Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1403-1423    DOI: 10.1016/j.jia.2024.07.015
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features

Tao Liu1, 2*, Jianliang Wang1, 2*, Jiayi Wang1, 2, Yuanyuan Zhao1, 2, Hui Wang4, Weijun Zhang1, 2, Zhaosheng Yao1, 2, Shengping Liu3, Xiaochun Zhong3#, Chengming Sun1, 2#

1 Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou 225009, China

2 Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

3 Agricultural Information Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-information Services Technology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China

4 Lixiahe Institute of Agricultural Sciences, Yangzhou 225012, China

 Highlights 
Developed a novel biomass estimation model, AUR-50, with an average R² exceeding 0.77.  
Enhanced model accuracy by integrating convolutional features into traditional image features.  
Reduced the impact of vegetation saturation on estimation accuracy using convolutional features.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

地上生物量(AGB)是反映小麦群体生命活动的重要指标,对小麦生长监测和产量预测具有重要意义。传统的生物量统计方法主要通过人工取样调查来完成。尽管这些方法具有很高的估算精度,但该方法需要破坏性取样,操作耗时长,且难以大规模监测。本研究在传统遥感估测生物量的基础上进行方法优化,基于改进的卷积特征(CFs)来估算小麦AGB。研究通过低成本的无人机(UAV)作为主要数据采集设备,获取了两种小麦品种在五个关键生长期的RGB和多光谱(MS)影像数据。同时进行了田间测量,以获得实际的小麦生物量数据用于验证。基于遥感指数(RSIs)、结构特征(SFs)和卷积特征(CFs),本研究提出了一种新的特征AUR-50来估算小麦AGB。结果表明,AUR-50RSIsSFs更能准确地估算小麦AGB,平均超过0.77。在越冬期,AUR-50MS具有最高的估算精度(0.88)。此外,通过增加CFs,本文提出的方法降低了由于生育后期光谱饱和对生物量估算精度的影响,在开花期的最高0.69。本研究结果为高通量估测小麦AGB提供了一种有效方法,并为其他作物的表型参数研究提供了参考。



Abstract  

The wheat above-ground biomass (AGB) is an important index that shows the life activity of vegetation, which is of great significance for wheat growth monitoring and yield prediction.  Traditional biomass estimation methods specifically include sample surveys and harvesting statistics.  Although these methods have high estimation accuracy, they are time-consuming, destructive, and difficult to implement to monitor the biomass at a large scale.  The main objective of this study is to optimize the traditional remote sensing methods to estimate the wheat AGB based on improved convolutional features (CFs).  Low-cost unmanned aerial vehicles (UAV) were used as the main data acquisition equipment.  This study acquired RGB and multi-spectral (MS) image data of the wheat population canopy for two wheat varieties and five key growth stages.  Then, field measurements were conducted to obtain the actual wheat biomass data for validation.  Based on the remote sensing indices (RSIs), structural features (SFs), and convolutional features (CFs), this study proposed a new feature named AUR-50 (Multi-source combination based on convolutional feature optimization) to estimate the wheat AGB.  The results show that AUR-50 could more accurately estimate the wheat AGB than RSIs and SFs, and the average R2 exceeded 0.77.  AUR-50MS had the highest estimation accuracy (R2 of 0.88) in the overwintering period.  In addition, AUR-50 reduced the effect of the vegetation index saturation on the biomass estimation accuracy by adding CFs, where the highest R2 was 0.69 at the flowering stage.  The results of this study provide an effective method to evaluate the AGB in wheat with high throughput and a research reference for the phenotypic parameters of other crops.

Keywords:  wheat       above-ground biomass        UAV        entire growth stage        convolutional feature  
Received: 12 April 2024   Accepted: 30 May 2024
Fund: 
This research was supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (SJCX23_1973), the National Natural Science Foundation of China (32172110, 32071945), the Key Research and Development Program (Modern Agriculture) of Jiangsu Province, China (BE2022342-2, BE2020319), the Anhui Province Crop Intelligent Planting and Processing Technology Engineering Research Center Open Project, China (ZHKF04), the National Key Research and Development Program of China (2023YFD2300201, 2023YFD1202200), the Special Funds for Scientific and Technological Innovation of Jiangsu Province, China (BE2022425), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD), the Central Public-interest Scientific Institution Basal Research Fund, China (JBYW-AII-2023-08), the Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences (CAAS-CS-202201), and the Special Fund for Independent Innovation of Agriculture Science and Technology in Jiangsu Province, China (CX(22)3112).
About author:  #Correspondence Xiaochun Zhong, E-mail: zhongxiaochun@caas.cn; Chengming Sun, E-mail: cmsun@yzu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Tao Liu, Jianliang Wang, Jiayi Wang, Yuanyuan Zhao, Hui Wang, Weijun Zhang, Zhaosheng Yao, Shengping Liu, Xiaochun Zhong, Chengming Sun. 2025. Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features. Journal of Integrative Agriculture, 24(4): 1403-1423.

Ahmad I S, Reid J F. 1996. Evaluation of colour representations for maize images. Journal of Agricultural Engineering Research63, 185–195.

An J, Li W, Li M, Cui S, Yue H. 2019. Identification and classification of maize drought stress using deep convolutional neural network. Symmetry11, 256.

Bascon M V, Nakata T, Shibata S, Takata I, Kobayashi N, Kato Y, Inoue S, Doi K, Murase J, Nishiuchi S. 2022. Estimating yield-related traits using UAV-derived multispectral images to improve rice grain yield prediction. Agriculture12, 1141.

Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J, Gnyp M L, Bareth G. 2015. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation39, 79–87.

Bentéjac C, Csörgö A, Martínez-Muñoz G. 2021. A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review54, 1937–1967.

Boiarskii B, Hasegawa H. 2019. Comparison of NDVI and NDRE indices to detect differences in vegetation and chlorophyll content. Journal of Mechanics of Continua and Mathematical Sciences4, 20–29.

Brereton R G, Lloyd G R. 2010. Support vector machines for classification and regression. Analyst135, 230–267.

Broge N H, Leblanc E. 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment76, 156–172.

Castro W, Marcato Junior J, Polidoro C, Osco L P, Gonçalves W, Rodrigues L, Santos M, Jank L, Barrios S, Valle C. 2020. Deep learning applied to phenotyping of biomass in forages with UAV-based RGB imagery. Sensors20, 4802.

Cheng Z, Gu X, Du Y, Zhou Z, Li W, Zheng X, Cai W, Chang T. 2024. Spectral purification improves monitoring accuracy of the comprehensive growth evaluation index for film-mulched winter wheat. Journal of Integrative Agriculture23, 1523–1540.

Dikshit A, Pradhan B. 2021. Interpretable and explainable AI (XAI) model for spatial drought prediction. Science of the Total Environment801, 149797.

Feng X, Zhan Y, Wang Q, Yang X, Yu C, Wang H, Tang Z, Jiang D, Peng C, He Y. 2020. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping. The Plant Journal101, 1448–1461.

Fu Y, Yang G, Wang J, Song X, Feng H. 2014. Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements. Computers and Electronics in Agriculture100, 51–59.

Gitelson A A, Kaufman Y J, Stark R, Rundquist D. 2002. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment80, 76–87.

Gitelson A A, Viña A, Arkebauer T J, Rundquist D C, Keydan G, Leavitt B. 2003. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters30, 5.

Gong M J, Kou W L, Lu N, Chen Y, Sun Y K, Lai H Y, Chen B Q, Wang J, Li C. 2023. Individual tree AGB estimation of Malania oleifera based on UAV-RGB imagery and mask R-CNN. Forests14, 193.

Han L, Yang G, Dai H, Xu B, Yang H, Feng H, Li Z, Yang X. 2019. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods15, 1–19.

Haralick R M, Shanmugam K, Dinstein I H. 1973. Textural features for image classification. IEEE Transactions on SystemsManand Cybernetics6, 610–621.

Hauke J, Kossowski T. 2011. Comparison of values of Pearson's and Spearman’s correlation coefficients on the same sets of data. Quaestiones Geographicae30, 87–93.

Huang H, Huang J, Li X, Zhuo W, Wu Y, Niu Q, Su W, Yuan W. 2022. A dataset of winter wheat aboveground biomass in China during 2007–2015 based on data assimilation. Scientific Data9, 200.

Huang S, Tang L, Hupy J P, Wang Y, Shao G. 2021. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research32, 1–6.

Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment83, 195–213.

Jannoura R, Brinkmann K, Uteau D, Bruns C, Joergensen R G. 2015. Monitoring of crop biomass using true colour aerial photographs taken from a remote controlled hexacopter. Biosystems Engineering129, 341–351.

Jiang L, Kogan F N, Guo W, Tarpley J D, Mitchell K E, Ek M B, Tian Y, Zheng W, Zou C Z, Ramsay B H. 2010. Real-time weekly global green vegetation fraction derived from advanced very high resolution radiometer-based NOAA operational global vegetation index (GVI) system. Journal of Geophysical Research (Atmospheres), 115, D11.

Kawashima S, Nakatani M. 1998. An algorithm for estimating chlorophyll content in leaves using a video camera. Annals of Botany81, 49–54.

Lee J, Sung S. 2016. Evaluating spatial resolution for quality assurance of UAV images. Spatial Information Research24, 141–154.

Liu C, Yang G, Li Z, Tang F, Wang J, Zhang C, Zhang L. 2018. Biomass estimation in winter wheat by UAV spectral information and texture information fusion. Scientia Agricultura Sinica51, 3060–3073. (in Chinese)

Liu Y, Feng H, Fan Y, Yue J, Chen R, Ma Y, Bian M, Yang G. 2024a. Improving potato above ground biomass estimation combining hyperspectral data and harmonic decomposition techniques. Computers and Electronics in Agriculture218, 108699.

Liu Y, Feng H, Yue J, Fan Y, Bian M, Ma Y, Jin X, Song X, Yang G. 2023. Estimating potato above-ground biomass by using integrated unmanned aerial system-based optical, structural, and textural canopy measurements. Computers and Electronics in Agriculture213, 108229.

Liu Y, Feng H, Yue J, Jin X, Fan Y, Chen R, Bian M, Ma Y, Li J, Xu B. 2024b. Improving potato AGB estimation to mitigate phenological stage impacts through depth features from hyperspectral data. Computers and Electronics in Agriculture219, 108808.

Liu Y, Feng H, Yue J, Li Z, Yang G, Song X, Yang X, Zhao Y. 2022. Remote-sensing estimation of potato above-ground biomass based on spectral and spatial features extracted from high-definition digital camera images. Computers and Electronics in Agriculture198, 107089.

Louhaichi M, Borman M M, Johnson D E. 2001. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International16, 65–70.

Ma J, Li Y, Chen Y, Du K, Zheng F, Zhang L, Sun Z. 2019. Estimating above ground biomass of winter wheat at early growth stages using digital images and deep convolutional neural network. European Journal of Agronomy103, 117–129.

Maimaitijiang M, Sagan V, Sidike P, Hartling S, Esposito F, Fritschi F B. 2020. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sensing of Environment237, 111599.

Meyer G E, Neto J C. 2008. Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture63, 282–293.

Mishra S, Mishra D R. 2012. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sensing of Environment117, 394–406.

Nevavuori P, Narra N, Lipping T. 2019. Crop yield prediction with deep convolutional neural networks. Computers and Electronics in Agriculture163, 104859.

Rouse Jr J W, Haas R H, Deering D, Schell J, Harlan J C. 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Ervironmental ScienceE75, 10354

Schirrmann M, Hamdorf A, Garz A, Ustyuzhanin A, Dammer K H. 2016. Estimating wheat biomass by combining image clustering with crop height. Computers and Electronics in Agriculture121, 374–384.

Schreiber L V, Amorim J G A, Guimarães L, Matos D M, da Costa C M, Parraga A. 2022. Above-ground biomass wheat estimation: Deep learning with UAV-based RGB images. Applied Artificial Intelligence36, 2055392.

Shabbir A, Ali N, Ahmed J, Zafar B, Rasheed A, Sajid M, Ahmed A, Dar S H. 2021. Satellite and scene image classification based on transfer learning and fine tuning of ResNet50. Mathematical Problems in Engineering2021, 1–18.

Verhoeven G. 2011. Taking computer vision aloft–archaeological three-dimensional reconstructions from aerial photographs with photoscan. Archaeological Prospection18, 67–73.

Walter J, Edwards J, McDonald G, Kuchel H. 2018. Photogrammetry for the estimation of wheat biomass and harvest index. Field Crops Research216, 165–174.

Wang F, Yang M, Ma L, Zhang T, Qin W, Li W, Zhang Y, Sun Z, Wang Z, Li F. 2022. Estimation of above-ground biomass of winter wheat based on consumer-grade multi-spectral UAV. Remote Sensing14, 1251.

Wang X Q, Wang M M, Wang S Q, Wu Y D. 2015. Extraction of vegetation information from visible unmanned aerial vehicle images. Transactions of the Chinese Society of Agricultural Engineering31, 152–159.

Woebbecke D M, Meyer G E, Von Bargen K, Mortensen D A. 1995. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the Asae38, 259–269.

Xu H. 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing27, 3025–3033.

Xue J, Su B. 2017. Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors2017, 1353691.

Yao W, Li L. 2014. A new regression model: Modal linear regression. Scandinavian Journal of Statistics41, 656–671.

Yue J, Yang G, Li C, Li Z, Wang Y, Feng H, Xu B. 2017. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sensing9, 708.

Yue J, Yang G, Tian Q, Feng H, Xu K, Zhou C. 2019. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. ISPRS Journal of Photogrammetry and Remote Sensing150, 226–244.

Zeng W S. 2015. Integrated individual tree biomass simultaneous equations for two larch species in northeastern and northern China. Scandinavian Journal of Forest Research30, 594–604.

Zhang X, Xie B, Liu S, Tong X, Ding R, Xie H, Hong Z. 2022. A two-step block adjustment method for DSM accuracy improvement with elevation control of ICESat–2 data. Remote Sensing14, 4455.

Zhu W X, Rezaei E E, Nouri H, Sun Z G, Li J, Yu D Y, Siebert S. 2023. UAV flight height impacts on wheat biomass estimation via machine and deep learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing16, 7471–7485.

[1] Yuxiang Qin, Bao Zhang, Shoufu Cui, Xiaochun Qin, Genying Li. TaFLZ54D enhances salt stress tolerance in wheat by interacting with TaSGT1 and TaPP2C[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1017-1029.
[2] Yonghui Fan, Yue Zhang, Yu Tang, Biao Xie, Wei He, Guoji Cui, Jinhao Yang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Haipeng Zhang, Zhenglai Huang.
Response of wheat to winter night warming based on physiological and transcriptome analyses
[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1044-1064.
[3] Shuting Yu, Tianshu Wang, Li Wang, Shuihong Yao, Bin Zhang. Preceding crop rotation systems shape the selection process of wheat root-associated bacterial communities[J]. >Journal of Integrative Agriculture, 2025, 24(2): 739-753.
[4] Zimeng Liang, Xidan Cao, Rong Gao, Nian Guo, Yangyang Tang, Vinay Nangia, Yang Liu. Brassinosteroids alleviate wheat floret degeneration under low nitrogen stress by promoting the redistribution of sucrose from stems to spikes[J]. >Journal of Integrative Agriculture, 2025, 24(2): 497-516.
[5] Guohao Han, Jing Wang, Hanwen Yan, Lijun Cao, Shiyu Liu, Xiuquan Li, Yilin Zhou, Wei Liu, Tiantian Gu, Zhipeng Shi, Hong Liu, Lihui Li, Diaoguo An. Development and molecular cytogenetic identification of a new wheat–rye 6RL ditelosomic addition and 1R (1B) substitution line with powdery mildew resistance[J]. >Journal of Integrative Agriculture, 2025, 24(1): 72-84.
[6] Anmin Zhang, Zihong Li, Qirui Zhou, Jiawen Zhao, Yan Zhao, Mengting Zhao, Shangyu Ma, Yonghui Fan, Zhenglai Huang, Wenjing Zhang. An integrated physiology and proteomics analysis reveals the response of wheat grain to low temperature stress during booting[J]. >Journal of Integrative Agriculture, 2025, 24(1): 114-131.
[7] Mingming Wang, Jia Geng, Zhe Zhang, Zihan Zhang, Lingfeng Miao, Tian Ma, Jiewen Xing, Baoyun Li, Qixin Sun, Yufeng Zhang, Zhongfu Ni. Fine mapping and characterization of a major QTL for grain length, QGl.cau-2D.1, that has pleiotropic effects in synthetic allohexaploid wheat[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2911-2922.
[8] Hubing Zhao, Guanfei Liu, Yingxia Dou, Huimin Yang, Tao Wang, Zhaohui Wang, Sukhdev Malhi, Adnan Anwar Khan. Plastic mulch increases dryland wheat yield and water-use productivity, while straw mulch increases soil water storage[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3174-3185.
[9] Qing Liang, Xujing Yang, Yuheng Huang, Zhenwei Yang, Meichen Feng, Mingxing Qing, Chao Wang, Wude Yang, Zhigang Wang, Meijun Zhang, Lujie Xiao, Xiaoyan Song. Prediction of the potential distribution and analysis of the freezing injury risk of winter wheat on the Loess Plateau under climate change[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2941-2954.
[10] Zihui Liu, Xiangjun Lai, Yijin Chen, Peng Zhao, Xiaoming Wang, Wanquan Ji, Shengbao Xu. Selection and application of four QTLs for grain protein content in modern wheat cultivars[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2557-2570.
[11] Gensheng Zhang, Mudi Sun, Xinyao Ma, Wei Liu, Zhimin Du, Zhensheng Kang, Jie Zhao. Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2674-2685.
[12] Hui Chen, Hongxing Chen, Song Zhang, Shengxi Chen, Fulang Cen, Quanzhi Zhao, Xiaoyun Huang, Tengbing He, Zhenran Gao. Comparison of CWSI and Ts-Ta-VIs in moisture monitoring of dryland crops (sorghum and maize) based on UAV remote sensing[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2458-2475.
[13] Wenjie Yang, Jie Yu, Yanhang Li, Bingli Jia, Longgang Jiang, Aijing Yuan, Yue Ma, Ming Huang, Hanbing Cao, Jinshan Liu, Weihong Qiu, Zhaohui Wang. Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2421-2433.
[14] Yibo Hu, Feng Qin, Zhen Wu, Xiaoqin Wang, Xiaolong Ren, Zhikuan Jia, Zhenlin Wang, Xiaoguang Chen, Tie Cai. Heterogeneous population distribution enhances resistance to wheat lodging by optimizing the light environment[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2211-2226.
[15] Bingli Jiang, Wei Gao, Yating Jiang, Shengnan Yan, Jiajia Cao, Litian Zhang, Yue Zhang, Jie Lu, Chuanxi Ma, Cheng Chang, Haiping Zhang. Identification of P-type plasma membrane H+-ATPases in common wheat and characterization of TaHA7 associated with seed dormancy and germination[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2164-2177.
No Suggested Reading articles found!