Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
GmSWEET20, a sugar transporter, facilitates the simultaneous enhancement of yield and protein content in soybean

Miao Wang1, 3*, Lixin Zhang1*, Hui Jiang1, Mahmoud Naser1, Yanhui Sun1, Peiguo Wang1, 2, Chenchen Zhou1, Shan Yuan1, Bingjun Jiang1, Tingting Wu1, Shi Sun1#, Tianfu Han1, 2, 3#

1 State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2 National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572000, China

3 College of Agriculture, Northeast Agricultural University, Harbin 150030, China

 Highlight 

GmSWEET20 concurrently enhances yield and seed protein content in soybean. 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

大豆作为优质蛋白质和油脂的重要来源,在人类膳食和动物饲料中具有不可替代的作用。随着全球大豆需求的持续增长,提高其产量和品质已成为当前研究的首要目标。糖外排转运蛋白(SWEET)在调控种子发育和品质形成中发挥关键作用。本研究以GmSWEET20为研究对象,系统分析了其表达模式、生物学功能、调控机制及单倍型特征。研究结果显示,GmSWEET20定位于质膜,在叶片和发育中的种子中呈现高表达特征;过表达该基因可显著提高单株种子数、总产量及粗蛋白含量。这一效应与GmSWEET10a/10b(同时增加种子大小和含油量)形成鲜明对比,揭示了GmSWEETs家族成员在调控大豆产量与品质性状方面的功能分化。本研究为大豆高产优质育种提供了重要的理论依据和新的研究思路。



Abstract  

Soybean (Glycine max [L.] Merr.) is a crucial source of high-quality protein and oil, indispensable for human consumption and animal feed.  The increasing global demand for soybeans has rendered the enhancement of its productivity and quality a paramount goal.  Sugar Will Eventually Be Exported Transporter (SWEET) proteins are crucial for seed size and quality.  This study examined the role of GmSWEET20 to elucidate its expression pattern, function, regulatory mechanisms, and haplotypes.  Our results demonstrated that GmSWEET20 is situated in the plasma membrane and is predominantly expressed in leaves and developing seeds.  Overexpression of GmSWEET20 increased the seed number per plant, total yield, and crude protein content.  This contrasts with GmSWEET10a/10b, which simultaneously increased seed size and oil content.  These findings highlight the functional diversity of the GmSWEETs family in regulating yield and quality.  This research offers novel concepts and theoretical support for high-yield soybean breeding methodologies.

Keywords:  GmSWEET       quality       seed number       soybean       sugar transport       yield  
Online: 18 June 2025  
Fund: 

This work was supported by the National Key R&D Program of China (2023YFD12013020), the Nanfan Special Project of Chinese Academy of Agricultural Sciences (YBXM2428), the Earmarked fund for China Agriculture Research System (CARS-04), and the Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences.

About author:  #Correspondence Tianfu Han, E-mail: hantianfu@caas.cn; Shi Sun, E-mail: sunshi@caas.cn *These authors have contributed equally to this work.

Cite this article: 

Miao Wang, Lixin Zhang, Hui Jiang, Mahmoud Naser, Yanhui Sun, Peiguo Wang, Chenchen Zhou, Shan Yuan, Bingjun Jiang, Tingting Wu, Shi Sun, Tianfu Han. 2025. GmSWEET20, a sugar transporter, facilitates the simultaneous enhancement of yield and protein content in soybean. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.06.020

Aluko O O, Li C Z, Wang Q, Liu H. 2021. Sucrose utilization for improved crop yields: A review article. International Journal of Molecular Sciences, 22, 4704-4715.

Ayre G B. 2011. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Molecular Plant, 4, 377-394.  

Bezrutczyk M, Hartwig T, Horschman M, Char S N, Yang J L, Yang B, Frommer W, Sosso D. 2018. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays. New Phytologist, 218, 594-603.  

Braun D M. 2012. SWEET! The pathway is complete. Science, 335, 173-174.  

Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468, 527-532.

Chen L Q, Lin I W, Qu X Q, Sosso D, Mcfarlane H E, Londono A, Samuels A L, Frommer W B. 2015. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis Embryo. Plant Cell, 27, 607-619.

Chen L Q, Qu X Q, Hou B H, Sosso D, Osorio S, Fernie A R, Frommer W B. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 335, 207-211.

Chen L, Cai Y, Liu X, Yao W, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W. 2018. Improvement of soybean Agrobacterium-mediated transformation efficiency by adding glutamine and asparagine into the culture media. International Journal of Molecular Sciences, 19, 3039-3056.

Duan Z B, Zhang M, Zhang Z F, Liang S, Fan L, Yang X, Yuan Y Q, Pan Y, Zhou G A, Liu S L, Tian Z X. 2022. Natural allelic variation of GmST05 controlling seed size and quality in soybean. Plant Biotechnology Journal, 20, 1807-1818.

Duan Z B, Li Q, Wang H, He X M, Zhang M. 2023. Genetic regulatory networks of soybean seed size, oil and protein contents. Frontiers in Plant Science, 14, 1160418.

Guo J, Gu X T, Lu W P, Lu D L. 2021. Multiomics analysis of kernel development in response to short-term heat stress at the grain formation stage in waxy maize. Journal of Experimental Botany, 72, 6291-6304.

Fehr W R, Caviness C E, Burmood D T, Pennington J S. 1971. Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Science, 11, 929-931.

Guo W J, Nagy R, Chen H Y, Pfrunder S, Yu Y C, Santelia D, Frommer W B, Martinoia E. 2014. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiology, 164, 777-789.

He K X, Cao X F, Deng X. 2021. Histone methylation in epigenetic regulation and temperature responses. Current Opinion in Plant Biology, 61, 102001.

Hir R L, Spinner L, Klemens P A W, Chakraborti D, Marco F D, Vilaine F, Wolff N, Lemoine R, Porcheron B, Gery C, Teoule E, Chabout S, Mouille G, Neuhaus H E, Dinant S, Bellini C. 2015. Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Molecular Plant, 8, 1687-1690.

Hooker J C, Nissan N, Luckert D, Zapata G, Hou A, Mohr R M, Glenn A J, Barlow B, Daba K A, Warkentin T D, Lefebvre F, Golshani A, Cober E R, Samanfar B. 2022. GmSWEET29 and Paralog GmSWEET34 are differentially expressed between soybeans grown in eastern and western Canada. Plants, 11, 2337-2357.

Ji J, Yang L, Fang Z, Zhang Y, Zhuang M, Lv H, Wang Y. 2022. Plant SWEET family of sugar transporters: structure, evolution and biological functions. Biomolecules, 12, 205-224.  

Jian B, Liu B, Bi B, Hou W, Wu C, Han T. 2008. Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Molecular Biology, 9, 59.

Ko H Y, Ho L H, Neuhaus H E, Guo W J. 2021. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato. Plant Physiology, 187, 2230-2245.

Lin I W, Sosso D, Chen L Q, Gase K, Kim S G, Kessler D, Klinkenberg P M, Gorder M K, Hou B H, Qu X Q, Carter C J, Baldwin I T, Frommer W B. 2014. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, 508, 546-549.

Liu Y C, Zhang Y, Liu X N, Shen Y T, Tian D M, Yang X Y, Liu S L, Ni L B, Zhang Z, Song S H, Tian Z X. 2023. SoyOmics: A deeply integrated database on soybean multi-omics. Molecular Plant, 16, 794-797.

Luo M, Jia M X, Pan L, Chen W F, Zhou K, Xi WP. 2024. Sugar transporters PpSWEET9a and PpSWEET14 synergistically mediate peach sucrose allocation from source leaves to fruit. Communications Biology, 7, 1068.

Ma L, Zhang D C, Miao Q S, Yang J, Xuan Y H, Hu Y B. 2017. Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling. Plant Cell Physiology, 58, 863-873.

Miao L, Yang S N, Zhang K, He J B, Wu C H, Ren Y H, Gai J Y, Li Y. 2020. Natural variation and selection in GmSWEET39 affect soybean seed oil content. New Phytologist, 225, 1651-1666.

Moore C E, Katherine M H, Lemonnier P, Slattery R A, Benjamin C, Bernacchi C J, Lawson C, Cavanagh A P. 2021. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. Journal of Experimental Botany, 72, 2822-2844.

Patil G, Valliyodan B, Deshmukh R, Prince S, Nicander B, Zhao M Z, Sonah H, Song L, Lin L, Chaudhary J, Liu Y, Joshi T, Xu D, Nguyen H T. 2015. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genomics, 16, 520-536.  

Radchuk V, Belew Z M, Gundel A, Mayer S, Hilo A, Hensel G, Sharma R, Neumann K, Ortleb S, Wagner S, Muszynska A, Crocoll C, Xu D Y, Hoffie I, Kumlehn J, Fuchs J, Peleke F, Szymanski J J, Rolletschek, Eidin H H N, Borisjuk L. 2023. SWEET11b transports both sugar and cytokinin in developing barley grains. Plant Cell, 35, 2186-2207.

Rotundo J L, Marshall R, McCormick R, Truong S K, Styles D, Gerde J A, Escobar E G, Silva E C, Bassett V J, Logue J, Annicchiarico P, Visser C D, Dind A, Dodd I C, Dye L, Long S P, lopes M S, Pannecoucque J, Reckling M, Rushton J, Schmid N, Shield I, Signor M, Messina C D, Rufino M C. 2024. European soybean to benefit people and the environment. Scientific Reports, 14, 7612.

Singh J, Das S, Gupta K J, Ranjan A, Foyer C H, Thakur J K. 2022. Physiological implications of SWEETs in plants and their potential applications in improving source-sink relationships for enhanced yield. Plant Biotechnology Journal, 21, 1528-1541.

Smith M R, Rao I M, Merchant A. 2018. A source-sink relationships in crop plants and their influence on yield development and nutritional quality. Frontiers in Plant Science, 9, 1889-1899.

Sosso D, Luo D P, Li Q B, Sasse J, Yang J L, Gendrot G, Suzuki M, Koch K E, Mccarty D R, Chourey P S, Rogowsky P M, Ibarra J R, Yang B, Frommer W B. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics, 47, 1489-1493.

Su T, Liu H, Wu Y C, Wang J H, He F L, Li H Y, Li S C, Wang L S, Li L X, Cao J, Lu Q L, Zhao X H, Xiang H T, Lin C, Lu S J, Liu B H, Kong F J, Fang C. 2024. Soybean hypocotyl elongation is regulated by a MYB33-SWEET11/21-GA2ox8c module involving long-distance sucrose transport. Plant Biotechnology Journal, 22, 2859-2872.

Streubel J, Pesce C, Hutin M, Koebnik R, Boch Jens, Szurek B. 2013. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytologist, 200, 808-819.

Wang J, Xue X Y, Zeng H Q, Li J K, Chen L Q. 2022. Sucrose rather than GA transported by Atsweet13 and Atsweet14 supports pollen fitness at late anther development stages. New Phytologist, 236, 525-537.

Wang S D, Liu S L, Wang J, Yokosho K, Zhou B, Yu Y C, Liu Z, Frommer W B, Ma J F, Chen L Q, Guan Y F, Shou H X, Tian Z X. 2020. Simultaneous changes in seed size, oil content, and protein content driven by selection of SWEET homologues during soybean domestication. National Science Review, 7, 1776-1786.  

Wang S D, Yokosho K, Guo R Z, Whelan J, Ruan Y L, Ma J F, Shou H X. 2019. The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo. Plant Physiology, 180, 2133-2141.   

Wen S, Neuhaus HE, Cheng J, Bie Z. 2022. Contributions of sugar transporters to crop yield and fruit quality. Journal of Experimental Botany, 73, 2275-2289.

Williams L E, Lemoine R, Sauer N. 2000. Sugar transporters in higher plants-a diversity of roles and complex regulation. Trends in Plant Science, 5, 283-290.

Yang J, Luo D P, Yang B, Frommer W B, Eom J S. 2017. SWEET11 and 15 as key players in seed filling in rice. New Phytologist, 218, 604-615.

Yuan M, Chu Z H, Li X H, Xu C G, Wang S P. 2010. The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell, 22, 3164-3176.

Yuan M, Wang S P. 2013. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Molecular Plant, 6, 665-674.

Zhang H Y, Goettel W, Song Q J, Jiang H, Hu Z B, Wang M L, An Y Q C. 2020. Dual use and selection of GmSWEET39 for oil and protein improvement in soybean. PLoS Genetics, 16, e1009114.  

Zhang M, Liu S L, Wang Z, Yuan Y Q, Zhang Z F, Liang Q J, Yang X, Duan Z B, Liu Y C, Kong F J, Liu B H, Ren B, Tian Z X. 2022. Progress in soybean functional genomics over the past decade. Plant Biotechnology Journal, 20, 256-282.

Zhang X S, Feng C Y, Wang M N, Li T L, Liu X, Jiang J. 2021. Plasma membrane-localized SlSWEET7a and SlSWEET14 regulate sugar transport and storage in tomato fruits. Horticulture Research, 8, 186.  

Zhang Z F, Finer J. 2015. Soybean actin, heat shock protein, and ribosomal protein promoters direct tissue-specific transgene expression in transgenic soybean. In Vitro Cellular & Developmental Biology-Plant, 51, 9-18.


[1] Runnan Zhou, Sihui Wang, Peiyan Liu, Yifan Cui, Zhenbang Hu, Chunyan Liu, Zhanguo Zhang, Mingliang Yang, Xin Li, Xiaoxia Wu, Qingshan Chen, Ying Zhao. Genome-wide characterization of soybean malate dehydrogenase genes reveals a positive role for GmMDH2 in the salt stress response[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2492-2510.
[2] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[3] Berhane S. Gebregziabher, Shengrui Zhang, Jing Li, Bin Li, Junming Sun. Identification of genomic regions and candidate genes underlying carotenoid accumulation in soybean using next-generation sequen-cing based bulk segregant analysis[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2063-2079.
[4] Kuanyu Zhu, Yuemei Xu, Zhiwei Sun, Yajun Zhang, Weiyang Zhang, Yunji Xu, Junfei Gu, Hao Zhang, Zhiqin Wang, Lijun Liu, Jianhua Zhang, Jianchang Yang. Post-anthesis dry matter production and leaf nitrogen distribution are associated with root-derived cytokinins gradient in rice[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2106-2122.
[5] Abdoul Kader Mounkaila Hamani, Sunusi Amin Abubakar, Yuanyuan Fu, Djifa Fidele Kpalari, Guangshuai Wang, Aiwang Duan, Yang Gao, Xiaotang Ju. The coupled effects of various irrigation schedules and split nitrogen fertilization modes on post-anthesis grain weight variation, yield, and grain quality of drip-irrigated winter wheat (Triticum aestivum L.) in the North China Plain[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2123-2137.
[6] Xiaoqiang Liu, Mingqi Li, Dong Xue, Shuai He, Junliang Fan, Fucang Zhang, Feihu Yin. Optimal drip irrigation leaching amount and timing enhanced cotton fiber yield, quality and nitrogen uptake by regulating soil salinity and nitrate nitrogen in saline-alkaline fields[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2389-2409.
[7] Jiaying Ma, Jian Liu, Yue Wen, Zhanli Ma, Jinzhu Zhang, Feihu Yin, Tehseen Javed, Jihong Zhang, Zhenhua Wang. Enhancing the yield and water use efficiency of processing tomatoes (Lycopersicon esculentum Miller) through optimal irrigation and salinity management under mulched drip irrigation[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2410-2424.
[8] Congrui Sun, Runze Wang, Jiaming Li, Xiaolong Li, Bobo Song, David Edwards, Jun Wu. Pan-transcriptome analysis provides insights into resistance and fruit quality breeding of pear (Pyrus pyrifolia)[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1813-1830.
[9] Liang Wang, Nijiang Ai, Zechang Zhang, Chenhui Zhou, Guoli Feng, Sheng Cai, Ningshan Wang, Liuchun Feng, Yu Chen, Min Xu, Yingying Wang, Haoran Yue, Mengfei Chen, Liangshuai Xing, Baoliang Zhou. Development of Gossypium hirsutumGossypium raimondii introgression lines and their use in QTL mapping of agricultural traits[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1688-1703.
[10] Zhaowen Mo, Siren Cheng, Yong Ren, Longxin He, Shenggang Pan, Haidong Liu, Hua Tian, Umair Ashraf, Meiyang Duan, Xiangru Tang. Reduced tillage coupled with straw return improves the grain yield and 2-acetyl-1-pyrroline content in fragrant rice[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1718-1737.
[11] Qianqian Shi, Xue Han, Xinhao Zhang, Jie Zhang, Qi Fu, Chen Liang, Fangmeng Duan, Honghai Zhao, Wenwen Song. Transcriptome-wide N6-methyladenosine (m6A) profiling of compatible and incompatible responses reveals a nonhost resistance-specific m6A modification involved in soybean–soybean cyst nematode interaction[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1875-1891.
[12] Dong An, Xingfa Lai, Tianfu Han, Jean Marie Vianney Nsigayehe, Guixin Li, Yuying Shen. Crossing latitude introduction delayed flowering and facilitated dry matter accumulation of soybean as a forage crop[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1436-1447.
[13] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[14] Xiaolong Wang, Xuedong Shao, Zhengwen Zhang, Xiaomin Zhong, Xiaohao Ji, Xiangbin Shi, Chang Liu, Zhiqiang Wang, Fengzhi Liu, Haibo Wang. Multi-nutrient fertilization-based analysis of fruit quality and mineral element composition during fruit development in Merlot wine grapevines[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1503-1514.
[15] Mengyan Cao, Shaoping Ye, Cheng Jin, Junkang Cheng, Yao Xiang, Yu Song, Guorong Xin, Chuntao He. The communities of arbuscular mycorrhizal fungi established by different winter green manures in paddy fields promote post-cropping rice production[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1588-1605.
No Suggested Reading articles found!