Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1754-1768    DOI: 10.1016/j.jia.2024.01.013
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
N-myristoyltransferase1 regulates biomass accumulation in cucumber (Cucumis sativus L.)

Xin Liu1*, Shuai Wang2*, Kang Zeng2, Wenjing Li2, 3, Shenhao Wang2, Sanwen Huang1#, Huasen Wang3#, Xueyong Yang2#

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture/Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs/Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China

 Highlights 
● First identification of cucumber CsNMT1 as a critical regulator of plant biomass accumulation.
● Uncovered a new mechanism that plant biomass was regulated by lignin “Pool Strength”.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
植物生物量作为人工选择的重要农艺性状,有助于产量提升。近年来,调控生物量形成的机制已引起广泛关注,但很大程度上仍未知,需要进一步研究。本研究中,我们筛选获得生物量显著降低的黄瓜突变体材料minicuke, 并鉴定到控制该突变表型的关键候选基因N-肉豆蔻酰基转移酶1,为拟南芥NMT1的同源基因,因此将该基因命名为CsNMT1。利用CRISPR/Cas9基因编辑系统,验证了CsNMT1在黄瓜生物量调控中的重要生物学功能。接下来,通过转录组和代谢组联合分析发现,在minicikue突变体中,木质素生物合成的重要前体物质明显降低,参与木质素合成的关键基因显著下调,推测CsNMT1可能通过调控木质素合成进而影响生物量积累。研究结果证明了NMT1在调控植物生物量中的重要作用以及在提高葫芦科作物生物量方面的潜在应用价值。


Abstract  

Plant biomass is an important agronomic trait that has been subjected to intense human selection for yield improvement.  The underlying mechanism regulating biomass formation is currently gaining increasing attention, but it remains unexplored.  In this study, we isolated a cucumber (Cucumis sativus L.) minicuke mutant with remarkably reduced biomass.  The causative gene was identified as CsNMT1, a homologue of the Arabidopsis thaliana N-myristoyltransferase1.  Our clustered regularly interspaced shot palindromic repeat-based genome editing confirmed the key role of CsNMT1 in biomass regulation.  Multi-omics analyses integrating metabolomic and transcriptomic analyses revealed the suppression of a very early step of lignin biosynthesis and the corresponding down-regulation of genes involved in lignin biosynthesis in the minicikue mutant, suggesting an unexpected pathway for regulating biomass accumulation through lignin sink strength.  Our findings demonstrate the function of NMT1 in regulating plant biomass and its potential application value for biomass improvement in cucurbits.

Keywords:  cucumber       biomass        NMT1        lignin  
Received: 03 November 2023   Online: 09 January 2024   Accepted: 28 November 2023
Fund: 
This work was supported by the National Natural Science Foundation of China (32172606 to Dr. Xueyong Yang and 32302543 to Dr. Shuai Wang), the National Key Research and Development Program of China (2021YFF1000100), the Beijing Joint Research Program for Germplasm Innovation and New Variety Breeding (G20220628003-03), and the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP).  
About author:  Xin Liu, E-mail: lxnongkeyuan@126.com; Shuai Wang, E-mail: wangshuai03@caas.cn; #Correspondence Sanwen Huang, E-mail: huangsanwen@caas.cn; Huasen Wang, E-mail: whsych66@163.com; Xueyong Yang, E-mail: yangxueyong@caas.cn * These authors contributed equally to this study.

Cite this article: 

Xin Liu, Shuai Wang, Kang Zeng, Wenjing Li, Shenhao Wang, Sanwen Huang, Huasen Wang, Xueyong Yang. 2025. N-myristoyltransferase1 regulates biomass accumulation in cucumber (Cucumis sativus L.). Journal of Integrative Agriculture, 24(5): 1754-1768.

Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. 2012. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology30, 174–178.

Barros J, Dixon R A. 2020. Plant phenylalanine/tyrosine ammonia-lyases. Trends in Plant Science25, 66–79.

Barros J, Escamilla-Trevino L, Song L, Rao X, Serrani-Yarce J C, Palacios M D, Engle N, Choudhury F K, Tschaplinski T J, Venables B J, Mittler R, Dixon R A. 2019. 4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase. Nature Communications10, 1994.

Battle M, Bender M L, Tans P P, White J W C, Ellis J T, Conway T, Francey R J. 2000. Global carbon sinks and their variability. inferred from atmospheric O2 and δ13C. Science287, 2467–2470.

Besseau S, Hoffmann L, Geoffroy P, Lapierr C, Pollet B, Legrand M. 2007. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell19, 148–162.

Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology54, 519–546.

Boisson B, Giglione C, Meinnel T. 2003. Unexpected protein families including cell defense components feature in the N-myristoylome of a higher eukaryote. Journal of Biological Chemistry278, 43418–43429.

Bonawitz N D, Chapple C. 2010. The genetics of lignin biosynthesis: Connecting genotype to phenotype. Annual Review of Genetics, 44, 337–363.

Cass C L, Peraldi A, Dowd P F, Mottiar Y, Santoro N, Karlen S D, Bukhman Y V, Foster C E, Thrower N, Bruno L C, Moskvin O V, Johnson E T, Willhoit M E, Phutane M, Ralph J, Mansfield S D, Nicholson P, Sedbrook J C. 2015. Effects of PHENYLALANINE AMMONIA LYASE (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in BrachypodiumJournal of Experimental Botany66, 4317–4335.

Castrec B, Dian C, Ciccone S, Eber C L, Bienvenut W V, Le Caer J P, Steyaert J M, Giglione C, Meinnel T. 2018. Structural and genomic decoding of human and plant myristoylomes reveals a definitive recognition pattern. Nature Chemical Biology, 14, 671–679.

Che G, Zhang X. 2019. Molecular basis of cucumber fruit domestication. Current Opinion in Plant Biology47, 38–46.

Demura T, Ye Z H. 2010. Regulation of plant biomass production. Current Opinion in Plant Biology13, 298–303.

Dhakarey R, Yaritz U, Tian L. 2022. A Myb transcription factor, PgMyb308-like, enhances the level of shikimate, aromatic amino acids, and lignins, but represses the synthesis of flavonoids and hydrolyzable tannins, in pomegranate (Punica granatum L.). Horticulture Research9, uhac008.

Doebley J F, Gaut B S, Smith B D. 2006. The molecular genetics of crop domestication. Cell127, 1309–1321.

Elkind Y, Edwards R, Mavandad M, Hedrick S A, Ribak O, Dixon R A, Lamb C J. 1990. Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proceedings of the National Academy of Sciences of the United States of America87, 9057–9061.

Enquist B J, Niklas K J. 2002. Global allocation rules for patterns of biomass partitioning in seed plants. Science295, 1517–1520.

Fan W, Zhang Y, Wu Y, Zhou W, Yang J, Yuan L, Zhang P, Wang H. 2021. The H+-pyrophosphatase IbVP1 regulates carbon flux to influence the starch metabolism and yield of sweet potato. Horticulture Research8, 20.

Farazi T A, Waksman G, Gordon J I. 2001. The biology and enzymology of protein N-myristoylation. Journal of Biological Chemistry, 276, 39501–39504.

Feng Y, Zhang S, Li J, R Pei, Tian L, Qi J, Azam M, Agyenim-Boateng K G, Shaibu A S, Liu Y, Zhu Z, Li B, Sun J. 2023. Dual-function C2H2-type zinc-finger transcription factor GmZFP7 contributes to isoflavone accumulation in soybean. New Phytologist237, 1794–1809.

Fornalé S, Capellades M, Encina A, Wang K, Irar S, Lapierre C, Ruel K, Joseleaue J, Berenguera J, Puigdomenech P, Rigaua J, Caparros-Ruiza D. 2012. Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase. Molecular Plant5, 817–830.

Foyer C H, Paul M J. 2001. Source–sink relationships. eLS.

Fu R, Martin C, Zhang Y. 2018. Next-generation plant metabolic engineering, inspired by an ancient chinese irrigation system. Molecular Plant11, 47–57.

Gao F, Zhang H, Zhang W, Wang N, Zhang S, Chu C, Liu C. 2021. Engineering of the cytosolic form of phosphoglucose isomerase into chloroplasts improves plant photosynthesis and biomass. New Phytologist231, 315–325.

Hemsley P A. 2015. The importance of lipid modified proteins in plants. New Phytologist205, 476–489.

Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M. 2004. Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell16, 1446–1465.

Hu S, Kamimura N, Sakamoto S, Nagano S, Takata N, Liu S, Goeminne G, Vanholme R, Uesugi M, Yamamoto M, Hishiyama S, Kim H, Boerjan W, Ralph J, Masa E, Mitsuda N, Kajita S. 2022. Rerouting of the lignin biosynthetic pathway by inhibition of cytosolic shikimate recycling in transgenic hybrid aspen. The Plant Journal110, 358–376.

Hulsmans S, Rodriguez M, De Coninck B, Rolland, F. 2016. The SnRK1 energy sensor in plant biotic interactions. Trends in Plant Science21, 648–661.

Jeong Y J, An C H, Woo S G, Park J H, Lee K W, Lee S H, Rim Y, Jeong H J, Ryu Y B, Kim C Y. 2016. Enhanced production of resveratrol derivatives in tobacco plants by improving the metabolic flux of intermediates in the phenylpropanoid pathway. Plant Molecular Biology92, 117–129.

Jones L, Ennos A R, Turner S R. 2001. Cloning and characterization of irregular xylem4 (irx4): A severely lignin-deficient mutant of ArabidopsisThe Plant Journal26, 205–216.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods12, 357–360.

Kumar M, Campbell L, Turner S. 2016. Secondary cell walls: Biosynthesis and manipulation. Journal of Experimental Botany67, 515–531.

Lai L, Ruan J, Xiao C, Yi P. 2023. The putative myristoylome of Physcomitrium patens reveals conserved features of myristoylation in basal land plants. Plant Cell Reports42, 1107–1124.

Li X, Bonawitz N D, Weng J K, Chapple C. 2010. The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids. Plant Cell22, 1620–1632.

Li X, Weng J K, Chapple C. 2008. Improvement of biomass through lignin modification. The Plant Journal54, 569–581.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods25, 402–408.

De Meester B, de Vries L, Özparpucu M, Gierlinger N, Corneillie S, Pallidis A, Goeminne G, Morreel K, Bruyne M D, Rycke R D, Vanholme R, Boerjan W. 2018. Vessel-specific reintroduction of CINNAMOYL-COA REDUCTASE1 (CCR1) in dwarfed ccr1 mutants restores vessel and xylary fiber integrity and increases biomass. Plant Physiology176, 611–633.

Meinnel T, Dian C, Giglione C. 2020. Myristoylation, an ancient protein modification mirroring eukaryogenesis and evolution. Trends in Biochemical Sciences45, 619–632.

Miller J E, Geadelmann J L, Marten G C. 1983. Effect of the brown midrib-allele on maize silage quality and yield. Crop Science23, 493–496.

Miranda S, Piazza S, Nuzzo F, Li M, Lagrèze J, Mithöfer A, Cestaro A, Tarkowska D, Espley R, Dare A, Malnoy M, Martens S. 2023. CRISPR/Cas9 genome-editing applied to MdPGT1 in apple results in reduced foliar phloridzin without impacting plant growth. The Plant Journal113, 92–105.

Neff M M, Neff J D, Chory J, Pepper A E. 1998. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: Experimental applications in Arabidopsis thaliana genetics. The Plant Journal14, 387–392.

Oliver A L, Pedersen J F, Grant R J, Pedersen J F, Grant R J, Klopfenstein T J. 2005. Comparative effects of the sorghum bmr-6 and bmr-12 genes: I. forage sorghum yield and quality. Crop Science45, 2234–2239.

Panda C, Li X, Wager A, Chen H Y, Li X. 2020. An importin-beta-like protein mediates lignin-modification-induced dwarfism in ArabidopsisThe Plant Journal, 102, 1281–1293.

Paul M J, Watson A, Griffiths C A. 2020. Linking fundamental science to crop improvement through understanding source and sink traits and their integration for yield enhancement. Journal of Experimental Botany71, 2270–2280.

Perkins M L, Schuetz M, Unda F, Smith R A, Sibout R, Hoffmann N J, Wong D C J, Castellarin S D, Mansfield S D, Samuels L. 2020. Dwarfism of high-monolignol Arabidopsis plants is rescued by ectopic LACCASE overexpression. Plant Direct, 4, e00265.

Pierre M, Traverso J A, Boisson B, Domenichini S, Bouchez D, Giglione C, Meinnel T. 2007. N-myristoylation regulates the SnRK1 pathway in ArabidopsisPlant Cell19, 2804–2821.

Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Lin T, Yuan J, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, et al2013. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics45, 1510–1515.

Qi Q, Rajala R V, Anderson W, Jiang C, Rozwadowski K, Selvaraj G, Sharma R, Datla R. 2000. Molecular cloning, genomic organization, and biochemical characterization of myristoyl-CoA: Protein N-myristoyltransferase from Arabidopsis thalianaJournal of Biological Chemistry275, 9673–9683.

Reddy M S, Chen F, Shadle G, Jackson L, Aljoe H, Dixon R A. 2005. Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proceedings of the National Academy of Sciences of the United States of America102, 16573–16578.

Reynolds M, Atkin OK, Bennett M, Cooper M, Dodd I C, Foulkes M J, Frohberg C, Hammer G, Henderson I R, Huang B, Korzun V, McCouch S R, Messina C D, Pogson B J, Slafer G A, Taylor N L, Wittich P E. 2021. Addressing research bottlenecks to crop productivity. Trends in Plant Science26, 607–630.

Robaglia C, Thomas M, Meyer C. 2012. Sensing nutrient and energy status by SnRK1 and TOR kinases. Current Opinion in Plant Biology15, 301–307.

Schilmiller A L, Stout J, Weng J K, Humphreys J, Ruegger M O, Chapple C. 2009. Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in ArabidopsisThe Plant Journal60, 771–782.

Schwender J. 2008. Metabolic flux analysis as a tool in metabolic engineering of plants. Current Opinion in Biotechnology, 19, 131–137.

Simkin A J, McAusland L, Headland L R, Lawson T, Raines C A. 2015. Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco. Journal of Experimental Botany66, 4075–4090.

Song X, Meng X, Guo H, Cheng Q, Jing Y, Chen M, Liu G, Wang B, Wang Y, Li J, Yu H. 2022. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nature Biotechnology40, 1403–1411.

Sweetlove L J , Nielsen J, Fernie A R. 2017. Engineering central metabolism - a grand challenge for plant biologists. The Plant Journal90, 749–763.

Unda F, Mottiar Y, Mahon E L, Karlen S D,  Kim K H, Loqué D, Eudes A, Ralph J, Mansfield S D. 2022. A new approach to zip-lignin: 3,4-dihydroxybenzoate is compatible with lignification. New Phytologist235, 234–246.

Vanholme R, Storme V, Vanholme B, Sundin L, Christensen J H, Goeminne G, Halpin C, Rohde A, Morreel K, Boerjan W. 2012. A systems biology view of responses to lignin biosynthesis perturbations in ArabidopsisPlant Cell24, 3506–3529.

Vogel J. 2008. Unique aspects of the grass cell wall. Current Opinion in Plant Biology11, 301–307.

Wang B, Zhao X, Zhao Y, Shanklin J, Zhao Q, Liu C J. 2021. Arabidopsis SnRK1 negatively regulates phenylpropanoid metabolism via Kelch domain-containing F-box proteins. New Phytologist229, 3345–3359.

Wang S, Wang K, Li Z, Li Y, He J, Li H, Wang B, Xin T, Tian H, Tian J, Zhang G, Li H, Huang S, Yang X. 2022. Architecture design of cucurbit crops for enhanced productivity by a natural allele. Nature Plants8, 1394–1407.

Wei X, Liu Q, Sun T, Jiao X, Liu C, Hua Y, Chen X, Wang K. 2023. Manipulation of genetic recombination by editing the transcriptional regulatory regions of a meiotic gene in hybrid rice. Plant Communications4, 100474.

White A C, Rogers A, Rees M, Osborne C P. 2016. How can we make plants grow faster? A source-sink perspective on growth rate. Journal of Experimental Botany, 67, 31–45.

Xin T, Tian H, Ma Y, Wang S, Yang L, Li X, Zhang M, Chen C, Wang H, Li H, Xu J, Huang S, Yang X. 2022. Targeted creating new mutants with compact plant architecture using CRISPR/Cas9 genome editing by an optimized genetic transformation procedure in cucurbit plants. Horticulture Research9, uhab086.

Xin T, Zhang Z, Li S, Zhang S, Li Q, Zhang Z, Huang S, Yang X. 2019. Genetic regulation of ethylene dosage for cucumber fruit elongation. Plant Cell31, 1063–1076.

Xu J, Shi S, Wang L, Tang Z, Lv T, Zhu X, Ding X, Wang Y, Zhao F J, Wu Z. 2017. OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytologist215, 1090–1101.

Yang X, Yan J, Zhang Z, Lin T, Xin T, Wang B, Wang S, Zhao J, Zhang Z, Lucas W J, Li G, Huang S. 2020. Regulation of plant architecture by a new histone acetyltransferase targeting gene bodies. Nature Plants6, 809–822.

Yang X Y, Wang Y, Jiang W J, Liu X L, Zhang X M, Yu H J, Huang S W, Liu G Q. 2013. Characterization and expression profiling of cucumber kinesin genes during early fruit development: Revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. Journal of Experimental Botany64, 4541–4557.

Yu S M, Lo S F, Ho T D. 2015. Source-sink communication: Regulated by hormone, nutrient, and stress cross-signaling. Trends in Plant Science20, 844–857.

Zeng D, Liu T, Ma X, Wang B, Zheng Z, Zhang Y, Xie X, Yang B, Zhao Z, Zhu Q, Liu Y. 2020. Quantitative regulation of waxy expression by CRISPR/Cas9-based promoter and 5´ UTR-intron editing improves grain quality in rice. Plant Biotechnology Journal18, 2385–2387.

Zhang Z, Wang B, Wang S, Lin T, Yang L, Zhao Z, Zhang Z, Huang S, Yang X. 2020. Genome-wide target mapping shows histone deacetylase complex1 regulates cell proliferation in cucumber fruit. Plant Physiology182, 167–184.

Zhong Y, Xun W, Wang X, Tian S, Zhang Y, Li, D, Zhou Y, Qin Y, Zhang B, Zhao G, Cheng X, Liu Y, Chen H, Li L, Osbourn A, Lucas W J, Huang S, Ma Y, Shang Y. 2022. Root-secreted bitter triterpene modulates the rhizosphere microbiota to improve plant fitness. Nature Plants8, 887–896.

[1] Tao Liu, Jianliang Wang, Jiayi Wang, Yuanyuan Zhao, Hui Wang, Weijun Zhang, Zhaosheng Yao, Shengping Liu, Xiaochun Zhong, Chengming Sun. Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1403-1423.
[2] Hui Du, Yue Chen, Liangrong Xiong, Juan Liu, Keyan Zhang, Ming Pan, Haifan Wen, Huanle He, Run Cai, Junsong Pan, Gang Wang. FS2 encodes an ARID-HMG transcription factor that regulates fruit spine density in cucumber[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1080-1091.
[3] Ben Zhao, Anzhen Qin, Wei Feng, Xinqiang Qiu, Pingyan Wang, Haixia Qin, Yang Gao, Guojie Wang, Zhandong Liu, Syed Tahir Ata-Ul-Karim. Water deficit affects the nitrogen nutrition index of winter wheat under controlled water conditions[J]. >Journal of Integrative Agriculture, 2025, 24(2): 724-738.
[4] Zhenxiang Zhou, Paul C. Struik, Junfei Gu, Peter E. L. van der Putten, Zhiqin Wang, Jianchang Yang, Xinyou Yin. Quantifying source–sink relationships in leaf-color modified rice genotypes during grain filling[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2923-2940.
[5] Jiawei Pan, Jia Song, Rahat Sharif, Xuewen Xu, Shutong Li, Xuehao Chen.

A mutation in the promoter of the yellow stripe-like transporter gene in cucumber results in a yellow cotyledon phenotype [J]. >Journal of Integrative Agriculture, 2024, 23(3): 849-862.

[6] WANG Cui, SUN Jin-jing, YANG Xue-yong, WAN Li, ZHANG Zhong-hua, ZHANG Hui-min. An optimized protocol using Steedman’s wax for high-sensitivity RNA in situ hybridization in shoot apical meristems and flower buds of cucumber[J]. >Journal of Integrative Agriculture, 2023, 22(2): 464-470.
[7] WANG Jie, LI Shuai, CHEN Chen, ZHANG Qi-qi, ZHANG Hui-min, CUI Qing-zhi, CAI Guang-hua, ZHANG Xiao-peng, CHAI Sen, WAN Li, YANG Xue-yong, ZHANG Zhong-hua, HUANG San-wen, CHEN Hui-ming, SUN Jin-jing. A novel mutation in ACS11 leads to androecy in cucumber[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3312-3320.
[8] SONG Xiao-fei, GE Dan-feng, XIE Yang, LI Xiao-li, SUN Cheng-zhen, CUI Hao-nan, ZHU Xue-yun, LIU Ren-yi, YAN Li-ying. Genome-scale mRNA and miRNA transcriptomic insights into the regulatory mechanism of cucumber corolla opening[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2603-2614.
[9] HAN Li-jie, SONG Xiao-fei, WANG Zhong-yi, LIU Xiao-feng, YAN Li-ying, HAN De-guo, ZHOU Zhao-yang, ZHANG Xiao-lan. Genome-wide analysis of OVATE family proteins in cucumber (Cucumis sativus L.)[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1321-1331.
[10] DUAN Yao-ke, SU Yan HAN Rong, SUN Hao, GONG Hai-jun. Nodulin 26-like intrinsic protein CsNIP2;2 is a silicon influx transporter in Cucumis sativus L.[J]. >Journal of Integrative Agriculture, 2022, 21(3): 685-696.
[11] ZHOU Lei, XU Sheng-tao, Carlos M. MONREAL, Neil B. MCLAUGHLIN, ZHAO Bao-ping, LIU Jing-hui, HAO Guo-cheng. Bentonite-humic acid improves soil organic carbon, microbial biomass, enzyme activities and grain quality in a sandy soil cropped to maize (Zea mays L.) in a semi-arid region[J]. >Journal of Integrative Agriculture, 2022, 21(1): 208-221.
[12] XIN Ming, QIN Zhi-wei, YANG Jing, ZHOU Xiu-yan, WANG Lei. Functional analysis of the nitrogen metabolism-related gene CsGS1 in cucumber[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1515-1524.
[13] Miilion P MADEBO, LUO Si-ming, WANG Li, ZHENG Yong-hua, JIN Peng. Melatonin treatment induces chilling tolerance by regulating the contents of polyamine, γ-aminobutyric acid, and proline in cucumber fruit[J]. >Journal of Integrative Agriculture, 2021, 20(11): 3060-3074.
[14] ZOU Jie, ZHOU Cheng-bo, XU Hong, CHENG Rui-feng, YANG Qi-chang, LI Tao. The effect of artificial solar spectrum on growth of cucumber and lettuce under controlled environment[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2027-2034.
[15] WANG Xiu-juan, KANG Meng-zhen, FAN Xing-rong, YANG Li-li, ZHANG Bao-gui, HUANG San-wen, Philippe DE REFFYE, WANG Fei-yue. What are the differences in yield formation among two cucumber (Cucumis sativus L.) cultivars and their F1 hybrid?[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1789-1801.
No Suggested Reading articles found!