Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (3): 815-826    DOI: 10.1016/j.jia.2024.07.033
Section 1: Dynamics of grassland ecosystems Advanced Online Publication | Current Issue | Archive | Adv Search |
Non-linear responses of the plant phosphorus pool and soil available phosphorus to short-term nitrogen addition in an alpine meadow

Bing Han1, Yicheng He1, Jun Zhou2, Yufei Wang1, Lina Shi1, Zhenrong Lin1, Lu Yu1, Wantong Zhang1, Yiyi Geng1, Xinqing Shao1, 3#

1 Department of Grassland Resources and Ecology, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
2 Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
3 Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Xining 810016, China
 Highlights 
Soil available phosphorus (P) exhibits a nonlinear response to nitrogen (N) addition rates in an alpine meadow.
Key drivers of soil available P responses to N addition vary depending on the addition rate.
Soil pH and microbial biomass P explain the change in soil available P at lower and higher N addition levels, respectively.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
氮富集会促进土壤磷循环,同时也增加了植物对磷的需求。然而,高寒草甸生态系统中植物磷库、土壤有效磷对氮添加的响应模式及调控机制还不清楚。基于此,以青藏高原高寒草甸为研究对象,设置4个氮添加水平(0, 5, 10和15 g N m-2 yr-1),通过测定植物、土壤和微生物中的磷,探究短期氮添加的影响机制。结果表明:(1)氮添加显著增加植物地上生物量,植物磷库对氮添加水平表现为非线性响应;(2)土壤有效磷随着氮添加梯度的增加呈先上升后下降的趋势,氮添加显著降低了稳定无机磷;(3)调控土壤有效磷的关键因子在不同氮添加水平下发生改变。在低氮添加水平下(0和5 g N m-2 yr-1),土壤pH下降促进了稳定无机磷的溶解,增加了土壤有效磷。相反,在高氮添加水平下(10和15 g N m-2 yr-1),微生物生物量磷增加,加剧了植物和微生物对磷的竞争,导致土壤有效磷下降。研究结果强调了植物磷库和土壤有效磷对氮添加的非线性响应,未来需要关注氮添加速率对磷的不同影响,从而更准确的预测氮富集下生态系统磷循环。


Abstract  

Nitrogen (N) enrichment is expected to induce a greater phosphorus (P) limitation, despite the acceleration of soil P cycling.  However, the changing patterns in plant P and soil available P after N enrichment, and their regulatory mechanisms, remain poorly understood in alpine meadows.  Here, we conducted a field experiment with four N addition rates (0, 5, 10, and 15 g N m–2 yr–1) in an alpine meadow, and investigated the P in plants, microorganisms, and soil to determine their patterns of change after short-term N addition.  Our results showed that N addition significantly increased plant biomass, and the plant P pool showed a non-linear response to the N addition gradient.  Soil available P initially increased and then declined with increasing N addition, whereas the occluded inorganic P decreased markedly.  The critical factors for soil available P varied with different N addition rates.  At lower N addition levels (0 and 5 g N m–2 yr–1), soil acidification facilitated the mobilization of occluded inorganic P to increase soil available P.  Conversely, at higher N addition levels (10 and 15 g N m–2 yr–1), the elevated soil microbial biomass P intensified the competition with plants for soil P, leading to a decline in soil available P.  This study highlights the non-linear responses of the plant P pool and soil available P concentration to N addition rates.  These responses suggest the need for developing ecosystem models to assess different effects of increasing N rates, which would enable more accurate predictions of the plant P supply and soil P cycling under N enrichment.


Keywords:  nitrogen addition rates       Qinghai-Tibetan Plateau        unimodal response        microbial biomass phosphorus        soil phosphorus fractions  
Received: 04 March 2024   Accepted: 19 June 2024
Fund: 
This research was funded by the National Natural Science Foundation of China (31971746 and 32171685).
About author:  Bing Han, Mobile: +86-18369839879, E-mail: hbing_edu@163.com; #Correspondence Xinqing Shao, Tel: +86-10-62733835, E-mail: shaoxinqing@163.com

Cite this article: 

Bing Han, Yicheng He, Jun Zhou, Yufei Wang, Lina Shi, Zhenrong Lin, Lu Yu, Wantong Zhang, Yiyi Geng, Xinqing Shao. 2025. Non-linear responses of the plant phosphorus pool and soil available phosphorus to short-term nitrogen addition in an alpine meadow. Journal of Integrative Agriculture, 24(3): 815-826.

Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I. 1998. Nitrogen saturation in temperate forest ecosystems. BioScience48, 921–934.

Alt F, Oelmann Y, Schöning I, Wilcke W. 2013. Phosphate release kinetics in calcareous grassland and forest soils in response to H+ addition. Soil Science Society of America Journal77, 2060–2070.

Ayaga G, Todd A, Brookes P C. 2006. Enhanced biological cycling of phosphorus increases its availability to crops in low-input sub-Saharan farming systems. Soil Biology and Biochemistry38, 81–90.

Chen C, Xiao W, Chen H Y H. 2023. Mapping global soil acidification under N deposition. Global Change Biology29, 4652–4661.

Chen J, van Groenigen K J, Hungate B A, Terrer C, van Groenigen J W, Maestre F T, Ying S C, Luo Y, Jørgensen U, Sinsabaugh R L, Olesen J E, Elsgaard L. 2020. Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Global Change Biology26, 5077–5086.

Chen W, Xu R, Hu T, Chen J, Zhang Y, Cao X, Wu D, Wu Y, Shen Y. 2017. Soil-mediated effects of acidification as the major driver of species loss following N enrichment in a semi-arid grassland. Plant and Soil419, 541–556.

Cleveland C C, Liptzin D. 2007. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry85, 235–252.

Cui H, Sun W, Delgado-Baquerizo M, Song W, Ma J, Wang K, Ling X. 2021. Cascading effects of N fertilization activate biologically driven mechanisms promoting P availability in a semi-arid grassland ecosystem. Functional Ecology35, 1001–1011.

Dai Z, Liu G, Chen H, Chen C, Wang J, Ai S, Wei D, Li D, Ma B, Tang C, Brookes P C, Xu J. 2020. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. The ISME Journal14, 757–770.

Deng Q, Hui D, Dennis S, Reddy K C. 2017. Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta-analysis. Global Ecology and Biogeography26, 713–728.

Dijkstra F A, He M, Johansen M P, Harrison J J, Keitel C. 2015. Plant and microbial uptake of nitrogen and phosphorus affected by drought using 15N and 32P tracers. Soil Biology and Biochemistry82, 135–142.

Dong L, Berg B, Sun T, Wang Z, Han X. 2020. Response of fine root decomposition to different forms of N deposition in a temperate grassland. Soil Biology and Biochemistry147, 107845.

Du E, Terrer C, Pellegrini A F A, Ahlström A, van Lissa C J, Zhao X, Xia N, Wu X, Jackson R B. 2020. Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience13, 221–226.

Fan Y, Zhong X, Lin F, Liu C, Yang L, Wang M, Chen G, Chen Y, Yang Y. 2019. Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots. Geoderma337, 246–255.

Fay P A, Prober S M, Harpole W S, Knops J M H, Bakker J D, Borer E T, Lind E M, MacDougall A S, Seabloom E W, Wragg P D, Adler P B, Blumenthal D M, Buckley Y M, Chu C, Cleland E E, Collins S L, Davies K F, Du G, Feng X, Firn J, et al. 2015. Grassland productivity limited by multiple nutrients. Nature Plants1, 15080.

Galloway J N, Dentener F J, Capone D G, Boyer E W, Howarth R W, Seitzinger S P, Asner G P, Cleveland C C, Green P A, Holland E A, Karl D M, Michaels A F, Porter J H, Townsend A R, Vörösmarty C J. 2004. Nitrogen cycles: Past, present, and future. Biogeochemistry70, 153–226.

Han B, Li J, Liu K, Zhang H, Wei X, Shao X. 2021. Variations in soil properties rather than functional gene abundances dominate soil phosphorus dynamics under short-term nitrogen input. Plant and Soil469, 227–241.

Han L, Ganjurjav H, Hu G, Wu J, Yan Y, Danjiu L, He S, Xie W, Yan J, Gao Q. 2022. Nitrogen addition affects ecosystem carbon exchange by regulating plant community assembly and altering soil properties in an alpine meadow on the Qinghai-Tibetan Plateau. Frontiers in Plant Science13, 900722.

Han X, Zhou G, Luo Q, Ferlian O, Zhou L, Meng J, Qi Y, Pei J, He Y, Liu R, Du Z, Long J, Zhou X, Eisenhauer N. 2023. Plant biomass responses to elevated CO2 are mediated by phosphorus uptake. Science of the Total Environment863, 160775.

Hao T, Zhang Y, Zhang J, Müller C, Li K, Zhang K, Chu H, Stevens C, Liu X. 2020. Chronic nitrogen addition differentially affects gross nitrogen transformations in alpine and temperate grassland soils. Soil Biology and Biochemistry149, 107962.

Hedley M J, Stewart J W B, Chauhan B S. 1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal46, 970–976.

Houlton B Z, Wang Y P, Vitousek P M, Field C B. 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature454, 327–330.

Hu W, Tan J, Shi X, Lock T R, Kallenbach R L, Yuan Z. 2022a. Nutrient addition and warming alter the soil phosphorus cycle in grasslands: A global meta-analysis. Journal of Soils and Sediments22, 2608–2619.

Hu W, Yuan Z, Shi X, Lock T R, Kallenbach R L. 2022b. A global meta-analysis reveals that nitrogen addition alters plant nutrient concentration and resorption in grassland ecosystems. Journal of Soil Science and Plant Nutrition22, 4960–4971.

Jiang S, Liu Y, Luo J, Qin M, Johnson N C, Öpik M, Vasar M, Chai Y, Zhou X, Mao L, Du G, An L, Feng H. 2018. Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem. New Phytologist220, 1222–1235.

Jickells T D, An Z S, Andersen K K, Baker A R, Bergametti G, Brooks N, Cao J J, Boyd P W, Duce R A, Hunter K A, Kawahata H, Kubilay N, laRoche J, Liss P S, Mahowald N, Prospero J M, Ridgwell A J, Tegen I, Torres R. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science308, 67–71.

Lai J, Zou Y, Zhang J, Peres-Neto P R. 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution13, 782–788.

Li F R, Liu L L, Liu J L, Yang K. 2019. Abiotic and biotic controls on dynamics of labile phosphorus fractions in calcareous soils under agricultural cultivation. Science of the Total Environment681, 163–174.

Li J, Yang C, Liu X, Shao X. 2019. Inconsistent stoichiometry response of grasses and forbs to nitrogen and water additions in an alpine meadow of the Qinghai-Tibet Plateau. AgricultureEcosystems & Environment279, 178–186.

Li Q, Lv J, Peng C, Xiang W, Xiao W, Song X. 2021. Nitrogen-addition accelerates phosphorus cycling and changes phosphorus use strategy in a subtropical Moso bamboo forest. Environmental Research Letters16, 024023.

Li S, Zhang S, Baskin C C, Zhang Z, Xiao S, Bu H, Liu Y, Zhang T, Chen S, Liu Q, Liu K. 2022. Effect of grazing and nitrogen addition on the occurrence of species with different seed masses in alpine meadows on the Tibet Plateau. Science of the Total Environment838, 156531.

Li Y, Niu S, Yu G. 2016. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: A meta-analysis. Global Change Biology22, 934–943.

Lin G, Gao M, Zeng D H, Fang Y. 2020. Aboveground conservation acts in synergy with belowground uptake to alleviate phosphorus deficiency caused by nitrogen addition in a larch plantation. Forest Ecology and Management473, 118309.

Liu W, Jiang L, Hu S, Li L, Liu L, Wan S. 2014. Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe. Soil Biology and Biochemistry72, 116–122.

Liu W, Jiang L, Yang S, Wang Z, Tian R, Peng Z, Chen Y, Zhang X, Kuang J, Ling N, Wang S, Liu L. 2020. Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment. Ecology101, e03053.

Liu Y, Bing H, Wu Y, Zhu H, Tian X, Wang Z, Chang R. 2022. Nitrogen addition promotes soil phosphorus availability in the subalpine forest of eastern Tibetan Plateau. Journal of Soils and Sediments22, 1–11.

Liu Y W, Xu R, Wang Y S, Pan Y P, Piao S L. 2015. Wet deposition of atmospheric inorganic nitrogen at five remote sites in the Tibetan Plateau. Atmospheric Chemistry and Physics15, 11683–11700.

Lovett G M, Goodale C L. 2011. A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an Oak Forest. Ecosystems14, 615–631.

Lü C, Tian H. 2007. Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research (Atmospheres), 112, 1–10.

Lupwayi N Z, Clayton G W, O’Donovan J T, Harker K N, Turkington T K, Soon Y K. 2007. Phosphorus release during decomposition of crop residues under conventional and zero tillage. Soil and Tillage Research95, 231–239.

Ma F, Song B, Quan Q, Zhang F, Wang J, Zhou Q, Niu S. 2020. Light competition and biodiversity loss cause saturation response of aboveground net primary productivity to nitrogen enrichment. Journal of Geophysical Research (Biogeosciences), 125, 1–12.

Mahmood M, Tian Y, Ma Q, Hui X, Elrys A S, Ahmed W, Mehmood S, Wang Z. 2021. Changes in phosphorus fractions in response to long-term nitrogen fertilization in loess plateau of China. Field Crops Research270, 108207.

Marklein A R, Houlton B Z. 2012. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist193, 696–704.

McSwiney C P, Robertson G P. 2005. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Global Change Biology11, 1712–1719.

Niederberger J, Kohler M, Bauhus J. 2019. Distribution of phosphorus fractions with different plant availability in German forest soils and their relationship with common soil properties and foliar P contents. Soil5, 189–204.

Peng Y, Duan Y, Huo W, Zhang Z, Huang D, Xu M, Wang X, Yang X, Wang B, Kuzyakov Y, Feng G. 2022. C:P stoichiometric imbalance between soil and microorganisms drives microbial phosphorus turnover in the rhizosphere. Biology and Fertility of Soils58, 421–433.

Png G K, Lambers H, Kardol P, Turner B L, Wardle D A, Laliberté E. 2019. Biotic and abiotic plant–soil feedback depends on nitrogen-acquisition strategy and shifts during long-term ecosystem development. Journal of Ecology107, 142–153.

R Core Team. 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Rosling A, Midgley M G, Cheeke T, Urbina H, Fransson P, Phillips R P. 2016. Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees. New Phytologist209, 1184–1195.

Schleuss P M, Widdig M, Heintz-Buschart A, Kirkman K, Spohn M. 2020. Interactions of nitrogen and phosphorus cycling promote P acquisition and explain synergistic plant-growth responses. Ecology101 e03003.

Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F. 2011. Phosphorus dynamics: From soil to plant. Plant Physiology156, 997–1005.

Shi L, Lin Z, Wei X, Peng C, Yao Z, Han B, Xiao Q, Zhou H, Deng Y, Liu K, Shao X. 2022. Precipitation increase counteracts warming effects on plant and soil C:N:P stoichiometry in an alpine meadow. Frontiers in Plant Science13, 1044173.

Song B, Sun J, Zhou Q, Zong N, Li L, Niu S. 2017. Initial shifts in nitrogen impact on ecosystem carbon fluxes in an alpine meadow: Patterns and causes. Biogeosciences14, 3947–3956.

Spohn M, Ermak A, Kuzyakov Y. 2013. Microbial gross organic phosphorus mineralization can be stimulated by root exudates – A 33P isotopic dilution study. Soil Biology and Biochemistry65, 254–263.

Spohn M, Kuzyakov Y. 2013. Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation - Coupling soil zymography with 14C imaging. Soil Biology and Biochemistry67, 106–113.

Sun J, Zhang B, Pan Q, Liu W, Wang X, Huang J, Chen D, Wang C, Han X. 2023. Nonlinear response of productivity to precipitation extremes in the Inner Mongolia grassland. Functional Ecology37, 1663–1673.

Tian D, Niu S. 2015. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters10, 024019.

Tian X, Bing H, Wu Y, Zhu H, Zhao W, He Q, Xiong D. 2022. Farmland abandonment decreases soil bioavailable phosphorus but increases organic phosphorus in the mid-hills of Nepal. Caterna211, 106000.

Tiessen H, Stewart J W B, Cole C V. 1984. Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Science Society of America Journal48, 853–858.

Touhami D, McDowell R W, Condron L M, Bouray M. 2022. Nitrogen fertilization effects on soil phosphorus dynamics under a grass-pasture system. Nutrient Cycling in Agroecosystems124, 227–246.

Treseder K K. 2008. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecology Letters11, 1111–1120.

Wang C, Ren F, Zhou X, Ma W, Liang C, Wang J, Cheng J, Zhou H, He J S. 2020. Variations in the nitrogen saturation threshold of soil respiration in grassland ecosystems. Biogeochemistry148, 311–324.

Wang D, Zhou H, Yao B, Wang W, Dong S, Shang Z, She Y, Ma L, Huang X, Zhang Z, Zhang Q, Zhao F, Zuo J, Mao Z. 2020. Effects of nutrient addition on degraded alpine grasslands of the Qinghai-Tibetan Plateau: A meta-analysis. AgricultureEcosystems & Environment301, 106970.

Wang R, Liu H, Sardans J, Feng X, Xu Z, Peñuelas J. 2021. Interacting effects of urea and water addition on soil mineral-bound phosphorus dynamics in semi-arid grasslands with different land-use history. European Journal of Soil Science72, 946–962.

Wang R, Yang J, Liu H, Sardans J, Zhang Y, Wang X, Wei C, Lü X, Dijkstra F A, Jiang Y, Han X, Peñuelas J. 2022. Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands. Ecology103, e3616.

Wang Z, Tao T, Wang H, Chen J, Small G E, Johnson D, Chen J, Zhang Y, Zhu Q, Zhang S, Song Y, Kattge J, Guo P, Sun X. 2023. Forms of nitrogen inputs regulate the intensity of soil acidification. Global Change Biology29, 4044–4055.

Wieder W R, Cleveland C C, Smith W K, Todd-Brown K. 2015. Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience8, 441–444.

Wu H, Yang J, Fu W, Rillig M C, Cao Z, Zhao A, Hao Z, Zhang X, Chen B, Han X. 2023. Identifying thresholds of nitrogen enrichment for substantial shifts in arbuscular mycorrhizal fungal community metrics in a temperate grassland of northern China. New Phytologist237, 279–294.

Yang L, Yang Z, Peng Y, Lin Y, Xiong D, Li Y, Yang Y. 2019. Evaluating P availability influenced by warming and N deposition in a subtropical forest soil: A bioassay mesocosm experiment. Plant and Soil444, 87–99.

Yao X, Hui D, Hou E, Xiong J, Xing S, Deng Q. 2023. Differential responses and mechanistic controls of soil phosphorus transformation in Eucalyptus plantations with N fertilization and introduced N2-fixing tree species. New Phytologist237, 2039–2053.

Yu G, Jia Y, He N, Zhu J, Chen Z, Wang Q, Piao S, Liu X, He H, Guo X, Wen Z, Li P, Ding G, Goulding K. 2019. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience12, 424–429.

Yu J, Xu R, Qu S, Li F, Wei D, Borjigidai A. 2023. Plant nitrogen retention in alpine grasslands of the Tibetan Plateau under multi-level nitrogen addition. Scientific Reports13, 877.

Yuan X, Niu D, Gherardi L A, Liu Y, Wang Y, Elser J J, Fu H. 2019. Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: Evidence from a long-term grassland experiment. Soil Biology and Biochemistry138, 107580.

Zak D R, Groffman P M, Pregitzer K S, Christensen S, Tiedje J M. 1990. The vernal dam: Plant-microbe competition for nitrogen in northern hardwood forests. Ecology71, 651–656.

Zhang J, Yan X, Su F, Li Z, Wang Y, Wei Y, Ji Y, Yang Y, Zhou X, Guo H, Hu S. 2018. Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow. Science of the Total Environment625, 440–448.

No related articles found!
No Suggested Reading articles found!