Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community

Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou#

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

作物填闲是一种多样化的农业种植策略,其可以通过改变地下凋落物多样性和土壤微生物群落从而改善土壤结构和功能。在本研究中,我们分析了填闲小麦如何改变黄瓜根系凋落物的降解。为期三年的温室凋落物袋降解试验表明,填闲小麦加速了黄瓜根系凋落物的降解。微宇宙凋落物袋试验进一步阐明了小麦凋落物和土壤微生物群落可以改善黄瓜根系凋落物的降解。此外,填闲小麦改变了土壤细菌和真菌群落的丰度和多样性,并丰富了一些潜在的关键OTUs,如与黄瓜根系凋落物质量损失呈正相关的Bacillus spp. OTU1837Mortierella spp. OTU1236。接下来,我们分离并培养了代表性的细菌和真菌菌株B186M3。通过体外降解试验发现,B186M3都具有降解黄瓜根系凋落物的能力,并且发现两种菌株共同培养时降解效果更强。总体而言,填闲小麦通过改变土壤微生物群落,特别是改变了某些潜在的关键类群,加速了黄瓜根系凋落物的降解,这为利用填闲种植促进可持续农业发展提供了理论基础。



Abstract  

Cover cropping is a diversifying agricultural practice that can improve soil structure and function by altering the underground litter diversity and soil microbial communities. Here, we tested how a wheat cover crop alters the decomposition of cucumber root litter. A three-year greenhouse litterbag decomposition experiment showed that a wheat cover crop accelerates the decomposition of cucumber root litter. A microcosm litterbag experiment further showed that wheat litter and the soil microbial community could improve cucumber root litter decomposition. Moreover, the wheat cover crop altered the abundances and diversities of soil bacterial and fungal communities, and enriched several putative keystone OTUs, such as Bacillus spp. OTU1837 and Mortierella spp. OTU1236, that were positively related to the mass loss of cucumber root litter. The representative bacterial and fungal strains B186 and M3 were isolated and cultured. In vitro decomposition tests demonstrated that both B186 and M3 had cucumber root litter decomposition activity and a stronger effect was found when they were co-incubated. Overall, a wheat cover crop accelerated cucumber root litter decomposition by altering the soil microbial communities, particularly by stimulating certain putative keystone taxa, which provides a theoretical basis for using cover crops to promote sustainable agricultural development. 

Keywords:  wheat cover crop       litter decomposition              mass loss              microbial community              litter mixing  
Online: 24 September 2024  
Fund: 

This work was supported by the National Natural Science Foundation of China (32072655 and 32272792). 

About author:  #Correspondence Xingang Zhou, Tel: +86-451-55191261, E-mail: xgzhou@neau.edu.cn

Cite this article: 

Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. 2024. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.09.020

Banerjee S, Kirkby C A, Schmutter D, Bissett A, Kirkegaard J A, Richardson A E. 2016. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biology and Biochemistry, 97, 188-198.

Banerjee S, Schlaeppi K, van der Heijden M G A. 2018. Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology, 16, 567-576.

Berg B. 2014. Decomposition patterns for foliar litter – A theory for influencing factors. Soil Biology and Biochemistry, 78, 222-232.

Bradford M A, Tordoff G M, Eggers T, Jones T H, Newington J E. 2002. Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos, 99, 317-323.

Cardinale B J, Duffy J E, Gonzalez A, Hooper D U, Perrings C, Venail P, Narwani A, Mace G M, Tilman D, Wardle D A, Kinzig A P, Daily G C, Loreau M, Grace J B, Larigauderie A, Srivastava D S, Naeem S. 2012. Biodiversity loss and its impact on humanity. Nature, 486, 59-67.

Chomel M, GuittonnyLarchevêque M, DesRochers A, Baldy V. 2016. Effect of mixing herbaceous litter with tree litters on decomposition and N release in boreal plantations. Plant and Soil, 398, 229-241.

Cline L C, Zak D R. 2015. Initial colonization, community assembly and ecosystem function: Fungal colonist traits and litter biochemistry mediate decay rate. Molecular Ecology, 24, 5045-5058.

Cong W F, Hoffland E, Li L, Janssen B H, van der Werf W. 2015. Intercropping affects the rate of decomposition of soil organic matter and root litter. Plant and Soil, 391, 399-411.

Coyte K Z, Schluter J, Foster K R. 2015. The ecology of the microbiome: Networks, competition, and stability. Science, 350, 663-666.

Daryanto S, Fu B, Wang L, Jacinthe P A, Zhao W. 2018. Quantitative synthesis on the ecosystem services of cover crops. Earth-Science Reviews, 185, 357-373.

Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, Hacquard S. 2018. Microbial interkingdom interactions in roots promote arabidopsis survival. Cell, 175, 973-983.e14.

Van Eerd L L, Chahal I, Peng Y, Awrey J C. 2023. Influence of cover crops at the four spheres: A review of ecosystem services, potential barriers, and future directions for North America. Science of the Total Environment, 858, 159990.

Fuhrmann A, Wilde B, Conz R F, Kantengwa S, Konlambigue M, Masengesho B, Kintche K, Kassa K, Musazura W, Späth L, Gold M, Mathys A, Six J, Hartmann M. 2022. Residues from black soldier fly (Hermetia illucens) larvae rearing influence the plant-associated soil microbiome in the short term. Frontiers in Microbiology, 13994091. 

Gao D M, An D M, Liu J Y, Shi J B, Zhou X G, Wu F Z. 2022. Wheat cover crop alters soil microbial community and increases cucumber yield under different potassium regimes. European Journal of Agronomy, 139, 126567.

Gao D M, Zhou X G, Duan Y D, Fu X P, Wu F Z. 2017. Wheat cover crop promoted cucumber seedling growth through regulating soil nutrient resources or soil microbial communities? Plant and Soil, 418, 459-475.

Gartner T B, Cardon Z G. 2004. Decomposition dynamics in mixed-species leaf litter. Oikos, 104, 230-246.

Herzog C, Hartmann M, Frey B, Stierli B, Rumpel C, Buchmann N, Brunner I. 2019. Microbial succession on decomposing root litter in a drought-prone Scots pine forest. The ISME Journal, 13, 2346-2362.

Hishinuma T, Azuma J I, Osono T, Takeda H. 2017. Litter quality control of decomposition of leaves, twigs, and sapwood by the white-rot fungus Trametes versicolor. European Journal of Soil Biology, 80, 1-8.

Hu H J, Ye R M, Pang L, Jiang H, Tian K, Gao Y, Ji Y, Wan P W, Yang J B, Zou X M, Tian X J. 2023. Endophytic bacterium Bacillus cereus affects host litter decomposition by regulating soil microbial structure and phosphate mineralization. Applied Soil Ecology, 192, 105092.

Jin X, Jia H T, Ran L Y, Wu F Z, Liu J J, Schlaeppi K, Dini-Andreote F, Wei Z, Zhou X G. 2024. Fusaric acid mediates the assembly of disease-suppressive rhizosphere microbiota via induced shifts in plant root exudates. Nature Communications, 15, 5125.

Jin X, Wang Z L, Wu F Z, Li X G, Zhou X G. 2022. Litter mixing alters microbial decomposer community to accelerate tomato root litter decomposition. Microbiology Spectrum, 10, e00186-22.

Jin X, Wu F Z, Zhou X G. 2020. Different toxic effects of ferulic and p-hydroxybenzoic acids on cucumber seedling growth were related to their different influences on rhizosphere microbial composition. Biology and Fertility of Soils, 56, 125-136.

Keiser A D, Bradford M A. 2017. Climate masks decomposer influence in a cross-site litter decomposition study. Soil Biology and Biochemistry, 107, 180-187.

Koechli C, Campbell A N, Pepe-Ranney C, Buckley D H. 2019. Assessing fungal contributions to cellulose degradation in soil by using high-throughput stable isotope probing. Soil Biology and Biochemistry, 130, 150-158.

Li Y G, Ma D Y, Sun D X, Wang C Y, Zhang J, Xie Y X, Guo T C. 2015. Total phenolic, flavonoid content, and antioxidant activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling methods. The Crop Journal, 3, 328-334.

Liu J, Liu X Y, Song Q N, Compson Z G, LeRoy C J, Luan F G, Wang H, Hu Y L, Yang Q P. 2020. Synergistic effects: A common theme in mixed-species litter decomposition. New Phytologist, 227, 757-765.

Mace G M, Norris K, Fitter A H. 2012. Biodiversity and ecosystem services: A multilayered relationship. Trends in Ecology & Evolution, 27, 19-26.

Mariotte P, Mehrabi Z, Bezemer T M, De Deyn G B, Kulmatiski A, Drigo B, Veen G F, van der Heijden M G A, Kardol P. 2018. Plant–soil feedback: Bridging natural and agricultural sciences. Trends in Ecology & Evolution, 33, 129-142.

Muhammad I, Wang J, Sainju U M, Zhang S, Zhao F, Khan A. 2021. Cover cropping enhances soil microbial biomass and affects microbial community structure: A meta-analysis. Geoderma, 381, 114696.

Njoroge D M, Chen S C, Zuo J, Dossa G G O, Cornelissen J H C. 2022. Soil fauna accelerate litter mixture decomposition globally, especially in dry environments. Journal of Ecology, 110, 659-672.

Pugnaire F I, Aares K H, Alifriqui M, Bråthen K A, Kindler C, Schöb C, Manrique E. 2023. Home-field advantage effects in litter decomposition is largely linked to litter quality. Soil Biology and Biochemistry, 184, 109069.

Van der Putten W H, Bardgett R D, Bever J D, Bezemer T M, Casper B B, Fukami T, Kardol P, Klironomos J N, Kulmatiski A, Schweitzer J A, Suding K N, Van de Voorde T F J, Wardle D A. 2013. Plant–soil feedbacks: The past, the present and future challenges. Journal of Ecology, 101, 265-276.

Santonja M, Rancon A, Fromin N, Baldy V, Hättenschwiler S, Fernandez C, Montès N, Mirleau P. 2017. Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a Mediterranean shrubland. Soil Biology and Biochemistry, 111, 124-134.

Schnitkey G D, Sellars S C, Gentry L F. 2024. Cover crops, farm economics, and policy. Applied Economic Perspectives and Policy, 46, 595-608.

Smyth C E, Macey D, Trofymow J A. 2015. Long-term litter decay in Canadian forests and the influence of soil microbial community and soil chemistry. Soil Biology and Biochemistry, 80, 251-259.

Tilston E L, Halpin C, Hopkins D W. 2013. Decomposition of tobacco roots with modified phenylpropanoid content by fungi with contrasting lignocellulose degradation strategies. Biology and Fertility of Soils, 49, 305-311.

Wang L F, Zhou Y, Chen Y M, Xu Z F, Zhang J, Liu Y, Joly F X. 2022. Litter diversity accelerates labile carbon but slows recalcitrant carbon decomposition. Soil Biology and Biochemistry, 168, 108632.

Wang W B, Zhang Q, Sun X M, Chen D S, Insam H, Koide R T, Zhang S G. 2020. Effects of mixed-species litter on bacterial and fungal lignocellulose degradation functions during litter decomposition. Soil Biology and Biochemistry, 141, 107690.

Waring B, Gee A, Liang G, Adkins S. 2022. A quantitative analysis of microbial community structure-function relationships in plant litter decay. iScience, 25, 104523.

Zhang H L, Zheng X Q, Bai N L, Li S X, Zhang J Q, Lv W G. 2019. Responses of soil bacterial and fungal communities to organic and conventional farming systems in East China. Journal of Microbiology and Biotechnology, 29, 441-453.

Zhang W W, Lu Z T, Yang K, Zhu J J. 2017. Impacts of conversion from secondary forests to larch plantations on the structure and function of microbial communities. Applied Soil Ecology, 111, 73-83.

Zhang X H, Wang Z L, Wu F Z, Zhou X G. 2022. The influence of residue Mixing on the decomposition of pepper root residues. Agriculture, 12, 84.

Zheng H P, Yang T J, Bao Y Z, He P P, Yang K M, Mei X L, Wei Z, Xu Y C, Shen Q R, Banerjee S. 2021. Network analysis and subsequent culturing reveal keystone taxa involved in microbial litter decomposition dynamics. Soil Biology and Biochemistry, 157, 108230.

Zhong Y Q W, Yan W M, Wang R W, Shangguan Z P. 2017. Differential responses of litter decomposition to nutrient addition and soil water availability with long-term vegetation recovery. Biology and Fertility of Soils, 53, 939-949.

Zhou X G, Khashi u Rahman M, Liu J J, Wu F Z. 2021. Soil acidification mediates changes in soil bacterial community assembly processes in response to agricultural intensification. Environmental Microbiology, 23, 4741-4755.

Zhou X G, Liu J, Wu F Z. 2017. Soil microbial communities in cucumber monoculture and rotation systems and their feedback effects on cucumber seedling growth. Plant and Soil, 415, 507-520.

Zhou X G, Wu F Z. 2021. Land-use conversion from open field to greenhouse cultivation differently affected the diversities and assembly processes of soil abundant and rare fungal communities. Science of the Total Environment, 788, 147751.

Zhou X G, Zhang J H, Pan D D, Ge X, Jin X, Chen S C, Wu F Z. 2018. p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions. Biology and Fertility of Soils, 54, 363-372.

Zhou X G, Zhang J Y, Khashi u Rahman M, Gao D M, Wei Z, Wu F Z, Dini-Andreote F. 2023. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes. Molecular Plant, 16, 849-864.

Zhu Y Y, Chen H R, Fan J H, Wang Y Y, Li Y, Chen J B, Fan J X, Yang S S, Hu L P, Leung H, Mew T W, Teng P S, Wang Z, Mundt C C. 2000. Genetic diversity and disease control in rice. Nature, 406, 718-722.

No related articles found!
No Suggested Reading articles found!