogen modulates grain yield, nitrogen metabolism, and antioxidant response in different rice genotypes. Journal of Plant Growth Regulation, 42, 2103–2114.

Liu K, Liu S H, Liao H, Hou Z A. 2025. Effects of drip tape placement position and dripper type on root distribution, N use efficiency and yield of cotton under drip irrigation in Xinjiang, China. Field Crops Research, 327, 109894.

Ma J Y, Chen T T, Lin J, Fu W M, Feng B H, Li G Y, Li H B, Li J C, Wu Z H, Tao L X, Fu G F. 2022. Functions of nitrogen, phosphorus and potassium in energy status and their influences on rice growth and development. Rice Science, 29, 166–178.

Miao Z W, Xu M, Lathrop Jr R G, Wang Y F. 2009. Comparison of the A–Cc curve fitting methods in determining maximum ribulose 1·5‐bisphosphate carboxylase/oxygenase carboxylation rate, potential light saturated electron transport rate and leaf dark respiration. Plant, Cell & Environment, 32, 109–122.

Miflin B J, Habash D Z. 2002. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. Journal of Experimental Botany, 53, 979–987.

Misratia K M, Ismail M R, Hakim M A, Musa M H, Puteh A. 2013. Effect of salinity and alleviating role of gibberellic acid (GA3) for improving the morphological, physiological and yield traits of rice varieties. Australian Journal of Crop Science, 7, 1682–1692.

Mu X H, Chen Y L. 2021. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiology and Biochemistry, 158, 76–82.

Ning W, Su L, Shi D D, Ji M N, Ouyang X, Song Q F, Shao C Q, Zhu X G, Chang S Q. 2025. The near-optimal adjustment of carbon and nitrogen allocations into different organs in early-season rice cultivars with drastically different yield components under nitrogen application. Frontiers in Plant Science, 16, 1537378.

Noor H, Ding P C, Ren A X, Sun M, Gao Z Q. 2023. Effects of nitrogen fertilizer on photosynthetic characteristics and yield. Agronomy, 13, 1550.

Puy A, García Avil´es J M, Balbo A L, Keller M, Riedesel S, Blum D, Bubenzer O. 2017. Drip irrigation uptake in traditional irrigated fields: The edaphological impact. Journal of Environmental Management202, 550–561.

Qiang B B, Zhou W X, Zhong X J, Fu C Y, Cao L, Zhang Y X, Jin X J. 2023. Effect of nitrogen application levels on photosynthetic nitrogen distribution and use efficiency in soybean seedling leaves. Journal of Plant Physiology, 287, 154051.

Richards R A. 2000. Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany, 51, 447–458.

Šebela D, Quiñones C, Olejníčková J, Jagadish K SV. 2015. Temporal chlorophyll fluorescence signals to track changes in optical properties of maturing rice panicles exposed to high night temperature. Field Crops Research, 177, 75–85.

Shafiq I, Hussain S, Raza M A, Iqbal N, Asghar M A, Raza A, Fan Y F, Mumtaz M, Shoaib M, Ansar M A, Manaf A, Yang W Y, Yang F. 2021. Crop photosynthetic response to light quality and light intensity. Journal of Integrative Agriculture, 20, 4–23.

Shah J M, Bukhari S A H, Zeng J B, Quan X Y, Ali E, Muhammad N, Zhang G P. 2017. Nitrogen (N) metabolism related enzyme activities, cell ultrastructure and nutrient contents as affected by N level and barley genotype. Journal of Integrative Agriculture, 16, 190–198.

Singh H, Verma A, Ansari M W, Shukla A. 2014. Physiological response of rice (Oryza sativa L.) genotypes to elevated nitrogen applied under field conditions. Plant Signaling & Behavior, 9, 29015–32923.

Sun J L, Ye M, Peng S B, Li Y. 2016. Nitrogen can improve the rapid response of photosynthesis to changing irradiance in rice (Oryza sativa L.) plants. Scientific Reports, 6, 31305.

Sun W H, He Z B, Liu B, Ma D K, Li R, Wang S, Malekian A. 2025. Impact of long-term drip irrigation on soil organic carbon and nutrient stocks in arid oasis farmlands. Catena, 252, 108895.

Tian Y, Shi F, Shi X J, Zhang H M, Li Z M, Lin H R, Luo H H, Chenu K. 2023a. Improving cotton productivity and nitrogen use efficiency through late nitrogen fertilization: Evidence from a three-year field experiment in the Xinjiang. Field Crops Research, 313, 109433.

Tian Y, Shi X J, Shi F, Zhang H X, Liang Q, Luo H H, Chenu K. 2023b. Late nitrogen fertilization increases biomass of cotton bolls by reinforcing sourcesink performance. Industrial Crops and Products, 206, 117663.

Wang W X, Shen C C, Xu Q, Zafar S, Du B, Xing D Y. 2022. Grain yield, nitrogen use efficiency and antioxidant enzymes of rice under different fertilizer n inputs and planting density. Agronomy, 12, 430.

Wei H H, Meng T Y, Li X, Li X Y, Dai Q G, Zhang H C, Yin X Y. 2018. Sink-source relationship during rice grain filling is associated with grain nitrogen concentration. Field Crops Research, 215, 23–38.

Xing H L, Zhou W B, Wang C, Li L, Li X N, Cui N B, Hao W P, Liu F L, Wang Y S. 2021. Excessive nitrogen application under moderate soil water deficit decreases photosynthesis, respiration, carbon gain and water use efficiency of maize. Plant Physiology and Biochemistry, 166, 1065–1075.

Xiong D L. 2024. Perspectives of improving rice photosynthesis for higher grain yield. Crop and Environment, 3, 123–137.

Xu F, Guo W H, Xu W H, Wei Y H, Wang R Q. 2009. Leaf morphology correlates with water and light availability: What consequences for simple and compound leaves? Progress in Natural Science, 19, 1789–1798.

Xu G W, Jiang M M, Lu D K, Wang H Z, Chen M C. 2020. Nitrogen forms affect the root characteristic, photosynthesis, grain yield, and nitrogen use efficiency of rice under different irrigation regimes. Crop Science, 60, 2594–2610.

Xu J Z, Lv Y P, Liu X Y, Wei Q, Qi Z M, Yang S H, Liao L X. 2019. A general non-rectangular hyperbola equation for photosynthetic light response curve of rice at various leaf ages. Scientific Reports, 9, 9909.

Yang P, Wu L F, Cheng M H, Fan J L, Li S E, Wang H D, Qian L. 2023. Review on drip irrigation: Impact on crop yield, quality, and water productivity in China. Water, 15, 1733.

Ye Z P, Suggett D J, Robakowski P, Kang H J. 2013. A mechanistic model for the photosynthesis–light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. New Phytologist, 199, 110–120.

Yuan S, Linquist B A, Wilson L T, Cassman K G, Stuart A M, Pede V, Miro B, Saito K, Agustiani N, Aristya V E, Krisnadi L Y, Zanon A J, Heinemann A B, Carracelas G, Subash N, Brahmanand P S, Li T, Peng S, Grassini P. 2021. Sustainable intensification for a larger global rice bowl. Nature Communications, 12, 7163.

Yue K, Li L L, Xie J H, Fudjoe S K, Zhang R Z, Luo Z Z, Anwar S. 2021. Nitrogen supply affects grain yield by regulating antioxidant enzyme activity and photosynthetic capacity of maize plant in the loess plateau. Agronomy, 11, 1094.

Zakari S A, Asad M A U, Han Z Y, Zhao Q, Cheng F M. 2020. Relationship of nitrogen deficiency-induced leaf senescence with ROS generation and ABA concentration in rice flag leaves. Journal of Plant Growth Regulation, 39, 1503–1517.

Zakari S A, Zaidi S H R, Sunusi M, Dauda K D. 2021. Nitrogen deficiency regulates premature senescence by modulating flag leaf function, ROS homeostasis, and intercellular sugar concentration in rice during grain filling. Journal of Genetic Engineering and Biotechnology, 19, 177.

Zhang S N, Bao Q L, Huang Y Z, Han N. 2023. Exogenous plant hormones alleviate As stress by regulating antioxidant defense system in Oryza sativa L. Environmental Science and Pollution Research, 30, 6454–6465.

Zhang X J, Liu H, Meng C R, Zhang Z Y, Wang M M, Wei C Z. 2019. Ammonium alleviates iron deficiency of drip-irrigated rice seedlings in low soil temperature in calcareous soil. Acta Agriculturae Scandinavica, Section B (Soil & Plant Science), 69, 411–421.

Zhao L, Tang Q Y, Song Z W, Yin Y G, Wang G D, Li Y X. 2023. Increasing the yield of drip-irrigated rice by improving photosynthetic performance and enhancing nitrogen metabolism through optimizing water and nitrogen management. Frontiers in Plant Science, 14, 1075625.

Zhou Z X, Struik P C, Gu J F, Putten P E L, Wang Z Q, Yin X Y, Yang J C. 2023. Enhancing leaf photosynthesis from altered chlorophyll content requires optimal partitioning of nitrogen. Crop and Environment, 2, 24–36.

[1] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[2] Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[3] Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang. Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[4] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[5] Kuanyu Zhu, Yuemei Xu, Zhiwei Sun, Yajun Zhang, Weiyang Zhang, Yunji Xu, Junfei Gu, Hao Zhang, Zhiqin Wang, Lijun Liu, Jianhua Zhang, Jianchang Yang. Post-anthesis dry matter production and leaf nitrogen distribution are associated with root-derived cytokinins gradient in rice[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2106-2122.
[6] Jiaying Ma, Jian Liu, Yue Wen, Zhanli Ma, Jinzhu Zhang, Feihu Yin, Tehseen Javed, Jihong Zhang, Zhenhua Wang. Enhancing the yield and water use efficiency of processing tomatoes (Lycopersicon esculentum Miller) through optimal irrigation and salinity management under mulched drip irrigation[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2410-2424.
[7] Xiaoqiang Liu, Mingqi Li, Dong Xue, Shuai He, Junliang Fan, Fucang Zhang, Feihu Yin. Optimal drip irrigation leaching amount and timing enhanced cotton fiber yield, quality and nitrogen uptake by regulating soil salinity and nitrate nitrogen in saline-alkaline fields[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2389-2409.
[8] Zhaowen Mo, Siren Cheng, Yong Ren, Longxin He, Shenggang Pan, Haidong Liu, Hua Tian, Umair Ashraf, Meiyang Duan, Xiangru Tang. Reduced tillage coupled with straw return improves the grain yield and 2-acetyl-1-pyrroline content in fragrant rice[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1718-1737.
[9] Liang Wang, Nijiang Ai, Zechang Zhang, Chenhui Zhou, Guoli Feng, Sheng Cai, Ningshan Wang, Liuchun Feng, Yu Chen, Min Xu, Yingying Wang, Haoran Yue, Mengfei Chen, Liangshuai Xing, Baoliang Zhou. Development of Gossypium hirsutumGossypium raimondii introgression lines and their use in QTL mapping of agricultural traits[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1688-1703.
[10] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[11] Hairen Shi, Pei Guo, Jieyan Zhou, Zhen Wang, Meiyue He, Liyuan Shi, Xiaojuan Huang, Penghui Guo, Zhaoxia Guo, Yuwen Zhang, Fujiang Hou. Effects of stocking rate on growth performance, energy and nitrogen utilization, methane emission, and grazing behavior in Tan sheep grazed on typical steppe[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1234-1245.
[12] Mengyan Cao, Shaoping Ye, Cheng Jin, Junkang Cheng, Yao Xiang, Yu Song, Guorong Xin, Chuntao He. The communities of arbuscular mycorrhizal fungi established by different winter green manures in paddy fields promote post-cropping rice production[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1588-1605.
[13] Shuangping Heng, Mengdi Cui, Xiaolin Li, Shaoheng Zhang, Guangzhi Mao, Feng Xing, Zhengjie Wan, Jing Wen, Jinxiong Shen, Tingdong Fu.
The high quality genome of potherb mustard Xuecai (Brassica juncea var. multiceps) provides new insights into leaf shape variation
[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1461-1476.
[14] Jia Wu, Luqi Zhang, Ziyi Wang, Fan Ge, Hao Zhang, Jianchang Yang, Yajie Zhang. Reasonable dry cultivation methods can balance the yield and grain quality of rice[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1030-1043.
[15] Qingyun Tang, Guodong Wang, Lei Zhao, Zhiwen Song, Yuxiang Li.
Responses of yield, root traits and their plasticity to the nitrogen environment in nitrogen-efficient cultivars of drip-irrigated rice
[J]. >Journal of Integrative Agriculture, 2025, 24(2): 480-496.
No Suggested Reading articles found!