Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1234-1245    DOI: 10.1016/j.jia.2024.12.037
Section 1: Livestock production systems Advanced Online Publication | Current Issue | Archive | Adv Search |
Effects of stocking rate on growth performance, energy and nitrogen utilization, methane emission, and grazing behavior in Tan sheep grazed on typical steppe

Hairen Shi, Pei Guo, Jieyan Zhou, Zhen Wang, Meiyue He, Liyuan Shi, Xiaojuan Huang, Penghui Guo,  Zhaoxia Guo, Yuwen Zhang, Fujiang Hou#

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems/Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs/Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration/College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China

 Highlights 

Higher stocking rates are associated with higher digestibility and lower methane emissions.
Stocking rates influence the grazing behavior of sheep to fulfil their metabolic needs.
Stocking rates are dynamic and should be adjusted based on pasture management practices.


Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

背景和目的:放牧是一种投资少、收益高的草地经营模式。但是,与单胃动物相比,反刍动物是低生产效率高CH4排放的代表,其排放量约占人为活动CH4排放总量的30%~32%,造成显著的能量损失。优化放牧管理对提升反刍牲畜饲料转化率,缓解动物CH4排放具有较大的潜力和空间。因此,本研究旨在评估不同放牧率对滩羊生长性能、能量与氮利用效率、甲烷排放以及放牧行为的影响。方法:为期两年(2018-2019)的放牧试验在一个长期轮牧系统中开展,该放牧系统从2001年开始,每年6月上旬至9月上旬夏季放牧。放牧地共有9个放牧小区,每个面积为100 m×50 m,每个小区分配4只、8只和13只滩羊(6月龄,平均体重:23.15±1.32 kg),每个处理设3个空间重复,得出放牧率分别为2.7、5.3和8.7羊/公顷。结果:不同放牧年份牧草中性洗涤纤维和酸性洗涤纤维的含量存在差异(P<0.05),放牧率与牧草粗纤维含量呈正相关(P<0.05);随着放牧率增加,滩羊干物质采食量下降(P<0.05),2.7羊/公顷平均日增重最高(P<0.05);与2.7和8.7羊/公顷相比,5.3羊/公顷干物质消化率最低(P<0.05);8.7羊/公顷时粪氮处于最低水平(P<0.05),而沉积氮/总氮在8.7羊/公顷时最高;当8.7羊/公顷时,消化能、代谢能、及消化能/总能和代谢能/总能最高(P<0.05),而甲烷排放量、甲烷/干物质采食量和甲烷能/总能在2.7羊/公顷最高(P<0.05);年份对放牧行为影响不显著,随着放牧率增加,行走时间和反刍/休息分配时间均下降,而放牧时间与放牧率呈负相关。结论:增加放牧率可能使动物选择性采食策略改变,迫使它们采食不喜食牧草以满足其能量需求。虽然导致滩羊干物质采食量下降,但消化率提高,最终减少了氮排泄和CH4排放。创新性:提出根据牧草营养价值和组成重新评估和调整放牧率,以优化动物生产性能以及甲烷减排途径。



Abstract  

Understanding livestock performance in typical steppe ecosystems is essential for optimizing grassland-livestock interactions and minimizing environmental impact.  To assess the effects of different stocking rates on the growth performance, energy and nitrogen utilization, methane (CH4) emissions, and grazing behavior of Tan sheep, a 2-year grazing experiment in the typical steppe was conducted.  The grazing area was divided into 9 paddocks, each 0.5 ha, with 3 spatial replicates for each stocking rate treatment (4, 8, and 13 sheep per paddock), corresponding to 2.7, 5.3, and 8.7 sheep ha–1.  The results showed that the neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents of herbage varied between grazing years (P<0.05), with a positive correlation between stocking rate and crude fiber content in the herbage (P<0.05).  Dry matter intake (DMI) decreased with increasing stocking rate (P<0.05), and the average daily gain (ADG) was highest at 2.7 sheep ha–1 (P<0.05).  Compared to 2.7 and 8.7 sheep ha–1, the 5.3 sheep ha–1 treatment exhibited the lowest nutrient digestibility for dry matter, nitrogen, and ether extract (P<0.05).  Fecal nitrogen was lowest at 8.7 sheep ha–1 (P<0.05), while retained nitrogen as a proportion of nitrogen intake was highest.  Digestive energy (DE), metabolic energy (ME), and the ratios of DE to gross energy (GE) and ME to GE were highest at 8.7 sheep ha–1 (P<0.05).  In contrast, CH4 emissions, CH4 per DMI, and CH4E as a proportion of GE were highest at 2.7 sheep ha–1 (P<0.05).  Stocking rate and grazing year did not significantly affect rumen fermentation parameters, including volatile fatty acids, acetate, propionate, and the acetate/propionate ratio.  At 8.7 sheep ha–1, daily grazing time and inter-individual distance increased, while time allocated to grazing, walking, and ruminating/resting decreased as stocking rates increased (P<0.05).  This study highlights the importance of adjusting stocking rates based on the nutritional value of forage and grazing year to optimize grazing management. 


Keywords:  stocking rate       methane emissions       energy and nitrogen utilization        grazing behavior  
Received: 25 September 2023   Accepted: 29 November 2024
Fund: 

This work was supported by the National Natural Science Foundation of China (32161143028), the Key Technology of Grassland Ecological Civilization Demonstration Area in Ningxia Hui Autonomous Region, China (20210239), and the Northwest Shelterbelt Construction Bureau of the National Forestry and Grassland Administration, China.

About author:  Hairen Shi, Tel: +86-931-8913047, E-mail: shihr21@lzu.edu.cn; #Correspondence Fujiang Hou, Tel: +86-931-8913047, E-mail: cyhoufj@lzu.edu.cn

Cite this article: 

Hairen Shi, Pei Guo, Jieyan Zhou, Zhen Wang, Meiyue He, Liyuan Shi, Xiaojuan Huang, Penghui Guo, Zhaoxia Guo, Yuwen Zhang, Fujiang Hou. 2025. Effects of stocking rate on growth performance, energy and nitrogen utilization, methane emission, and grazing behavior in Tan sheep grazed on typical steppe. Journal of Integrative Agriculture, 24(4): 1234-1245.

Archibeque S L, Burns J C, Huntington G B. 2001. Urea flux in beef steers: Effects of forage species and nitrogen fertilization. Journal of Animal Science79, 1937–1943.

Beauchemin K A, Ungerfeld E M, Eckard R J, Wang M. 2020. Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal14, s2–s16.

Chaokaur A, Nishida T, Phaowphaisal I, Sommart K. 2015. Effects of feeding level on methane emissions and energy utilization of Brahman cattle in the tropics. AgricultureEcosystems & Environment199, 225–230.

Chapman D F, Parsons A J, Cosgrove G P, Barker D J, Marotti D M, Venning K J, Rutter S M, Hill J, Thompson A N. 2007. Impacts of spatial patterns in pasture on animal grazing behavior, intake, and performance. Crop Science47, 399–415.

Coffey E L, Delaby L, Fleming C, Pierce K M, Horan B. 2018. Multi-year evaluation of stocking rate and animal genotype on milk production per hectare within intensive pasture-based production systems. Journal of Dairy Science101, 2448–2462.

Cui X, Wang Z, Guo P, Li F, Chang S, Yan T, Zheng H, Hou F. 2023a. Shift of feeding strategies from grazing to different forage feeds reshapes the rumen microbiota to improve the ability of Tibetan sheep (Ovis aries) to adapt to the cold season. Microbiology Spectrum11, e02816–22.

Cui X, Wang Z, Yan T, Chang S, Hou F. 2023b. Modulation of feed digestibility, nitrogen metabolism, energy utilisation and serum biochemical indices by dietary Ligularia Virgaurea supplementation in Tibetan sheep. Animal17, 100910.

Denman S E, Morgavi D P, McSweeney C S. 2018. The application of omics to rumen microbiota function. Animal12, s233–s245.

Dijkstra F A, Pendall E, Morgan J A, Blumenthal D M, Carrillo Y, LeCain D R, Follett R F, Williams D G. 2012. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist196, 807–815.

Dong L F, Jia P, Li B C, Wang B, Yang C L, Liu Z H, Diao Q Y. 2022. Quantification and prediction of enteric methane emissions from Chinese lactating Holstein dairy cows fed diets with different dietary neutral detergent fiber/non-fibrous carbohydrate (NDF/NFC) ratios. Journal of Integrative Agriculture21, 797–811.

Dovrat G, Sheffer E, Landau S Y, Deutch T, Gorelik H, Henkin Z. 2021. Can grazing moderate climatic effects on herbage nutritional quality? Agronomy11, 700.

Dumont B, Boissy A. 2000. Grazing behaviour of sheep in a situation of conflict between feeding and social motivations. Behavioural Processes49, 131–138.

Fan Q, Cui X, Wang Z, Chang S, Wanapat M, Yan T, Hou F. 2021. Rumen microbiota of Tibetan sheep (Ovis aries) adaptation to extremely cold season on the Qinghai-Tibetan Plateau. Frontiers in Veterinary Science8, 673822.

FAO (Food and Agriculture Organization of the United Nations). 2018. The future of food and agriculture - Alternative pathways to 2050. https://www.fao.org/home/zh/

Fleurance G, Farruggia A, Lanore L, Dumont B. 2016. How does stocking rate influence horse behaviour, performances and pasture biodiversity in mesophile grasslands. AgricultureEcosystems & Environment231, 255–623.

Frank D A. 2008. Ungulate and topographic control of nitrogen: Phosphorus stoichiometry in a temperate grassland soils, plants and mineralization rates. Oikos117, 591–601.

Gao J, Zhao G. 2022. Potentials of using dietary plant secondary metabolites to mitigate nitrous oxide emissions from excreta of cattle: Impacts, mechanisms and perspectives. Animal Nutrition9, 327–334.

Grainger C, Beauchemin K A. 2011. Can enteric methane emissions from ruminants be lowered without lowering their production. Animal Feed Science and Technology166, 308–320.

Gupta V P, Kamra D N, Agarwal N, Chaudhary L C. 2017. Effect of sulphate and blend of plant parts containing secondary metabolites on in vitro methanogenesis, digestibility and feed fermentation with buffalo rumen liquor. Indian Journal of Animal Sciences87, 199–202.

De Haas Y, Veerkamp R F, De Jong G, Aldridge M N. 2021. Selective breeding as a mitigation tool for methane emissions from dairy cattle. Animal15, 100294.

Hristov A N, Bannink A, Crompton L A, Huhtanen P, Kreuzer M, McGee M, Yu Z. 2019. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. Journal of Dairy Science102, 5811–5852.

Hristov A N, Oh J, Firkins J L, Dijkstra J, Kebreab E, Waghorn G, Makkar H P S, Adesogan A T, Yang W, Lee C, Gerber P J, Henderson B, Tricarico J M. 2013. Special topics-Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Journal of Animal Science91, 5045–5069.

Li Q S, Wang R, Ma Z Y, Zhang X M, Jiao J Z, Zhang Z G, Ungerfeld E M, Le Yi K, Zhang B Z, Long L, Long Y. 2022. Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants. The ISME Journal16, 2535–2546.

Li Y, Gao J, Xue Y, Sun R, Sun X, Sun Z, .Liu S, Tan Z, Zhu W, Cheng Y. 2023. Nutrient availability of roughages in isocaloric and isonitrogenous diets alters the bacterial networks in the whole gastrointestinal tract of Hu sheep. BMC Microbiology23, 70.

Løvendahl P, Difford G F, Li B, Chagunda M G G, Huhtanen P, Lidauer M H, Lund P. 2018. Selecting for improved feed efficiency and reduced methane emissions in dairy cattle. Animal12, s336–s349.

Jayanegara A, Goel G, Makkar H P S, Becker K. 2010. Reduction in methane emissions from ruminants by plant secondary metabolites: Effects of polyphenols and saponins. Sustainable Improvement of Animal Production and Health9, 151–157.

Jia P, Dong L F, Tu Y, Diao Q Y. 2023. Bacillus subtilis and Macleaya cordata extract regulate the rumen microbiota associated with enteric methane emission in dairy cows. Microbiome11, 229.

Jia P, Tu Y, Liu Z, Lai Q, Li F, Dong L F, Diao Q Y. 2022. Characterization and mitigation option of greenhouse gas emissions from lactating Holstein dairy cows in East China. Journal of Animal Science and Biotechnology13, 88.

Jiao H P, Dale A J, Carson A F, Murray S, Gordon A W, Ferris C P. 2014. Effect of concentrate feed level on methane emissions from grazing dairy cows. Journal of Dairy Science97, 7043–7053.

Kazemi-Bonchenari M, Falahati R, Poorhamdollah M, Heidari S R, Pezeshki A. 2018. Essential oils improved weight gain, growth and feed efficiency of young dairy calves fed 18 or 20% crude protein starter diets. Journal of Animal Physiology and Animal Nutrition102, 652–661.

Koerner S E, Collins S L. 2014. Interactive effects of grazing, drought, and fire on grassland plant communities in North America and South Africa. Ecology95, 98–109.

Kohler F, Gillet F, Reust S, Wagner H H, Gadallah F, Gobat J M, Buttler A. 2006. Spatial and seasonal patterns of cattle habitat use in a mountain wooded pasture. Landscape Ecology21, 281–295.

Kuralkar P, Kuralkar S V. 2021. Role of herbal products in animal production–An updated review. Journal of Ethnopharmacology278, 114246.

Ku-Vera J C, Jiménez-Ocampo R, Valencia-Salazar S S, Montoya-Flores M D, Molina-Botero I C, Arango J, Gomez-Bravo C A, Aguilar-Perez C F, Solorio-Sánchez F J. 2020. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Frontiers in Veterinary Science7, 584.

Lin L, Dickhoefer U, Müller K, Susenbeth A. 2011. Grazing behavior of sheep at different stocking rates in the Inner Mongolian steppe, China. Applied Animal Behaviour Science129, 36–42.

Machado L, Magnusson M, Paul N A, de Nys R, Tomkins N. 2014. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE9, e85289.

Maestre F T, Le Bagousse-Pinguet Y, Delgado-Baquerizo M, Eldridge D J, Saiz H, Berdugo M, Gross N. 2022. Grazing and ecosystem service delivery in global drylands. Science378, 915–920.

Martins A P, Cecagno D, Borin J B M, Arnuti F, Lochmann S H, Anghinoni I, Bissani C S, Bayer C, Carvalho P C F. 2016. Long-, medium-and short-term dynamics of soil acidity in an integrated crop–livestock system under different grazing intensities. Nutrient Cycling in Agroecosystems104, 67–77.

McCarthy B, Pierce K M, Delaby L, Brennan A, Fleming C, Horan B. 2013. The effect of stocking rate and calving date on grass production, utilization and nutritive value of the sward during the grazing season. Grass and Forage Science68, 364–377.

Mehrabi Z, Gill M, Wijk M V, Herrero M, Ramankutty N. 2020. Livestock policy for sustainable development. Nature Food1, 160–165.

Miao F, Guo Z, Xue R, Wang X, Shen Y. 2015. Effects of grazing and precipitation on herbage biomass, herbage nutritive value, and Yak performance in an alpine meadow on the Qinghai – Tibetan Plateau. PLoS ONE10, e0127275.

Middelaar C E, Dijkstra J, Berentsen P B M, De Boer I J M. 2014. Cost-effectiveness of feeding strategies to reduce greenhouse gas emissions from dairy farming. Journal of Dairy Science97, 2427–2439.

Oñatibia G R, Aguiar M R. 2016. Continuous moderate grazing management promotes biomass production in Patagonian arid rangelands. Journal of Arid Environments125, 73–79.

Patiño C S, Holmes C W, Lassey K R, Ulyatt M J. 2008. Measurement of methane emission from sheep by the sulphur hexafluoride tracer technique and by the calorimetric chamber: Failure and success. Animal2, 141–148.

Patra A, Park T, Kim M, Yu Z. 2017. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology8, 1–18.

Patra A K, Saxena J. 2009. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutrition Research Reviews22, 204–219.

Peri P L, Ladd B, Lasagno R G, Pastur G M. 2016. The effects of land management (grazing intensity) vs. the effects of topography, soil properties, vegetation type, and climate on soil carbon concentration in Southern Patagonia. Journal of Arid Environments134, 73–78.

Pickering N K, Oddy V H, Basarab J, Cammack K, Hayes B, Hegarty R S, Hegarty J, Lassen J C, McEwan S, Miller C S, Pinares-Patiño C S, De Haas Y. 2015. Animal board invited review: Genetic possibilities to reduce enteric methane emissions from ruminants. Animal9, 1431–1440.

Ripple W J, Smith P, Haberl H, Montzka S A, McAlpine C, Boucher D H. 2014. Ruminants, climate change and climate policy. Nature Climate Change4, 2–5.

Roche J R, Ledgard S F, Sprosen M S, Lindsey S B, Penno J W, Horan B, Macdonald K A. 2016. Increased stocking rate and associated strategic dry-off decision rules reduced the amount of nitrate-N leached under grazing. Journal of Dairy Science99, 5916–5925.

Savian J V, Schons R M, Mezzalira J C, Neto A B, Neto G D, Benvenutti M A, Carvalho P D. 2020. A comparison of two rotational stocking strategies on the foraging behaviour and herbage intake by grazing sheep. Animal14, 2503–2510.

Savian J V, Schons R M T, Marchi D E, de Freitas T S, da Silva Neto G F, Mezzalira J C, Berndt A, Bayer C, De Faccio Carvalho P C. 2018. Rotatinuous stocking: A grazing management innovation that has high potential to mitigate methane emissions by sheep. Journal of Cleaner Production186, 602–608.

Silva C S, Souza E J O, Pereira G F C, Cavalcante E O, Lima E I M, Torres T R, Silva J R C, Silva D C. 2017. Plant extracts as phytogenic additives considering intake, digestibility, and feeding behavior of sheep. Tropical Animal Health and Production49, 353–359.

Soder K J, Rook A J, Sanderson M A, Goslee S C. 2007. Interaction of plant species diversity on grazing behavior and performance of livestock grazing temperate region pastures. Crop Science47, 416–425.

Zhang Y, Huang D, Badgery W B, Kemp D R, Chen W, Wang X, Liu N. 2015. Reduced grazing pressure delivers production and environmental benefits for the typical steppe of north China. Scientific Reports5, 1–11.

[1] YIN Yan-ting, REN Ji-zhou , HOU Xiang-yang. Vegetation Community Convergence of Pastoralists’ Pasture at Different Economic Levels in Desert Steppe[J]. >Journal of Integrative Agriculture, 2014, 13(6): 1165-1171.
No Suggested Reading articles found!