Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
qMrdd3, a major QTL conferring durable resistance to maize rough dwarf disease

Qingkang Wang1*, Weixiao Zhang2*, Suining Deng2*, Fei Ni1, Wei Xu1, Qingzhi Liu1, Yuqiang Diao1, Yongzhong Zhang1, Mingliang Xu2#, Baoshen Liu1#

1 College of Agronomy, Shandong Agricultural University, Tai’an 271018, China

2 State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding/Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China

 Highlights 

The major QTL-qMrdd3 on chromosome 2 explained 12.71% of the total phenotypic variations and reduced DSI by 26.36–34.47% across multiple environments.

Fine-mapping delimited qMrdd3 to a 227.7-kb region containing five genes, including Zm00001d002441, which was significantly upregulated in the resistant line NIL-R after RBSDV infection.

Two co-segregating markers enabled efficient introgression of qMrdd3 into susceptible lines Zheng58 and Chang 7-2, reducing DSI by 26.47–38.84%, highlighting its potential for accelerating MRDD-resistant breeding.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米粗缩病(Maize rough dwarf disease, MRDD由斐济病毒属病毒(Fijivirus)引起的病毒性病害,对全球玉米生产构成重大威胁。我们利用抗亲本CML199和感病亲本郑58构建的重组自交系(Recombinant inbred line, RIL)群体,鉴定到三个玉米粗缩病抗性数量性状基因座(Quantitative trait loci, QTLs分别在第269号染色体上,解释了12.71%5.89%11.04%的表型变异。其中,位于第2号染色体上的主效基因座qMrdd3表现为不完全显性,在不同环境下能提高26.36–34.47%的抗性。通过精细定位,我们qMrdd3限定在227.7 kb的区间内,该区间包含5个候选基因其中,病毒(水稻黑条矮缩病毒,Rice black-streaked dwarf virus, RBSDV侵染抗病近等基因系(Resistant near-isogenic line, NIL-R后,Zm00001d002441 特异性上调表达。此外,我们还开发了两个共分离标记,于高效的标记辅助选择。将qMrdd3导入感病自交系郑58和昌7-2后,抗性分别提高了38.84%26.47%。本研究通过QTL解析、优良种质创制和标记辅助育种,为玉米粗缩病抗性育种提供了宝贵的遗传资源。



Abstract  

Maize rough dwarf disease (MRDD), caused by Fijivirus, poses a significant threat to global maize production.  Using a recombinant inbred line (RIL) population derived from the resistant parent CML199 and the susceptible parent Zheng58, we identified three MRDD resistance QTLs on chromosomes 2, 6, and 9, accounting for 12.71, 5.89, and 11.04% of the total phenotypic variation, respectively.  Among them, the major locus qMrdd3 on chromosome 2 demonstrated incomplete dominance, conferring a resistance enhancement of 26.36–34.47% across diverse environments.  Fine-mapping refined qMrdd3 to a 227.7-kb interval containing five candidate genes, among which Zm00001d002441 was specifically upregulated in the resistant near-isogenic line (NIL-R) following RBSDV infection.  Additionally, two co-segregating markers were developed to facilitate efficient marker-assisted selection.  Introgression of qMrdd3 into Zheng58 and Chang7-2 enhanced field resistance by 38.84 and 26.47%, respectively.  This study provides a valuable genetic resource for MRDD resistance breeding through QTL dissection, elite germplasm development, and marker-assisted breeding.

Keywords:  Zea mays       MRDD       QTL       Fine-mapping       MAS  
Online: 05 July 2025  
Fund: 

This work was funded by the Key R&D Program of Shandong Province (2022LZGC006 and 2022LZGCQY017), the Natural Science Foundation of China (31971950), and the Innovative Technology Guidance Program of Shandong, China (Central Government Guides Local Science and Technology Development Funds) (YDZX2023063).

About author:  #Correspondence Mingliang Xu, Tel: +86-10-62733166, E-mail: mxu@cau.edu.cn; Baoshen Liu, Tel: +86-538-8242226, E-mail: liubs@sdau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Qingkang Wang, Weixiao Zhang, Suining Deng, Fei Ni, Wei Xu, Qingzhi Liu, Yuqiang Diao, Yongzhong Zhang, Mingliang Xu, Baoshen Liu. 2025. qMrdd3, a major QTL conferring durable resistance to maize rough dwarf disease. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.07.004

Abendroth L J, Elmore R W, Boyer M J, Marlay S K. 2011. Corn Growth and Development. Iowa State University, Ames, Iowa.

Arneodo J D, Guzmán F A, Conci L R, Laguna I G, Truol G. 2002. Transmission features of Mai de Río Cuarto virus in wheat by its planthopper vector Delphacodes kuscheli. Annals of Applied Biology141, 195–200.

Bai F W, Yan J, Qu Z C, Zhang H W, Xu J, Ye M M, Shen D L. 2002. Phylogenetic analysis reveals that a dwarfing disease on different cereal crops in China is due to rice black streaked dwarf virus (RBSDV). Virus Genes, 25, 201–206.

Broman K W, Wu H, Sen Ś, Churchill G A. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics19, 889–890.

Caciagli P, Casetta A. 1986. Maize rough dwarf virus (Reoviridae) in its planthopper vector Laodelphax striatellus in relation to vector infectivity. Annals of Applied Biology109, 337–344.

Chen G, Zhang B, Ding J, Wang H, Deng C, Wang J, Yang Q, Pi Q, Zhang R, Zhai H, Dong J, Huang J, Hou J, Wu J, Que J, Zhang F, Li W, Min H, Tabor G, Li B, Liu X, Zhao J, Yan J, Lai Z. 2022. Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora. Nature Communications, 13, 4392.

Cheng Z, Li S, Gao R, Sun F, Liu W, Zhou J, Wu J, Zhou X, Zhou Y. 2013. Distribution and genetic diversity of Southern rice black-streaked dwarf virus in China. Virology Journal, 10, 307.

Collins C A, LaMontagne E D, Anderson J, Ekanayake G, Clarke A S, Bond L N, Salamango D J, Cornish P V, Peck S C, Heese A. 2020. EPSIN1 modulates the plasma membrane abundance of FLAGELLIN SENSING2 for effective immune responses. Plant Physiology182, 1762–1775.

Deng S, Jiang S, Liu B, Zhong T, Liu Q, Liu J, Liu Y, Yin C, Sun C, Xu M. 2024. ZmGDIα-hel counters the RBSDV-induced reduction of active gibberellins to alleviate maize rough dwarf virus disease. Nature Communications15, 7576.

Dovas C I, Eythymiou K, Katis N I. 2004. First report of Maize rough dwarf virus (MRDV) on maize crops in Greece. Plant Physiology53, 238–238.

Fang S, Yu J, Feng J, Han C, Li D, Liu Y. 2001. Identification of rice black-streaked dwarf fijivirus in maize with rough dwarf disease in China. Archives of Virology146, 167–170.

Huang Q, Li W, Wang Z, He K. 2011. Research situation and prospect of maize rough dwarf disease. Journal of Maize Sciences19, 140–143.

Huth W, Maurath R, Imgraben H, Schröder M. 2007. Maize rough dwarf virus for the first time detected in Germany. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes59, 173–175.

Kang B C, Yeam I, Jahn M M. 2005. Genetics of plant virus resistance. Annual Review of Phytopathology, 43, 581–621.

Lenardon S L, March G J, Nome S F, Ornaghi J A. 1998. Recent outbreak of “Mal de Río Cuartovirus on corn in Argentina. Plant Disease, 82, 448.

Li G, Xu Z, Wang J, Mu C, Zhou Z, Li M, Hao Z, Zhang D, Yong H, Han J, Li X, Zhao J, Weng J. 2024. Gene pyramiding of ZmGLK36 and ZmGDIα-hel for rough dwarf disease resistance in maize. Molecular Breeding44, 25.

Li R, Song W, Wang B, Wang J, Zhang D, Zhang Q, Li X, Wei J, Gao Z. 2018. Identification of a locus conferring dominant resistance to maize rough dwarf disease in maize. Scientific Reports8, 3248.

Li Y, Tao X, Yao L, Tang S, Zhang X, Tong L, Liu Q, Song T, Zhang D, Cao Y, Zhong T, Xu M. 2025. qRfv2, a quantitative resistance locus against Fusarium ear rot in maize. The Crop Journal13, 41–50.  

Liu C, Hua J, Liu C, Zhang D, Hao Z, Yong H, Xie C, Li M, Zhang S, Weng J, Li X. 2016. Fine mapping of a quantitative trait locus conferring resistance to maize rough dwarf disease. Theoretical and Applied Genetics129, 2333–2342.

Liu Q, Deng S, Liu B, Tao Y, Ai H, Liu J, Zhang Y, Zhao Y, Xu, M. 2020. A helitron-induced RabGDIα variant causes quantitative recessive resistance to maize rough dwarf disease. Nature Communications11, 495.

Luan J, Wang F, Li Y, Zhang B, Zhang J. 2012. Mapping quantitative trait loci conferring resistance to rice black-streaked virus in maize (Zea mays L.). Theoretical and Applied Genetics125, 781–791.

Lv X, Song M, Cheng Z, Yang X, Zhang X, Zhou Z, Zhang C, Zheng L, Li Y, Lei K, Wang H, Du W, Li F, Li X, Weng J. 2020. qGLS1.02, a novel major locus for resistance to gray leaf spot in maize. Molecular Breeding40, 59.

Milne R G, Lovisolo O. 1977. Maize rough dwarf and related viruses. Advances in Virus Research, 21, 267–341.

Di Renzo M A, Bonamico N C, Díaz D D, Salerno J C, Ibañez M M, Gesumaria J J. 2002. Inheritance of resistance to Mal de Río Cuarto (MRC) disease in Zea mays (L.). The Journal of Agricultural Science139, 47–53.

Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols3, 1101–1108.

Shi L, Weng J, Liu C, Song X, Miao H, Hao Z, Xie C, Li M, Zhang D, Bai L, Pan G, Li X, Zhang S. 2013. Identification of promoter motifs regulating ZmeIF4E expression level involved in maize rough dwarf disease resistance in maize (Zea mays L.). Molecular Genetics and Genomics288, 89–99.

Soosaar J L, Burch-Smith T M, Dinesh-Kumar S P. 2005. Mechanisms of plant resistance to viruses. Nature Reviews Microbiology3, 789–798.

Tao Y, Liu Q, Wang H, Zhang Y, Huang X, Wang B, Lai J, Ye J, Liu B, Xu M. 2013. Identification and fine-mapping of a QTL, qMrdd1, that confers recessive resistance to maize rough dwarf disease. BMC Plant Biology13, 145.

Wang B, Hou M, Shi J, Ku L, Song W, Li C, Ning Q, Li X, Li C, Zhao B, Zhang R, Xu H, Bai Z, Xia Z, Wang H, Kong D, Wei H, Jing Y, Dai Z, Wang H H, et al. 2023. De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis. Nature Genetics55, 312–323.

Wang R, Du K, Jiang T, Di D, Fan Z, Zhou T. 2022. Comparative proteomic analyses of susceptible and resistant maize inbred lines at the stage of enations forming following infection by rice black-streaked dwarf virus. Viruses14, 2604.

Wang X, Yang Q, Dai Z, Wang Y, Zhang Y, Li B, Zhao W, Hao J. 2019. Identification of QTLs for resistance to maize rough dwarf disease using two connected RIL populations in maize. PLoS ONE14, e0226700.

Xu L, Zhang Y, Shao S, Chen W, Tan J, Zhu M, Zhong T, Fan X, Xu M. 2014. High-resolution mapping and characterization of qRgls2, a major quantitative trait locus involved in maize resistance to gray leaf spot. BMC Plant Biology14, 230.

Xu Z, Hua J, Wang F, Cheng Z, Meng Q, Chen Y, Han X, Tie S, Liu C, Li X, Wang Z, Weng J. 2020. Marker-assisted selection of qMrdd8 to improve maize resistance to rough dwarf disease. Breeding Science, 70, 183–192.

Xu Z, Wang F, Zhou Z, Meng Q, Chen Y, Han X, Tie S, Liu C, Hao Z, Li M, Zhang D, Han J, Wang Z, Li X, Weng J. 2022. Identification and fine-mapping of a novel QTL, qMrdd2, that confers resistance to maize rough dwarf disease. Plant Disease, 106, 65–72.

Xu Z, Zhou Z, Cheng Z, Zhou Y, Wang F, Li M, Li G, Li W, Du Q, Wang K, Lu X, Tai Y, Chen R, Hao Z, Han J, Chen Y, Meng Q, Kong X, Tie S, Mu C, et al. 2023. A transcription factor ZmGLK36 confers broad resistance to maize rough dwarf disease in cereal crops. Nature Plants9, 1720–1733.

Yang Q, Balint-Kurti P, Xu M. 2017. Quantitative disease resistance: Dissection and adoption in maize. Molecular Plant10, 402–413.

Yang Q, Zhang D, Xu M. 2012. A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny. Journal of Integrative Plant Biology54, 228–237.

Yang Y, Wang A, Wang M, Zhang Y, Zhang J, Zhao M. 2022. ATP-binding cassette transporters ABCF2 and ABCG9 regulate rice black-streaked dwarf virus infection in its insect vector, Laodelphax striatellus (Fallén). Bulletin of Entomological Research, 112, 327–334.

Yin X, Xu F F, Zheng F Q, Li X D, Liu B S, Zhang C Q. 2011. Molecular characterization of segments S7 to S10 of a southern rice black-streaked dwarf virus isolate from maize in northern China. Virologica Sinica26, 47–53.

Yue R, Sun Q, Ding J, Li W, Li W, Zhao M, Lu S, Zeng T, Zhang H, Zhao S, Tie S, Meng Z. 2022. Functional analysis revealed the involvement of ZmABCB15 in resistance to rice black-streaked dwarf virus infection. BMC Plant Biology22, 484.

Zhang H, Chen J, Lei J, Adams M J. 2001. Sequence analysis shows that a dwarfing disease on rice, wheat and maize in China is caused by rice black-streaked dwarf virus. European Journal of Plant Pathology107, 563–567.

Zhang J, Dong Y, Wang M, Wang H, Yi D, Zhou Y, Xu Q. 2021. MicroRNA-315-5p promotes rice black-streaked dwarf virus infection by targeting a melatonin receptor in the small brown planthopper. Pest Management Science77, 3561–3570. 

Zhang W, Deng S, Zhao Y, Xu W, Liu Q, Zhang Y, Ren C, Cheng Z, Xu M, Liu B. 2021. qMrdd2, a novel quantitative resistance locus for maize rough dwarf disease. BMC Plant Biology21, 307.

Zhao M, Liu S, Pei Y, Jiang X, Jaqueth J S, Li B, Han J, Jeffers D, Wang J, Song X. 2022. Identification of genetic loci associated with rough dwarf disease resistance in maize by integrating GWAS and linkage mapping. Plant Science315, 111100.

Zuo W, Chao Q, Zhang N, Ye J, Tan G, Li B, Xing Y, Zhang B, Liu H, Fengler K A, Zhao J, Zhao X, Chen Y, Lai J, Yan J, Xu M. 2015. A maize wall-associated kinase confers quantitative resistance to head smut. Nature Genetics47, 151–157.

[1] Yapeng Zhang, Wentao Cai, Qi Zhang, Qian Li, Yahui Wang, Ruiqi Peng, Haiqi Yin, Xin Hu, Zezhao Wang, Bo Zhu, Xue Gao, Yan Chen, Huijiang Gao, Lingyang Xu, Junya Li, Lupei Zhang. Integrated analyses of genomic and transcriptomic data reveal candidate variants associated with carcass traits in Huaxi cattle[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[2] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2857-2868.
[3] Shengzhong Zhang, Xiaohui Hu, Feifei Wang, Huarong Miao, Chu Ye, Weiqiang Yang, Wen Zhong, Jing Chen. Identification of QTLs for plant height and branching-related traits in cultivated peanut[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2511-2524.
[4] Bingyan Huang, Hua Liu, Yuanjin Fang, Lijuan Miao, Li Qin, Ziqi Sun, Feiyan Qi, Lei Chen, Fengye Zhang, Shuanzhu Li, Qinghuan Zheng, Lei Shi, Jihua Wu, Wenzhao Dong, Xinyou Zhang. Identification of oil content QTLs on Arahy12 and Arahy16, and development of KASP markers in cultivated peanut (Arachis hypogaea L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2096-2105.
[5] Xin Liu, Shuai Wang, Kang Zeng, Wenjing Li, Shenhao Wang, Sanwen Huang, Huasen Wang, Xueyong Yang. N-myristoyltransferase1 regulates biomass accumulation in cucumber (Cucumis sativus L.)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1754-1768.
[6] Tao Liu, Jianliang Wang, Jiayi Wang, Yuanyuan Zhao, Hui Wang, Weijun Zhang, Zhaosheng Yao, Shengping Liu, Xiaochun Zhong, Chengming Sun. Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1403-1423.
[7] Bing Han, Yicheng He, Jun Zhou, Yufei Wang, Lina Shi, Zhenrong Lin, Lu Yu, Wantong Zhang, Yiyi Geng, Xinqing Shao. Non-linear responses of the plant phosphorus pool and soil available phosphorus to short-term nitrogen addition in an alpine meadow[J]. >Journal of Integrative Agriculture, 2025, 24(3): 815-826.
[8] Ben Zhao, Anzhen Qin, Wei Feng, Xinqiang Qiu, Pingyan Wang, Haixia Qin, Yang Gao, Guojie Wang, Zhandong Liu, Syed Tahir Ata-Ul-Karim. Water deficit affects the nitrogen nutrition index of winter wheat under controlled water conditions[J]. >Journal of Integrative Agriculture, 2025, 24(2): 724-738.
[9] Guohao Han, Jing Wang, Hanwen Yan, Lijun Cao, Shiyu Liu, Xiuquan Li, Yilin Zhou, Wei Liu, Tiantian Gu, Zhipeng Shi, Hong Liu, Lihui Li, Diaoguo An. Development and molecular cytogenetic identification of a new wheat–rye 6RL ditelosomic addition and 1R (1B) substitution line with powdery mildew resistance[J]. >Journal of Integrative Agriculture, 2025, 24(1): 72-84.
[10] Mingming Wang, Jia Geng, Zhe Zhang, Zihan Zhang, Lingfeng Miao, Tian Ma, Jiewen Xing, Baoyun Li, Qixin Sun, Yufeng Zhang, Zhongfu Ni. Fine mapping and characterization of a major QTL for grain length, QGl.cau-2D.1, that has pleiotropic effects in synthetic allohexaploid wheat[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2911-2922.
[11] Zhenxiang Zhou, Paul C. Struik, Junfei Gu, Peter E. L. van der Putten, Zhiqin Wang, Jianchang Yang, Xinyou Yin. Quantifying source–sink relationships in leaf-color modified rice genotypes during grain filling[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2923-2940.
[12] Hui Fang, Xiuyi Fu, Hanqiu Ge, Mengxue Jia, Jie Ji, Yizhou Zhao, Zijian Qu, Ziqian Cui, Aixia Zhang, Yuandong Wang, Ping Li, Baohua Wang. Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2196-2210.
[13] Li Miao, Xiangyu Wang, Chao Yu, Chengyang Ye, Yanyan Yan, Huasen Wang.

What factors control plant height? [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1803-1824.

[14] Yingzhen Wang, Ying Wu, Xinlei Wang, Wangmei Ren, Qinyao Chen, Sijia Zhang, Feng Zhang, Yunzhi Lin, Junyang Yue, Yongsheng Liu.

Genome wide association analysis identifies candidate genes for fruit quality and yield in Actinidia eriantha  [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1929-1939.

[15] Keanning Li, Bingxing An, Mang Liang, Tianpeng Chang, Tianyu Deng, Lili Du, Sheng Cao, Yueying Du, Hongyan Li, Lingyang Xu, Lupei Zhang, Xue Gao, Junya LI, Huijiang Gao.

Prescreening of large-effect markers with multiple strategies improves the accuracy of genomic prediction [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1634-1643.

No Suggested Reading articles found!