Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1875-1891    DOI: 10.1016/j.jia.2023.10.023
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Transcriptome-wide N6-methyladenosine (m6A) profiling of compatible and incompatible responses reveals a nonhost resistance-specific m6A modification involved in soybean–soybean cyst nematode interaction

Qianqian Shi1, 2*, Xue Han2*, Xinhao Zhang1*, Jie Zhang1, Qi Fu1, Chen Liang1, Fangmeng Duan1, Honghai Zhao1# , Wenwen Song1#

1 College of Plant Health and Medicine/Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao/Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao 266109, China

2 College of Agriculture, Northeast Agricultural University, Harbin 150030, China

 Highlights 
The m6A modifications reveal distinct post-transcriptional mechanisms in compatible and incompatible soybean–SCN interactions.
Incompatible responses exhibit elevated m6A methylation level, more differentially modified peaks and differentially expressed genes (DEGs) than compatible responses.
Differentially m6A-modified DEGs are mainly involved in plant–pathogen (compatible) and folate biosynthesis (incompatible) pathways.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

大豆孢囊线虫(Soybean cyst nematode, SCN; Heterodera glycines)是世界范围内最具破坏性的大豆病原物之一。研究大豆-SCN互作机制对提出新的病害防控策略、培育抗大豆孢囊线虫病的大豆新品种具有重要实践意义。SCN侵染可诱导大豆的多个差异基因上调或下调表达。然而,差异基因表达变化的调控机制在很大程度上仍未被探索。N6 -甲基腺苷(m6A)甲基化是最广泛存在的mRNA修饰之一,在植物响应病原物侵染过程中发挥重要的转录重编程的调控作用。然而,在大豆对SCN的亲和性和非亲和性反应中是否也存在m6A甲基化对差异基因的表达调控作用尚未明确。为此,本研究首先明确了大豆品种Williams 82 SCN race 3具有敏感性(亲和性反应),但对SCNT(大豆孢囊线虫烟草群体)存在非寄主抗性(非亲和性反应);其次通过液相色谱-串联质谱法检测了m6A/A比率。结果表明,与亲和性反应相比,m6A甲基化整体水平在非亲和性反应中显著升高;在此基础上,通过N6-甲基腺苷(m6A)全转录组比较了大豆对SCN的亲和性和非亲和性反应的差异。在非亲和性反应中,差异修饰m6A峰(differentially modified m6A peaks, DMPs)和差异表达基因(differentially expressed genes, DEGs)的数量均显著增多;在亲和反应和非亲和反应中,分别存在133194个差异表达基因的m6A甲基化修饰水平也表现出差异显著性 (我们将这些基因称为DMDs)。亲和反应中的DMDs显著富集在玉米素生物合成、植物-病原互作、糖酵解/糖异生和醚脂质代谢途径,且与植物-病原互作途径相关的DMDs表达量下调最多;而与SCNT侵染的非亲和反应中仅叶酸生物合成通路被显著富集,且该通路的DMDs表达量上调最多。综上所述,本研究首次明确了大豆-SCN互作中存在m6A甲基化修饰,且m6A全转录组在大豆和SCN的亲和和非亲和反应中存在差异。研究结果为大豆-SCN的非寄主抗性反应在转录后修饰水平上的调控机制提供了新的见解,对提高大豆抗SCN育种有重要应用价值。



Abstract  

Soybean cyst nematode (SCN, Heterodera glycines) is a devastating pathogen that infects soybean (Glycine max L. Merrill) and disrupts soybean production worldwide.  SCN infection upregulates or downregulates the expression of multiple genes in soybean.  However, the regulatory mechanisms that underlie these changes in gene expression remain largely unexplored.  N6-methyladenosine (m6A) methylation, one of the most prevalent mRNA modifications, contributes to transcriptional reprogramming during plant responses to pathogen infection.  Nevertheless, the role of m6A methylation in establishing compatible and incompatible soybean responses to SCN has not previously been studied.  Here, we performed transcriptome-wide m6A profiling of soybean roots infected with virulent and avirulent populations of SCN.  Compared with the compatible response, the incompatible response was associated with higher global m6A methylation levels, as well as more differentially modified m6A peaks (DMPs) and differentially expressed genes (DEGs).  A total of 133 and 194 genes showed significant differences in both transcriptional expression and m6A methylation levels in compatible and incompatible interactions; the most significantly enriched gene ontology terms associated with these genes were plant–pathogen interaction (compatible) and folate biosynthesis (incompatible).  Our findings demonstrate that the m6A methylation profiles of compatible and incompatible soybean responses are distinct and provide new insights into the regulatory mechanism underlying soybean response to SCN at the post-transcriptional modification level, which will be valuable for improving the SCN-resistant breeding.

Keywords:  N6-methyladenosine        soybean cyst nematode        MeRIP-seq        RNA-seq  
Received: 18 April 2023   Online: 21 October 2023   Accepted: 11 September 2023
Fund: This study is supported by the National Natural Science Foundation of China (31901858 and 31901859).  
About author:  Qianqian Shi, E-mail: shiqianqian@qau.edu.cn; #Correspondence Honghai Zhao, E-mail: hhzhao@qau.edu.cn; Wenwen Song, E-mail: wwsong@qau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Qianqian Shi, Xue Han, Xinhao Zhang, Jie Zhang, Qi Fu, Chen Liang, Fangmeng Duan, Honghai Zhao, Wenwen Song. 2025. Transcriptome-wide N6-methyladenosine (m6A) profiling of compatible and incompatible responses reveals a nonhost resistance-specific m6A modification involved in soybean–soybean cyst nematode interaction. Journal of Integrative Agriculture, 24(5): 1875-1891.

Arenhart R A, Bai Y, de Oliveira L F V, Neto L B, Schunemann M, Maraschin F S, Mariath J, Silverio A, Sachetto-Martins G, Margis R, Wang Z Y, Margis-Pinheiro M. 2013. New insights into aluminum tolerance in rice: The ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes. Molecular Plant7, 709–721.

Basu D, Haswell E S. 2020. The mechanosensitive ion channel MSL10 potentiates responses to cell swelling in Arabidopsis seedlings. Current Biology30, 2716–2728.

Cakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R. 2003. A grape ASR protein involved in sugar and abscisic acid signaling. The Plant Cell15, 2165–2180.

Cheng Z C, Zhao H H, Li J L, Zhang C S, Wang F L. 2012. Identification of tobacco-parasitizing cyst nematode and intrapopulation rDNA-ITS-RFLP analysis in Shandong province. Acta Phytopathologica Sinica42, 387–395. (in Chinese)

Daykin M E, Hussey H S. 1985. Staining and histopathological techniques in nematology. In: Barker K R, Carter C C, Sasser J N, eds., An Advanced Treatise on MeloidogyneMethodology, vol II. North Carolina State University Graphics, Raleigh. pp. 39–48.

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature485, 201–206.

Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim M S, Dai Q, Segni A D, Salmon-Divon M, Clark W C, Zheng G Q, Pan T, Solomon O, Eyal E, Hershkovitz V, Han D L, Doré L C, Amariglio N, Rechavi G, He C. 2016. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature530, 441–446.

Dong X, Hong Z, Chatterjee J, Kim S, Verma D. 2008. Expression of callose synthase genes and its connection with NPR1 signaling pathway during pathogen infection. Planta229, 87–98.

Duan H C, Wei L H, Zhang C, Wang Y, Chen L, Lu Z, Chen P R, He C, Jia G F. 2017. ALKBH10B Is an RNA N6-methyladenosine demethylase affecting Arabidopsis floral transition. The Plant Cell29, 2995–3011.

Dufresne M, Bailey J A, Dron M, Langin T. 1998. clk1, a serine/threonine protein kinase-encoding gene, is involved in pathogenicity of Colletotrichum lindemuthianum on common bean. Molecular Plant-Microbe Interactions11, 99–108.

Durrant W E, Rowland O, Piedras P, Hammond-Kosack K E, Jones J D G. 2000. cDNA-AFLP reveals a striking overlap in race specific resistance and wound response gene expression profiles. The Plant Cell12, 963–977.

Ge C X, Tang C X, Zhu Y X, Wang G F. 2021. Genome-wide identification of the maize 2OGD superfamily genes and their response to Fusarium verticillioides and Fusarium graminearumGene764, 145078.

Gillet F X, Bournaud C, Antonino D S J J D, Grossi-De-Sa M F. 2017. Plantparasitic nematodes: Towards understanding molecular players in stress responses. Annals of Botany119, 775–789.

Govindan G, Sharma B, Li Y F, Armstrong C D, Merum P, Rohila J S, Gregory B D, Sunkar R. 2022. mRNA N6-methyladenosine is critical for cold tolerance in ArabidopsisPlant Journal111, 1052–1068.

Gu Y Q, Wildermuth M C, Chakravarthy S, Loh Y T, Yang C M, He X H, Han Y, Martin G B. 2002. Tomato transcription factors Pti4Pti5, and Pti6 activate defense responses when expressed in ArabidopsisThe Plant Cell14, 817–831.

Guo X L, Chronis D, Torre C M D L, Smeda J, Wang X H, Mitchum M G. 2015. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors. Plant Biotechnology Journal13, 801–810.

Han X, Shi Q Q, He Z Y, Song W W, Chen Q S, Qi Z M. 2022. Transcriptome-wide N6-methyladenosine (m6A) methylation in soybean under Meloidogyne incognita infection. aBIOTECH3, 197–211.

Han X, Wang J L, Zhang Y, Kong Y L, Dong H Y, Feng X Z, Li T S, Zhou C J, Yu J D, Xin D W, Chen Q S, Qi Z M. 2023. Changes in the m6A RNA methylome accompany the promotion of soybean root growth by rhizobia under cadmium stress. Journal of Hazardous Materials441, 129843.

He P C, Wei J B, Dou X Y, Harada B T, Zhang Z J, Ge R Q, Liu C, Zhang L S, Yu X B, Wang S, Lyu R T, Zou Z Y, Chen M J, He C. 2023. Exon architecture controls mRNA m6A suppression and gene expression. Science379, 677–682.

He Y J, Li L L, Yao Y X, Li Y L, Zhang H Q, Fan M. 2021. Transcriptome-wide N6-methyladenosine (m6A) methylation in watermelon under CGMMV infection. BMC Plant Biology21, 516.

Heinz S, Benner C, Spann N, Bertolino E, Lin Y C, Laslo P, Cheng J X, Murre C, Singh H, Glass C K. 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Molecular Cell38, 576–589.

Hou Y F, Sun J, Wu B X, Gao Y Y, Nie H B, Nie Z T, Quan S X, Wang Y, Cao X F, Li S S. 2021. CPSF30-L-mediated recognition of mRNA m6A modification controls alternative polyadenylation of nitrate signaling-related gene transcripts in ArabidopsisMolecular Plant14, 688–699.

Hu J Z, Cai J, Park S J, Lee K, Li Y X, Chen Y, Yun J Y, Xu T, Kang H S. 2021. N6-Methyladenosine mRNA methylation is important for salt stress tolerance in ArabidopsisPlant Journal106, 1759–1775.

Huang M H, Jiang Y, Qin R F, Jiang D, Chang D D, Tian Z Y, Li C J, Wang C L. 2022. Full-length transcriptional analysis of the same soybean genotype with compatible and incompatible reactions to Heterodera glycines reveals nematode infection activating plant defense response. Fronters in Plant Science13, 866322.

Jeyaraj A, Wang X W, Wang S S, Liu S R, Zhang R, Wu A, Wei C L. 2019. Identification of regulatory networks of microRNAs and their targets in response to Colletotrichum gloeosporioides in tea plant (Camellia sinensis L). Frontiers in Plant Science10, 1096.

Kammerhofer N, Radakovic Z, Regis J M A, Dobrev P, Vankova R, Grundler F M W, Siddique S, Hofmann J, Wieczorek K. 2015. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in ArabidopsisNew Phytologist207, 778–789.

Klink V P, Overall C C, Alkharouf N W, MacDonald M H, Matthews B F. 2007. A time-course comparative microarray analysis of an incompatible and compatible response by Glycine max (soybean) to Heterodera glycines (soybean cyst nematode) infection. Planta226, 1423–1447.

Ko J H, Yang S H, Han K H. 2006. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant Journal47, 343–355.

Koiwai H, Tagiri A, Katoh S, Katoh E, Ichikawa H, Minami E, Nishizawa Y. 2007. RING-H2 type ubiquitin ligase EL5 is involved in root development through the maintenance of cell viability in rice. Plant Journal51, 92–104.

Krishnan A, Chidambareswaren M, Tomson M, Manjula S. 2015. Virus-induced gene silencing (VIGS) for elucidation of pathogen defense role of serine/threonine protein kinase in the non-model plant Piper colubrinum link. The Plant Cell Tissue and Organ Culture122, 269–283.

Li B, Wang X, Li Z, Lu C, Zhang Q, Chang L, Li W, Cheng T, Xia Q, Zhao P. 2019. Transcriptome-wide analysis of N6-methyladenosine uncovers its regulatory role in gene expression in the lepidopteran Bombyx moriInsect Molecular Biology28, 703–715.

Li S, Chen Y, Zhu X, Wang Y, Jung K H, Chen L, Xuan Y H, Duan Y X. 2018. The transcriptomic changes of Huipizhi Heidou (Glycine max), a nematode resistant black soybean during Heterodera glycines race 3 infection. Plant Physiology220, 96–104.

Liang Z, Geng Y, Gu X. 2018. Adenine methylation: New epigenetic marker of DNA and mRNA. Molecular Plant11, 1219–1221.

Liu H Q, Liu Q C, Zhao H H. 2016. Comparative analysis of the parasitism between soybean and tobacco populations of Heterodera glycinesPlant Protection42, 68–73. (in Chinese)

Liu H Y, Dai J R, Feng D R, Liu B, Wang H B, Wang J F. 2010. Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses. Journal of Integrative Plant Biology52, 315–323.

Liu H Z, Zhang H J, Yang Y Y, Li G J, Yang Y X, Wang X E, Basnayake B M V S, Li D Y, Song F M. 2008. Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses. Plant Molecular Biology68, 17–30.

Liu Q, Mu B J, Meng Y J, Yu L M, Wang Z R, Jia T, Zheng W B, Gao W W, Xie S C, Zhu X Q. 2023. New insights into developmental biology of Eimeria tenella revealed by comparative analysis of mRNA N6-methyladenosine modifications between unsporulated oocysts and sporulated oocysts. Journal of Integrative Agriculture23, 239–250.

Liu S M, Kandoth P K, Warren S D, Yeckel G, Heinz R, Alden J, Yang C L, Jamai A, El-Mellouki T, Juvale P S, Hill J, Baum T J, Cianzio S, Whitham S A, Korkin D, Mitchum M G, Meksem K. 2012. A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature492, 256–260.

Liu Z, Zhang L P, Zhao J, Jian J Z, Peng H, Huang W K, Kong L A, Peng D L, Liu S M. 2022. A fragment of a 70-kDa Heterodera glycines heat shock protein (HgHSP70) interacts with soybean cyst nematode-resistant GmSHMT08. Journal of Integrative Agriculture21, 2973–2983.

Livak K J, Schmittgen T D. 2002. Analysis of relative gene expression data using real-time quantitative PCR. Methods25, 402–408.

Luo H, Song F, Goodman R M, Zheng Z. 2005. Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biology7, 459–468.

Luo X M, Wu W, Liang Y B, Xu N, Wang Z Y, Zou H S, Liu J. 2020. Tyrosine phosphorylation of the lectin receptor-like kinase LORE regulates plant immunity. The EMBO Journal39, e102856.

Maldonado A, Youssef R, Mcdonald M, Brewer E, Beard H, Matthews B. 2014. Overexpression of four Arabidopsis thaliana NHL genes in soybean (Glycine max) roots and their effect on resistance to the soybean cyst nematode (Heterodera glycines). Physiological and Molecular Plant Pathology86, 1–10.

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet Journal17, 10–12.

Martínez-Pérez M, Aparicio F, López-Gresa M P, Bellés J M, Sánchez-Navarro J A, Pallás V. 2017. Arabidopsis m6A demethylase activity modulates viral infection of a plant virus and the m6A abundance in its genomic RNAs. Proceedings of the National Academy of Sciences of the United States of America114, 10755–10760.

McNeece B T, Sharma K, Lawrence G W, Lawrence K S, Klink V P. 2019. The mitogen activated protein kinase (MAPK) gene family functions as a cohort during the Glycine max defense response to Heterodera glycinesPlant Physiology and Biochemistry137, 25–41.

Melillo M T, Leonetti P, Bongiovanni M, Castagnone-Sereno P, Bleve-Zacheo T. 2006. Modulation of reactive oxygen species activities and H2O2 accumulation during compatible and incompatible tomato-root-knot nematode interactions. New Phytologist170, 501–512.

Meng J, Lu Z L, Liu H, Zhang L, Zhang S W, Chen Y D, Rao M K, Huang Y F. 2014. A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package. Methods69, 274–281.

Miao Z Y, Zhang T, Qi Y H, Song J, Han Z X, Ma C. 2020. Evolution of the RNA N6-methyladenosine methylome mediated by genomic duplication. Plant Physiology182, 345–360.

Miraeiz E, Chaiprom U, Afsharifar A, Karegar A, Drnevich J M, Hudson M E. 2020. Early transcriptional responses to soybean cyst nematode HG Type 0 show genetic differences among resistant and susceptible soybeans. Theoretical and Applied Genetics133, 87–102.

Mondo S J, Dannebaum R O, Kuo R C, Louie K B, Bewick A J, LaButti K, Haridas S, Kuo A, Salamov A, Ahrendt S R, Lau R, Bowen B P, Lipzen A, Sullivan W, Andreopoulos B B, Clum A, Lindquist E, Daum C, Northen T R, Kunde-Ramamoorthy G, et al. 2017. Widespread adenine N6-methylation of active genes in fungi. Nature Genetics49, 964–968.

Nishimura M T, Stein M, Hou B H, Vogel J P, Edwards H, Somerville S C. 2003. Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science301, 969–972.

Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology33, 290–295.

Rambani A J, Hu Y F, Piya S, Long M, Rice J H, Pantalone V, Hewezi T. 2020a. Identification of differentially methylated miRNA genes during compatible and incompatible interactions between soybean and soybean cyst nematode. Molecular Plant–Microbe Interactions33, 1340–1352.

Rambani A J, Pantalone V, Yang S N, Rice J H, Song Q J, Mazarei M, Arelli P R, Meksem K, Stewart C N, Hewezi T. 2020b. Identification of introduced and stably inherited DNA methylation variants in soybean associated with soybean cyst nematode parasitism. New Phytologist227, 168–184.

Rambani A J, Rice J H, Liu J Y, Lane T, Ranjan P, Mazarei M, Pantalone V, Stewart C N J, Staton M, Hewezi T. 2015. The methylome of soybean roots during the compatible interaction with the soybean cyst nematode. Plant Physiology168, 1364–1377.

Redding N W, Paula A, Christina E W. 2018. Multiple nodulation genes are up-regulated during establishment of reniform nematode feeding sites in soybean. Phytopathology108, 275–291.

Robinson M D, McCarthy D J, Smyth G K. 2010. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics26, 139–140.

Shaibu A S, Li B, Zhang S R, Sun J M. 2020. Soybean cyst nematode-resistance: Gene identification and breeding strategies. The Crop Journal8, 892–904.

Shao Y, Wong C E, Shen L, Yu H. 2021. N6-methyladenosine modification underlies messenger RNA metabolism and plant development. Current Opinion in Plant Biology63, 102047.

Smirnova E, Marquis V, Poirier L, Aubert Y, Zumsteg J M R, Miesch L, Heitz T. 2017. Jasmonic acid oxidase 2 hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinerea infection. Molecular Plant10, 1159–1173.

Song W W, Qi N W, Liang C, Duan F M, Zhao H H. 2019. Soybean root transcriptome profiling reveals a nonhost resistant response during Heterodera glycines infection. PLoS ONE14, e0217130.

Squires J E, Patel H R, Nousch M, Sibbritt T, Humphreys D T, Parker B J, Suter C M, Preiss T. 2012. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Research40, 5023–5033.

Su T T, Fu L B, Kuang L H, Chen D Y, Zhang G P, Shen Q F, Wu D Z. 2022. Transcriptome-wide m6A methylation profile reveals regulatory networks in roots of barley under cadmium stress. Journal of Hazardous Materials423, 127140.

Tang J, Chen S Y, Jia G F. 2023. Detection, regulation, and functions of RNA N6-methyladenosine modification in plants. Plant Communications4, 100546.

Wan Y Z, Tang K, Zhang D Y, Xie S J, Zhu X H, Wang Z G, Lang Z B. 2015. Transcriptome-wide high-throughput deep m6A-seq reveals unique differential m6A methylation patterns between three organs in Arabidopsis thalianaGenome Biology16, 272.

Wang C L, Yang J B, Song P Z, Zhang W, Lu Q, Yu Q, Jia G F. 2022. FIONA1 is an RNA N6-methyladenosine methyltransferase affecting Arabidopsis photomorphogenesis and flowering. Genome Biology31, 40.

Wang H M, Zhao H H, Wang F L. 2014. Morphological variation of Heterodera glycines from different hosts and their adaptability to soybean. Plant Protection40, 106–111. (in Chinese)

Wang N, Peng H, Liu S M, Huang W K, Holgado R, Liu-Clarke J H, Peng D L. 2019. Molecular characterization and functional analysis of two new lysozyme genes from soybean cyst nematode (Heterodera glycines). Journal of Integrative Agriculture18, 2806–2813.

Wei L H, Song P Z, Wang Y, Lu Z K, Tang Q, Yu Q, Xiao Y, Zhang X, Duan H C, Jia G F. 2018. The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in ArabidopsisThe Plant Cell30, 968–985.

Xiao W, Adhikari S, Dahal U, Chen Y S, Hao Y J, Sun B F, Sun H Y, Li A, Ping X L, Lai W Y, Wang X, Ma H L, Huang C M, Yang Y, Huang N, Jiang G B, Wang H L, Zhou Q, Wang X J, Zhao Y L, Yang Y G. 2016. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Molecular Cell61, 507–519.

Xin X F, Nomura K, Ding X H, Chen X J, Wang K, Aung K, Uribe F, Rosa B, Yao J, Chen J, He S Y. 2015. Pseudomonas syringae effector avirulence protein E localizes to the host plasma membrane and down-regulates the expression of the NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 gene required for antibacterial immunity in ArabidopsisPlant Physiology169, 793–802.

Xu Z H, Shi X B, Bao M M, Song X Q, Zhang Y X, Wang H Y, Xie H R, Mao F, Wang S, Jin H M, Dong S M, Zhang F, Wu Z, Wu Y F. 2021. Transcriptome-wide analysis of RNA m6A methylation and gene expression changes among two Arabidopsis ecotypes and their reciprocal hybrids. Frontiers in Plant Science12, 685189.

Yang C Y, Chen Y C, Jauh G Y, Wang C S. 2005. A Lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in ArabidopsisPlant Physiology139, 836–846.

Yang X, Triboulet R, Liu Q, Sendinc E, Gregory R I. 2022. Exon junction complex shapes the m6A epitranscriptome. Nature Communication13, 7904.

Yu G C, Wang L G, He Q Y. 2015. ChIPseeker: An R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics31, 2382–2383.

Yue H, Nie X J, Yan Z G, Song W N. 2019. N6-methyladenosine regulatory machinery in plants: Composition, function and evolution. Plant Biotechnology Journal17, 1194–1208.

Zhang F, Zhang Y C, Liao J Y, Yu Y, Zhou Y F, Feng Y Z, Yang Y W, Lei M Q, Bai M, Wu H, Chen Y Q. 2019. The subunit of RNA N6-methyladenosine methyltransferase OsFIP regulates early degeneration of microspores in rice. PLoS Genetics15, e1008120.

Zhang H M, Deng X Y, Miki D, Cutler S, La H G, Hou Y J, Oh J E, Zhu J K. 2012. Sulfamethazine suppresses epigenetic silencing in Arabidopsis by impairing folate synthesis. The Plant Cell24, 1230–1241.

Zhang H X, Li F F, Li Z Z, Cheng J, Chen X K, Wang Q H, Joosten M H A J, Shan W X, Du Y. 2021. Potato StMPK7 is a downstream component of StMKK1 and promotes resistance to the oomycete pathogen Phytophthora infestansMolecular Plant Pathology22, 644–657.

Zhang K, Zhuang X J, Dong Z Z, Xu K, Chen X J, Liu F, Zhen H. 2021. The dynamics of N6-methyladenine RNA modification in interactions between rice and plant viruses. Genome Biology22, 189.

Zhang T Y, Wang Z Q, Hu H C, Chen Z Q, Liu P, Gao S Q, Zhang F, He L, Jin P, Xu M Z, Chen J P, Yang J. 2021. Transcriptome-wide N6-methyladenosine (m6A) profiling of susceptible and resistant wheat varieties reveals the involvement of variety-specific m6A modification involved in virus-host interaction pathways. Frontiers in Microbiology12, 656302.

Zhao M W, Ge Y, Xu Z Y, Ouyang X, Jia Y L, Liu J T, Zhang M X, An Y Y. 2022. A BTB/POZ domain-containing protein negatively regulates plant immunity in Nicotiana benthamianaBiochemical and Biophysical Research Communications600, 54–59.

Zhou L, Tian S, Qin G. 2019. RNA methylomes reveal the m6A mediated regulation of DNA demethylase gene SlDML2 in tomato fruit ripening. Genome Biology20, 156.

[1] Dongfang Zhao, Haobo Zhang, Xinyang Zhang, Fengwei Jiang, Yijing Li, Wentong Cai, Ganwu Li.

The virulence regulator AbsR in avian pathogenic Escherichia coli has pleiotropic effects on bacterial physiology [J]. >Journal of Integrative Agriculture, 2024, 23(2): 649-668.

[2] Nurimanguli Aini, Yuanlong Wu, Zhenyuan Pan, Yizan Ma, Qiushuang An, Guangling Shui, Panxia Shao, Dingyi Yang, Hairong Lin, Binghui Tang, Xin Wei, Chunyuan You, Longfu Zhu, Dawei Zhang, Zhongxu Lin, Xinhui Nie. Cotton ethylene response factor GhERF91 is involved in the defense against Verticillium dahliae[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3328-3342.
[3] Qing Liu, Bingjin M, Yijing Meng, Linmei Yu, Zirui Wang, Tao Jia, Wenbin Zheng, Wenwei Gao, Shichen Xie, Xingquan Zhu.

New insights into developmental biology of Eimeria tenella revealed by comparative analysis of mRNA N6-methyladenosine modification between unsporulated oocysts and sporulated oocysts [J]. >Journal of Integrative Agriculture, 2024, 23(1): 239-250.

[4] LÜ Jing, Satyabrata NANDA, CHEN Shi-min, MEI Yang, HE Kang, QIU Bao-li, ZHANG You-jun, LI Fei, PAN Hui-peng.

A survey on the off-target effects of insecticidal double-stranded RNA targeting the Hvβ´COPI gene in the crop pest Henosepilachna vigintioctopunctata through RNA-seq [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2665-2674.

[5] DONG Shi-man, XIAO Liang, LI Zhi-bo, SHEN Jie, YAN Hua-bing, LI Shu-xia, LIAO Wen-bin, PENG Ming. A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2588-2602.
[6] WANG Jie, ZHANG Qi, Astrid Lissette BARRETO SÁNCHEZ, ZHU Bo, WANG Qiao, ZHENG Mai-qing, LI Qing-he, CUI Huan-xian, WEN Jie, ZHAO Gui-ping. Transcriptome analysis of the spleen of heterophils to lymphocytes ratio-selected chickens revealed their mechanism of differential resistance to Salmonella[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2372-2383.
[7] PAN Wen-jing, HAN Xue, HUANG Shi-yu, YU Jing-yao, ZHAO Ying, QU Ke-xin, ZHANG Ze-xin, YIN Zhen-gong, QI Hui-dong, YU Guo-long, ZHANG Yong, XIN Da-wei, ZHU Rong-sheng, LIU Chun-yan, WU Xiao-xia, JIANG Hong-wei, HU Zhen-bang, ZUO Yu-hu, CHEN Qing-shan, QI Zhao-ming. Identification of candidate genes related to soluble sugar contents in soybean seeds using multiple genetic analyses[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1886-1902.
[8] DU Qing-guo, YANG Juan, Shah SYED MUHAMMAD SADIQ, YANG Rong-xin, YU Jing-juan, LI Wen-xue. Comparative transcriptome analysis of different nitrogen responses in low-nitrogen sensitive and tolerant maize genotypes[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2043-2055.
[9] WU Fan-lin, QU De-hui, TIAN Wei, WANG Meng-yun, CHEN Fei-yan, LI Ke-ke, SUN Ya-dong, SU Ying-hua, YANG Li-na, SU Hong-yan, WANG Lei. Transcriptome analysis for understanding the mechanism of dark septate endophyte S16 in promoting the growth and nitrate uptake of sweet cherry[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1819-1831.
[10] LI Yong-ping, LIU Tian-jia, LUO Hui-feng, LIU Sheng-cai . The transcriptional landscape of cultivated strawberry (Fragaria×ananassa) and its diploid ancestor (Fragaria vesca) during fruit development[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1540-1553.
[11] CHEN Li-li, WANG Hao-ying, GONG Xiao-chen, ZENG Zhao-hai, XUE Xu-zhang, HU Yue-gao. Transcriptome analysis reveals effects of red and blue lightemitting diodes (LEDs) on the growth, chlorophyll fluorescence and endogenous plant hormones of potato (Solanum tuberosum L.) plantlets cultured in vitro[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2914-2931.
[12] LIU Kai, CHEN Zhan, SU Qin, YUE Lei, CHEN Wei-wen, ZHANG Wen-qing. Comparative analysis of the ecological fitness and transcriptome between two genotypes of the brown planthopper Nilaparvata lugens[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1501-1511.
[13] MA Ni, WAN Lin, ZHAO Wei, LIU Hong-fang, LI Jun, ZHANG Chun-lei.
Exogenous strigolactones promote lateral root growth by reducing the endogenous auxin level in rapeseed
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 465-482.
[14] HUO Dong-ao, ZHU Bin, TIAN Gui-fu, DU Xu-ye, GUO Juan, CAI Meng-xian. Assignment of unanchored scaffolds in genome of Brassica napus by RNA-seq analysis in a complete set of Brassica rapa-Brassica oleracea monosomic addition lines[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1541-1546.
[15] GENG Da-li, LU Li-yuan, YAN Ming-jia, SHEN Xiao-xia, JIANG Li-juan, LI Hai-yan, WANG Li-ping, YAN Yan, XU Ji-di, LI Cui-ying, YU Jian-tao, MA Feng-wang, GUAN Qing-mei. Physiological and transcriptomic analyses of roots from Malus sieversii under drought stress[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1280-1294.
No Suggested Reading articles found!