Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1372-1389    DOI: 10.1016/j.jia.2023.10.030
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear
Lanjie Zheng1*, Qianlong Zhang1*, Huiying Liu1, Xiaoqing Wang3, Xiangge Zhang4, Zhiwei Hu2, Shi Li1, Li Ji1, Manchun Ji1, Yong Gu5, Jiaheng Yang1, Yong Shi1, Yubi Huang2#, Xu Zheng1#

1 State Key Laboratory of Wheat and Maize Crop Science/Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China

2 College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China

3 School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450002, China

4 Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China

5 Sichuan Yuliang Testing Co., Ltd., Chengdu 611130, China

 Highlights 
MIR172e is essential for inflorescence development and grain size in maize.
The miR172e/EREB197 regulatory module is pivotal in controlling lower floret abortion in maize ear.
Mutations in MIR172e significantly impact flower development and hormone-related pathways.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米(Zea mays L.)是雌雄同株异花植物,其雌穗和雄穗分别为雌花序和雄花序。成熟的玉米雌花序通常能产生数百粒籽粒,决定籽粒的大小及粒重,直接影响玉米的最终产量。本研究鉴定了一个玉米隐性花序发育缺陷突变体tasselseed2016ts2016,该突变体雌雄花序在发育过程中表现出多方面的缺陷且籽粒产量降低,包括雌雄花序上各类分生组织的确定性和小花中器官身份的缺失、雌穗下位小花退化障碍及籽粒变小。通过图位克隆及等位测试,确定该表型由microRNA基因MIR172e基因突变造成。此外,本研究鉴定到一个调控玉米雌穗下位小花退化的分子模块——miR172e/ETHYLENE RESPONSIVE ELEMENT BINDING197 (EREB197)。转录组分析表明,MIR172e突变抑制玉米雌穗发育中的多个生物过程,特别是花发育和激素相关途径。另外,我们发现MIR172e DNA序列突变影响其RNA的转录,导致突变位点转录延伸受阻。本研究揭示了MIR172e在玉米花序发育和籽粒产量中的作用和分子机制,加深了我们对玉米花发育调控的认识。



Abstract  
Maize (Zea mays L.) is a monoecious grass species with separate male and female inflorescences which form the tassel and ear, respectively.  The mature ear inflorescences usually bear hundreds of grains, so they directly influence maize grain production and yield.  Here, we isolated a recessive maize mutant, tasselseed2016 (ts2016), which exhibits pleiotropic inflorescence defects and reduced grain yield.  These defects include the loss of determinacy and identity in meristems and floral organs, as well as a lack of the lower floret abortion in maize ear, and a smaller grain size.  Using map-based cloning and allelic testing, we identified and confirmed the microRNA gene MIR172e as the target gene controlling these related traits.  Furthermore, our evidence uncovered a new potential miR172e/ETHYLENE RESPONSIVE ELEMENT BINDING197 (EREB197) regulatory module which controls lower floret abortion in maize ear.  Transcriptome analysis revealed that the mutation of MIR172e represses multiple biological processes, particularly the flower development and hormone-related pathways in maize ear.  We also found that a mutation in the DNA sequence of MIR172e affects RNA transcription, resulting in elongation blockage at the mutant site.  Our results reveal the function and molecular mechanism of MIR172e in maize inflorescences and grain yield, and this study deepens our knowledge of maize inflorescence development.


Keywords:  inflorescence        ear        ts2016        MIR172e        grain yield        maize (Zea mays L.)  
Received: 10 July 2023   Accepted: 08 October 2023
Fund: 
This work was supported by the Natural Science Foundation of Henan Province, China (232300421260), the Tackling Key Problems in Science and Technology of Henan Province, China (222102110465, to LZ and 232102111097, to YS), and the Open Project Program (SKL-KF202214) of the State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China. 
About author:  Lanjie Zheng, E-mail: zhenglanjie@henau.edu.cn; Qianlong Zhang, E-mail: 13525484695@163.com; #Correspondence Xu Zheng, Tel: +86-371-56990188, E-mail: zhengxu@henau.edu.cn; Yubi Huang, +86-28-86290875, E-mail: yubihuang@sohu.com * These authors contributed equally to this study.

Cite this article: 

Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. 2025. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear. Journal of Integrative Agriculture, 24(4): 1372-1389.

Acosta I F, Laparra H, Romero S P, Schmelz E, Hamberg M, Mottinger J P, Moreno M A, Dellaporta S L. 2009. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science323, 262–265.

Bartlett M E, Thompson B. 2014. Meristem identity and phyllotaxis in inflorescence development. Frontiers in Plant Science5, 508.

Betti F, Ladera-Carmona M J, Weits D A, Ferri G, Iacopino S, Novi G, Svezia B, Kunkowska A B, Santaniello A, Piaggesi A, Loreti E, Perata P. 2021. Exogenous miRNAs induce post-transcriptional gene silencing in plants. Nature Plants7, 1379–1388.

Bologna N G, Voinnet O. 2014. The diversity, biogenesis, and activities of endogenous silencing small RNAs in ArabidopsisAnnual Review of Plant Biology65, 473–503.

Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S. 2006. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. The Plant Cell18, 574–585.

Breakfield N W, Corcoran D L, Petricka J J, Shen J, Sae-Seaw J, Rubio-Somoza I, Weigel D, Ohler U, Benfey P N. 2012. High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in ArabidopsisGenome Research22, 163–176.

Brown R H, Bregitzer P. 2011. A Ds insertional mutant of a barley miR172 gene results in indeterminate spikelet development. Crop Science51, 1664–1672.

Chen C, Ridzon D A, Broomer A J, Zhou Z, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J, Guegler K J. 2005. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research33, e179.

Chen X. 2009. Small RNAs and their roles in plant development. Annual Review of Cell and Developmental Biology25, 21–44.

Cheng P C, Greyson R I, Walden D B. 1983. Organ initiation and the development of unisexual flowers in the tassel and ear of Zea maysAmerican Journal of Botany70, 450–462.

Cheng X, He Q, Tang S, Wang H, Zhang X, Lv M, Liu H, Gao Q, Zhou Y, Wang Q, Man X, Liu J, Huang R, Wang H, Chen T, Liu J. 2021. The miR172/IDS1 signaling module confers salt tolerance through maintaining ROS homeostasis in cereal crops. New Phytologist230, 1017–1033.

Chuck G. 2010. Molecular mechanisms of sex determination in monoecious and dioecious plants. Advances in Botanical Research54, 53–83.

Chuck G, Meeley R, Hake S. 2008. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1Development135, 3013–3019.

Chuck G, Meeley R, Irish E, Sakai H, Hake S. 2007. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1Nature Genetics39, 1517–1521.

Chuck G, Whipple C, Jackson D, Hake S. 2010. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Development137, 1243–1250.

Dellaporta S L, Calderon-Urrea A. 1993. Sex determination in flowering plants. The Plant Cell5, 1241–1251.

Du K, Zhao W, Zhou Z, Shao J, Hu W, Kong L, Wang Y. 2021. Hormonal changes play important roles in the key period of superior and inferior earshoot differentiation in maize. Journal of Integrative Agriculture20, 3143–3155.

Eisenberg E, Levanon E Y. 2003. Human housekeeping genes are compact. Trends in Genetics19, 362–365.

Gallavotti A, Long J A, Stanfield S, Yang X, Jackson D, Vollbrecht E, Schmidt R J. 2010. The control of axillary meristem fate in the maize ramosa pathway. Development137, 2849–2856.

Gallavotti A, Yang Y, Schmidt R J, Jackson D. 2008. The Relationship between auxin transport and maize branching. Plant Physiology147, 1913–1923.

Galli M, Liu Q, Moss B L, Malcomber S, Li W, Gaines C, Federici S, Roshkovan J, Meeley R, Nemhauser J L, Gallavotti A. 2015. Auxin signaling modules regulate maize inflorescence architecture. Proceedings of the National Academy of Sciences of the United States of America112, 13372–13377.

Hartwig T, Chuck G S, Fujioka S, Klempien A, Weizbauer R, Potluri D P, Choe S, Johal G S, Schulz B. 2011. Brassinosteroid control of sex determination in maize. Proceedings of the National Academy of Sciences of the United States of America108, 19814–19819.

Hayward A P, Moreno M A, Howard T P, Hague J, Nelson K, Heffelfinger C, Romero S, Kausch A P, Glauser G, Acosta I F, Mottinger J P, Dellaporta S L. 2016. Control of sexuality by the sk1-encoded UDP-glycosyltransferase of maize. Science Advances2, e1600991.

Hu Y, Li Y, Weng J, Liu H, Yu G, Liu Y, Xiao Q, Huang H, Wang Y, Wei B, Cao Y, Xie Y, Long T, Li H, Zhang J, Li X, Huang Y. 2021. Coordinated regulation of starch synthesis in maize endosperm by microRNAs and DNA methylation. The Plant Journal105, 108–123.

Jeong D H, Park S, Zhai J, Gurazada S G, De Paoli E, Meyers B C, Green P J. 2011. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. The Plant Cell23, 4185–4207.

Karlen Y, McNair A, Perseguers S, Mazza C, Mermod N. 2007. Statistical significance of quantitative PCR. BMC Bioinformatics8, 131.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods12, 357–360.

Kim J C, Laparra H, Calderon-Urrea A, Mottinger J P, Moreno M A, Dellaporta S L. 2007. Cell cycle arrest of stamen initials in maize sex determination. Genetics177, 2547–2551.

Li B, Dewey C N. 2011. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics12, 323.

Li G, Wang D, Yang R, Logan K, Chen H, Zhang S, Skaggs M I, Lloyd A, Burnett W J, Laurie J D. 2014. Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proceedings of the National Academy of Sciences of the United States of America111, 7582–7587.

Lian H, Wang L, Ma N, Zhou C, Han L, Zhang T, Wang J. 2021. Redundant and specific roles of individual MIR172 genes in plant development. PLoS Biology19, e3001044.

Liu F, Cui X, Horner H T, Weiner H, Schnable P S. 2001. Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maize. The Plant Cell13, 1063–1078.

Liu J, Cheng X, Liu P, Sun J. 2017. miR156-targeted SBP-box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiology174, 1931–1948.

Liu J, Qu J, Yang C, Tang D, Li J, Lan H, Rong T. 2015. Development of genome-wide insertion and deletion markers for maize, based on next-generation sequencing data. BMC Genomics16, 601.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

Lunde C, Kimberlin A, Leiboff S, Koo A J, Hake S. 2019. Tasselseed5 overexpresses a wound-inducible enzyme, ZmCYP94B1, that affects jasmonate catabolism, sex determination, and plant architecture in maize. Communications Biology2, 114.

Luo H, Meng D, Liu H, Xie M, Yin C, Liu F, Dong Z, Jin W. 2020. Ectopic expression of the transcriptional regulator silky3 causes pleiotropic meristem and sex determination defects in maize inflorescences. The Plant Cell32, 3750–3773.

Michelmore R W, Paran I, Kesseli R V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America88, 9828–9832.

Nickerson N H, Dale E E. 1955. Tassel modifications in Zea maysAnnals of the Missouri Botanical Garden42, 195–212.

O’Maoileidigh D S, van Driel A D, Singh A, Sang Q, Le Bec N, Vincent C, de Olalla E B G, Vayssieres A, Romera Branchat M, Severing E, Martinez Gallegos R, Coupland G. 2021. Systematic analyses of the MIR172 family members of Arabidopsis define their distinct roles in regulation of APETALA2 during floral transition. Plos Biology19, e3001043.

Parkinson S E, Gross S M, Hollick J B. 2007. Maize sex determination and abaxial leaf fates are canalized by a factor that maintains repressed epigenetic states. Developmental Biology308, 462–473.

Ruijter J M, Pfaffl M W, Zhao S, Spiess A N, Boggy G, Blom J, Rutledge R G, Sisti D, Lievens A, De Preter K, Derveaux S, Hellemans J, Vandesompele J. 2013. Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications. Methods59, 32–46.

Sakuma S, Schnurbusch T. 2020. Of floral fortune: Tinkering with the grain yield potential of cereal crops. New Phytologist225, 1873–1882.

Samson R Y, Bell S D. 2016. Archaeal DNA replication origins and recruitment of the MCM replicative helicase. Enzymes39, 169–190.

Skibbe D S, Wang X, Borsuk L A, Ashlock D A, Nettleton D, Schnable P S. 2008. Floret-specific differences in gene expression and support for the hypothesis that tapetal degeneration of Zea mays L. occurs via programmed cell death. Journal of Genetics and Genomics35, 603–616.

Somssich M, Je B I, Simon R, Jackson D. 2016. CLAVATA-WUSCHEL signaling in the shoot meristem. Development143, 3238–3248.

Sun Y, Dong L, Zhang Y, Lin D, Xu W, Ke C, Han L, Deng L, Li G, Jackson D, Li X, Yang F. 2020. 3D genome architecture coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize. Genome Biology21, 143.

Thompson B E, Bartling L, Whipple C, Hall D H, Sakai H, Schmidt R, Hake S. 2009. Bearded-ear encodes a MADS box transcription factor critical for maize floral development. The Plant Cell21, 2578–2590.

Valoczi A, Varallyay E, Kauppinen S, Burgyan J, Havelda Z. 2006. Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissues. The Plant Journal47, 140–151.

Van Pelt-Verkuil E, Van Belkum A, Hays J P. 2008. A brief Comparison Between in vivo DNA Replication and in vitro PCR Amplification. Springer Netherlands. pp. 9–15.

Vinogradov A E. 2004. Compactness of human housekeeping genes: Selection for economy or genomic design? Trends in Genetics20, 248–253.

Vollbrecht E, Schmidt R J. 2009. Development of the inflorescences. In: Bennetzen J L, Hake S, eds., Handbook of MaizeIts Biology. Springer, New York. pp. 13–40.

Wang F, Yuan Z, Zhao Z, Li C, Zhang X, Liang H, Liu Y, Xu Q, Liu H. 2020. Tasselseed5 encodes a cytochrome C oxidase that functions in sex determination by affecting jasmonate catabolism in maize. Journal of Integrative Plant Biology62, 247–255.

Wang J, Lin Z, Zhang X, Liu H, Zhou L, Zhong S, Li Y, Zhu C, Lin Z. 2019. krn1, a major quantitative trait locus for kernel row number in maize. New Phytologist223, 1634–1646.

Wang Z, Zhang W, Yang J. 2018. Physiological mechanism underlying spikelet degeneration in rice. Journal of Integrative Agriculture17, 1475–1481.

Xie S D, Tian R, Zhang J J, Liu H M, Li Y P, Hu Y F, Yu G W, Huang Y B, Liu Y H. 2023. Dek219 encodes DICER-LIKE1 protein that affects chromatin accessibility and kernel development in maize. Journal of Integrative Agriculture22, 2961–2980.

Xu X, Crow M, Rice B R, Li F, Harris B, Liu L, Demesa-Arevalo E, Lu Z, Wang L, Fox N, Wang X, Drenkow J, Luo A, Char S N, Yang B, Sylvester A W, Gingeras T R, Schmitz R J, Ware D, Lipka A E, Gillis J, Jackson D. 2021. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Developmental Cell56, 557–568.

Yamasaki S, Fujii N, Takahashi H. 2005. Hormonal regulation of sex expression in plants. Vitamins and Hormones72, 79–110.

Yang H, Nukunya K, Ding Q, Thompson B E. 2022. Tissue-specific transcriptomics reveal functional differences in floral development. Plant Physiology188, 1158–1173.

Zhang L, Chia J M, Kumari S, Stein J C, Liu Z, Narechania A, Maher C A, Guill K, McMullen M D, Ware D. 2009. A genome-wide characterization of microRNA genes in maize. PLoS Genetics5, e1000716.

Zhang X, Hou X, Liu Y, Zheng L, Yi Q, Zhang H, Huang X, Zhang J, Hu Y, Yu G, Liu H, Li Y, Huang H, Zhan F, Chen L, Tang J, Huang Y. 2019. Maize brachytic2 (br2) suppresses the elongation of lower internodes for excessive auxin accumulation in the intercalary meristem region. BMC Plant Biology19, 589.

Zhu Q H, Helliwell C A. 2011. Regulation of flowering time and floral patterning by miR172. Journal of Experimental Botany62, 487–495.

Zhu Q H, Upadhyaya N M, Gubler F, Helliwell C A. 2009. Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biology9, 149.

[1] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[2] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[3] Junnan Hang, Bowen Wu, Diyang Qiu, Guo Yang, Zhongming Fang, Mingyong Zhang.

OsNPF3.1, a nitrate, abscisic acid and gibberellin transporter gene, is essential for rice tillering and nitrogen utilization efficiency [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1087-1104.

[4] Tingcheng Zhao, Aibin He, Mohammad Nauman Khan, Qi Yin, Shaokun Song, Lixiao Nie.

Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions [J]. >Journal of Integrative Agriculture, 2024, 23(1): 93-107.

[5] Akmaral Baidyussen, Gulmira Khassanova, Maral Utebayev, Satyvaldy Jatayev, Rystay Kushanova, Sholpan Khalbayeva, Aigul Amangeldiyeva, Raushan Yerzhebayeva, Kulpash Bulatova, Carly Schramm, Peter Anderson, Colin L. D. Jenkins, Kathleen L. Soole, Yuri Shavrukov. Assessment of molecular markers and marker-assisted selection for drought tolerance in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2024, 23(1): 20-38.
[6] YIN Wen, FAN Zhi-long, HU Fa-long, FAN Hong, HE Wei, SUN Ya-li, WANG Feng, ZHAO Cai, YU Ai-zhong, CHAI Qiang. No-tillage with straw mulching boosts grain yield of wheat via improving the eco-physiological characteristics in arid regions[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3416-3429.
[7] ZHANG Guang-xin, ZHAO De-hao, FAN Heng-zhi, LIU Shi-ju, LIAO Yun-cheng, HAN Juan. Combining controlled-release urea and normal urea with appropriate nitrogen application rate to reduce wheat stem lodging risk and increase grain yield and yield stability[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3006-3021.
[8] WANG Rui, WANG Ying, HU Ya-xian, DANG Ting-hui, GUO Sheng-li. Divergent responses of tiller and grain yield to fertilization and fallow precipitation: Insights from a 28-year long-term experiment in a semiarid winter wheat system[J]. >Journal of Integrative Agriculture, 2021, 20(11): 3003-3011.
No Suggested Reading articles found!