Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Post-anthesis dry matter production and leaf nitrogen distribution are associated with root-derived cytokinins gradient in rice
Kuanyu Zhu1, 2, Yuemei Xu1, 2, Zhiwei Sun1, 2, Yajun Zhang1, 2, Weiyang Zhang1, 2, Yunji Xu3, Junfei Gu1, 2, Hao Zhang1, 2, Zhiqin Wang1, 2#, Lijun Liu1, 2, Jianhua Zhang4, Jianchang Yang1, 2

1 Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China

2 Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China 

3 Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China

4 Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  调整叶片氮分布来匹配光梯度分布对于促进作物冠层干物质生产和提高氮利用效率至关重要。然而,有关根源细胞分裂素梯度与水稻叶片氮分布之间的关系及其对干物质生产的影响和潜在机制,知之甚少。本研究采用了2粳型氮高效品种(NEVs)和2粳型氮低效品种(NIVs种植于大田,且它们之间光消减系数(KL)差异较小,设置4个施氮量090180360 kg N ha−1水平。结果表明,在较低的施氮量0-180 kg N ha−1)下,与NIVs相比,NEVs在成熟具有高的地上部干物重、产量和植株内在氮利用率(IEN),但两类品种的总吸氮量接近。与NIVs相比,NEVs灌浆中前期,叶片中呈现出更的氮分布梯度,即较高的氮衰减系数(KN;较大的氮分布梯度在较低的施氮量下,促进了NEVs花后的合生产。此外,与NIVs相比,NEVs叶片中玉米素Z+玉米素核苷(ZR)梯度较大(即上部叶与叶之间的Z+ZR水平比值高)、下部叶中输出和根中装载细胞分裂素的关键基因表达水平较高以及上部叶中氮同化相关的酶活性也较强。相关分析和随机森林分析表明,Z+ZR梯度、KN干物质生产之间呈极显著正相关,并且较大的Z+ZR梯度促进了氮在下部叶片中的输出和上部叶片的同化,对KN干物质生产具有显著的贡献作用。 这一过程也与NEVs较高的根系活性密切相关,包括根系氧化、根中Z+ZR含量和Z+ZR的装载能力。我们通过往根部浇灌根系活性促进和抑制剂验证了这一结果。有趣的是,在施氮量为360 kg N ha−1时,NEVsNIVs都展现出无差异的植物性状且达到了超高产水平(产量超过10.5 t ha−1),但两类品种的IEN非常低。总之水稻叶片中较高的Z+ZR梯度可以提高KN干物质生产需要保持较高的根系活力,进而获得高产和氮高效利用今后需要进一步探索和开发减氮栽培措施以实现氮高效水稻品种的超高产潜力。

Abstract  Aligning leaf nitrogen (N) distribution to match the light gradient is crucial for maximizing canopy dry matter production (DMP) and improving N utilization efficiency.  However, the relationship between the gradient of root-derived cytokinins and N distribution in rice leaves, along with its impact on DMP and the underlying mechanisms, remains poorly understood.  A two-year field experiment was conducted using two japonica N-efficient varieties (NEVs) and two japonica N-inefficient varieties (NIVs) under four different N rates (0, 90, 180 and 360 kg N ha1). These selected varieties exhibited similar values in the coefficient of light extinction (KL).  Results showed that, at lower N rates (0-180 kg N ha−1), the NEVs exhibited greater dry matter weight at maturity, higher grain yield and improved internal N use efficiency (IEN), compared to the NIVs, despite possessing comparable total N uptake.  Compared with the NIVs, the NEVs exhibited a more pronounced nitrogen distribution gradient in leaves, as indicated by the coefficient of nitrogen extinction (KN) values during the middle and early grain filling stages.  This enhanced gradient led to improved coordination between light and nitrogen, resulting in greater photosynthetic production, particularly at lower N rates. Furthermore, the NEVs demonstrated a larger gradient of zeatin (Z)+zeatin riboside (ZR) in leaves (i.e., higher ratios of Z+ZR levels between upper and lower leaves), enhanced expression levels of genes related to N export in lower leaves and Z+ZR loading in root, respectively, elevated enzymes activities related to N assimilation in upper leaves, in relative to the NIVs.  Correlation and random forest analyses demonstrated a strong positive correlation between Z+ZR gradient, KN, and DMP, and the gradient facilitated the export of N from lower leaves and its assimilation in upper leaves, contributing significantly to both KN and DMP.  This process was closely linked to root activity, including root oxidation activity, root Z+ZR content, and Z+ZR loading capacity, as confirmed by applying an inhibitor or a promoter of cytokinins biosynthesis to roots.  Interestingly, at the N rate of 360 kg N ha−1, both NEVs and NIVs showed indistinguishable plant traits, achieving a super high-yielding level (over 10.5 t ha−1) but with remarkably low IEN.  The results suggest that increasing Z+ZR gradient can improve KN and DMP, where it needs to maintain higher root activity, thus leading to high yield and high IEN.  Further research is needed to explore and develop cultivation practices with reduced N to unlock the super high-yielding potential of the NEVs.
Keywords:  rice (Oryza       sativa       L.)       grain yield              dry matter production              cytokinins gradient              N distribution              internal N use efficiency  
Online: 12 March 2024  
About author:  Kuan-yu Zhu, E-mail: Tel/Fax: +86-514-87979317, E-mail: kyzhu@yzu.edu.cn; #Correspondence Zhiqin Wang, Tel/Fax: +86-514-87979317, E-mail: zqw@yzu.edu.cn

Cite this article: 

Kuanyu Zhu, Yuemei Xu, Zhiwei Sun, Yajun Zhang, Weiyang Zhang, Yunji Xu, Junfei Gu, Hao Zhang, Zhiqin Wang, Lijun Liu, Jianhua Zhang, Jianchang Yang. 2024. Post-anthesis dry matter production and leaf nitrogen distribution are associated with root-derived cytokinins gradient in rice. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.02.010

Anten N P R, Miyazawa K, Hikosaka K, Nagashima H, Hirose T. 1998. Leaf nitrogen distribution in relation to leaf age and photon flux density in dominant and subordinate plants in dense stands of a dicotyledonous herb. Oecologia, 113, 314-324.

Anten N P R, Schieving F, Werger M J A. 1995. Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono-and dicotyledonous species. Oecologia, 101, 504–513.

Archontoulis S V, Vos J, Yin X, Bastiaans L, Danalatos N G, Struik P C. 2011. Temporal dynamics of light and nitrogen vertical distributions in canopies of sunflower, kenaf and cynara. Field Crops Research, 122, 186-198.

Bertheloot J, Martre P, Andrieu B. 2008. Dynamics of light and nitrogen distribution during grain filling within wheat canopy. Plant Physiology, 148, 1707–1720.

Borrell A, Hammer G, Van Oosterom E. 2001. Stay-green: A consequence of the balance between supply and demand for nitrogen during grain filling? Annals of Applied Biology, 138, 91–95.

Che S, Zhao B, Li Y, Yuan L, Li W, Lin Z, Hu S, Shen B. 2015. Review grain yield and nitrogen use efficiency in rice production regions in China. Journal of Integrative Agriculture, 14, 2456-2466.

Chen H, Sun Y, Xie W, Wu Q, Chi D, Yu G, Dai J, Zhang M, Wang C, Tang Z. 2021. Use of clinoptilolite to enhance rice sink–source traits and water productivity under alternate wet–dry irrigation. Journal of Soil Science and Plant Nutrition, 21, 3555–3566.

Chu G, Chen S, Xu C, Wang D, Zhang X. 2019. Agronomic and physiological performance of indica/japonica hybrid rice cultivar under low nitrogen conditions. Field Crops Research, 243, 107625.

Chu G, Chen T, Chen S, Xu C, Wang D, Zhang X. 2018. Agronomic performance of drought-resistance rice cultivars grown under alternate wetting and drying irrigation management in southeast China. Crop Journal6, 482–494.

Fan T, Yang W, Zeng X, Xu X, Xu Y, Fan X, Luo M, Tian C, Xia K, Zhang M. 2020. A rice autophagy gene OsATG8b is involved in nitrogen remobilization and control of grain quality. Frontiers in Plant Science, 11, 588.

Fu J, Huang Z, Wang Z, Yang J, Zhang J. 2011. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Research123, 170–182.

Gallagher J N, Biscoe P V. 1978. Radiation absorption, growth and yield of cereals. Journal of Agronomy and Crop Science, 191, 47-60.

Gu J, Li Z, Mao Y, Struik P, Zhang H, Liu L, Wang Z, Yang J. 2018. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Science274, 320–331.

Gu J, Zhou Z, Li Z, Chen Y, Wang Z, Zhang H. 2017a. Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. Field Crops Research200, 58–70.

Gu J, Zhou Z, Li Z, Zhou Q, Yu C, Kong X, Liu L, Wang Z, Yang J. 2017b. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. Field Crops Research206, 74–85.

Havé M, Marmagne A, Chardon F, Masclaux-Daubresse C. 2017. Nitrogen remobilization during leaf senescence: Lessons from Arabidopsis to crops. Journal of Experimental Botany68, 2513–2529.

Hirose N, Takei K, Kuroha T, Sakakibara H. 2008. Regulation of cytokinin biosynthesis, compartmentalization and translocation. Journal of Experimental Botany59, 75–83.

Hirose T, Bazzaz F A. 1998. Trade-off between light-and nitrogen-use efficiency in canopy photosynthesis. Annals of Botany82, 195–202.

Hirose T, Werger M J A. 1987. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia72, 520–526.

Ho S L, Tong W F, Yu S M. 2000. Multiple mode regulation of a cysteine proteinase gene expression in rice. Plant Physiology122, 57–66.

Holst R, Yu X, Grün C. 2013. Climate change, risk and grain yields in China. Journal of Integrative Agriculture, 12, 1279–1291.

Huang L, Li X, Zhang Y, Fahad S, Wang F. 2022. dep1 improves rice grain yield and nitrogen use efficiency simultaneously by enhancing nitrogen and dry matter translocation. Journal of Integrative Agriculture, 21, 3185-3198.

Kudo T, Kiba T, Sakakibara H. 2010. Metabolism and long-distance translocation of cytokinins. Journal of Integrative Plant Biology, 52, 53–60.

Lacombe B, Achard P. 2016. Long-distance transport of phytohormones through the plant vascular system. Current Opinions in Plant Biology, 34, 1–8.

Li H, Hu B, Chu C. 2017. Nitrogen use efficiency in crops: Lessons from Arabidopsis and rice. Journal of Experimental Botany, 68, 2477–2488.

Liu G, Hou P, Xie R, Ming B, Wang K, Liu W, Yang Y, Xu W, Chen J, Li S. 2019. Nitrogen uptake and response to radiation distribution in the canopy of high-yield maize. Crop Science, 59, 1236–1247.

Liu T, Pan Y, Lu Z, Ren T, Lu J. 2020. Canopy light and nitrogen distribution are closely related to nitrogen allocation within leaves in Brassica napus L. Field Crops Research, 258, 107958.

Liu Y, Liu W W, Li L, Francis F, Wang X F. 2023. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection. Journal of Integrative Agriculture, 22, 1750-1762.

Liu Z H, Qiu R J, Liu C W. 2023. Determination of general solar radiation model based on sunshine percentage in reference crop evapotranspiration estimation. Water Saving Irrigation, 80, 88–95. (in Chinese)

Makino A, Mae T, Ohira K. 1985. Photosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase in rice leaves from emergence through senescence. Quantitative analysis by carboxylation/oxygenation and regeneration of ribulose 1,5-bisphosphate. Planta, 166, 414–420.

McIntyre K E, Bush D R, Argueso C T. 2021. Cytokinin regulation of source-sink relationships in plant-pathogen interactions. Frontiers Plant Science, 12, 677585.

Meng T, Wei H, Li X, Dai Q. 2018. A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crops Research, 228, 135–146.

Ninan A S, Grant J, Song J, Jameson P. 2019. Expression of genes related to sugar and amino acid transport and cytokinin metabolism during leaf development and senescence in Pisum sativum L. Plants, 8, 76.

Pan X, Welti R, Wang X. 2010. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nature Protocols5, 986-992.

Pao Y C, Chen T W, Moualeu-Ngangue D P, Stützel H. 2019. Environmental triggers for photosynthetic protein turnover determine the optimal nitrogen distribution and partitioning in the canopy. Field Crops Research, 70, 2419–2434.

Peng S, Buresh R J, Huang J, Yang J, Zou Y, Zhong X, Wang G, Zhang F. 2006. Strategies for overcoming low agronomic nitrogen use efficiency in irrigate-d rice systems in China. Field Crops Research, 96, 37–47.

Ramasamy S, Ten Berge H F M, Purushothaman S. 1997. Yield formation in rice in response to drainage and nitrogen application. Field Crops Research, 51, 65–82.

Riaz A, Alqudah A M, Kanwal F, Pillen K, Ye L Z, Dai F, Zhang G P. 2023. Advances in studies on the physiological and molecular regulation of barley tillering. Journal of Integrative Agriculture, 22, 1-13.

Sakakibara H. 2006. Cytokinins: activity, biosynthesis, and translocation. Annual Review of Plant Biology, 57, 431-449.

Sakakibara H. 2021. Cytokinin biosynthesis and transport for systemic nitrogen signaling. Plant Journal, 105, 421–430.

Singh S, Singh A, Nandi A K. 2016. The rice OsSAG12-2 gene codes for a functional protease that negatively regulates stress-induced cell death. Journal of Biosciences41, 445–453.

Song J, Jiang L, Jameson P E. 2015. Expression patterns of Brassica napus genes implicate IPT, CKX, sucrose transporter, cell wall invertase, and amino acid permease gene family members in leaf, flower, silique, and seed development. Journal of Experimental Botany, 66, 5067–5082.

Wang F, Peng S. 2017. Yield potential and nitrogen use efficiency of China’s super rice. Journal of Integrative Agriculture, 16, 1000–1008.

Wang W, Hao Q, Wang W, Li Q, Chen F, No F, Wang Y, Fu D, Wu J, Wang W. 2019. The involvement of cytokinin and nitrogen metabolism in delayed flag leaf senescence in a wheat stay-green mutant, tasg1. Plant Science278, 70–79.

Wang X Y, Yang G D, Xu L, Xiang H S, Yang C, Wang F, Peng S B. 2023. Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in central China. Journal of Integrative Agriculture, 22, 1009-1020.

Wei H, Meng T, Li X, Dai Q, Zhang H, Yin X. 2018. Sink-source relationship during rice grain filling is associated with grain nitrogen concentration. Field Crops Research, 215, 23–38.

Xing Y, Jiang W, He X, Fiaz S, Ahmad S, Lei X, Wang W, Wang Y, Wang X. 2019. A review of nitrogen translocation and nitrogen use efficiency. Journal of Plant Nutrition, 42, 2624–2641.

Xue Y, Duan H, Liu L, Wang Z, Yang J, Zhang J. 2013. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Science, 53, 271–284.

Yan X X, Liu X Y, Hong C, & Zhao M Q. 2022. The roles of microRNAs in regulating root formation and growth in plants. Journal of Integrative Agriculture, 21, 901-916.

Yang J, Zhang J. 2010. Crop management techniques to enhance harvest index in rice. Journal of Experiment Botany, 61, 3177–3189.

Yang J, Zhang J. 2023. Simultaneously improving grain yield and water and nutrient use efficiencies by enhancing the harvest index in rice. Crop Environment, 2, 157-164.

Yang J C, Zhan M F, Zhu K Y. 2018. Physiological bases for the formation of green traits in rice. Chinese Bulletin of Life Science10, 1137–1145. (in Chinese)

Yin W, Xiao Y, Niu M, Meng W, Li L, Zhang X, Liu D, Zhang G, Qian Y, Sun Z, Huang R, Wang S, Liu C, Chu C, Tong H. 2020. ARGONAUTE2 enhances grain length and salt tolerance by activating BIG GRAIN3 to modulate cytokinin distribution in rice. Plant Cell, 32, 2292–2306.

Yin X, Van Laar H H. 2005. Crop Systems Dynamics: An Ecophysiological Simulation Model of Genotype-By-Environment Interactions. Wageningen Academic Publishers, Wageningen, The Netherlands.

Yoshida S. 1976. Laboratory Manual for Physiological Studies of Rice. International Rice Research Institute, Philippines. pp. 61–66.

Yu N, Ren B, Zhao B, Liu P, Zhang J. 2022. Optimized agronomic management practices narrow the yield gap of summer maize through regulating canopy light interception and nitrogen distribution. European Journal of Agronomy, 137, 126520.

Yuan L. 2017. Progress in super-hybrid rice breeding. Crop Journal5, 100–102.

Yuan S, Cassman K G, Huang J, Peng S, Grassini P. 2019. Can ratoon cropping improve resource use efficiencies and profitability of rice in central China? Field Crops Research, 234, 66–72.

Yue K, Li L L, Xie J H, Effah Z, Anwar S, Wang L L, Meng H F, Li L Z. 2023. Integration of microRNAs and mRNAs reveals the hormones synthesis and signal transduction of maize under different N rates. Journal of Integrative Agriculture, 22, 2673–2686.

Zang Y, Yao Y, Xu Z, Wang B, Mao Y, Wang W, Zhang W, Zhang H, Liu L, Wang Z, Liang G, Yang J, Zhou Y, Gu J. 2022. The relationships among “STAY-GREEN” trait, post-anthesis assimilate remobilization, and grain yield in rice (Oryza sativa L.). International Journal of Molecular Science, 23, 13668.

Zhang H, Tan G, Yang L, Yang J, Zhang J, Zhao B. 2009. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice. Plant Physiology and Biochemistry, 47, 195-204.

Zhang H, Jing W, Zhao B, Wang W, Xu Y, Zhang W, Gu J, Liu L, Wang Z, Yang J. 2021. Alternative fertilizer and irrigation practices improve rice yield and resource use efficiency by regulating source-sink relationships. Field Crops Research, 265, 108124.

Zhang W, Huang H, Zhou Y, Zhu K, Wu Y, Xu Y, Wang W, Zhang H, Gu J, Xiong F, Wang Z, Liu L, Yang J. 2023. Brassinosteroids mediate moderate soil-drying to alleviate spikelet degeneration under high temperature during meiosis of rice. Plant, Cell & Environment, 46, 1340-1362.

Zhang W, Zhou Y, Li C, Zhu K, Xu Y, Wang W, Li L, Zhang H, Gu J, Wang Z, Zhang J, Yang J. 2022. Post-anthesis moderate soil-drying facilitates source-to-sink remobilization of nitrogen via redistributing cytokinins in rice. Field Crops Research, 288, 108692.

Zhao J, Yu N, Ju M, Fan B, Zhang Y, Zhu E, Zhang M, Zhang K. 2019. ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice. Journal of Experiment Botany70, 6277–6291.

Zhou Q, Yuan R, Zhang W Y, Gu J F, Liu L J, Zhang H, Wang Z Q, Yang J C. 2023. Grain yield, nitrogen use efficiency and physiological performance of indica/japonica hybrid rice in response to various nitrogen rates. Journal of Integrative Agriculture, 22, 63-79.

Zhu K Y. 2021. Characteristics and mechanism of the Japonica rice varieties differing in responses to nitrogen rates. Ph D thesis, Yangzhou University, China. (in Chinese)

Zhu K Y, Ren W C, Yan J Q, Zhang Y J, Zhang W Y, Xu Y J, Wang Z Q, Yang J C. 2022a. Grain yield and nitrogen use efficiency are increased by exogenous cytokinin application through the improvement in root physiological traits of rice. Plant Growth Regulation97, 157–169.

Zhu K Y, Yan J Q, Shen Y, Zhang W Y, Xu Y J, Wang Z Q, Yang J C. 2022b. Deciphering the morpho–physiological traits for high yield potential in nitrogen efficient varieties (NEVs): A japonica rice case study. Journal Integrative Agriculture, 21, 947–963.

Zhu K Y, Zhou Q, Shen Y, Yan J Q, Xu Y J, Wang Z Q, Yang J C. 2020. Agronomic and physiological performance of an indica–japonica rice variety with a high yield and high nitrogen use efficiency. Crop Science, 60, 1556–1568. 

No related articles found!
No Suggested Reading articles found!