Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (9): 3012-3024    DOI: 10.1016/j.jia.2024.03.003
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Silencing of early auxin responsive genes MdGH3-2/12 reduces the resistance to Fusarium solani in apple
Qianwei Liu, Shuo Xu, Lu Jin, Xi Yu, Chao Yang, Xiaomin Liu, Zhijun Zhang, Yusong Liu, Chao Li#, Fengwang Ma#
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
苹果再植病(ARD)严重降低了苹果产业的产量和质量。腐皮镰孢菌(F. solani)已被报道为引起ARD的主要病原微生物之一。生长素(吲哚-3-乙酸,IAA)作为一种内源性植物激素,几乎参与了植物所有生长发育过程,并在植物对病原体的免疫中发挥作用。Gretchen Hagen3GH3)是早期/初级生长素响应基因之一。本研究的目的是通过用腐皮镰孢菌处理MdGH3-2/12 RNAi植株来评估MdGH3-2MdGH3-12在腐皮镰孢菌防御反应中的作用。结果表明,在腐皮镰孢菌侵染下,MdGH3-2/12 RNAi抑制了植株生物量的积累,加重了根系损伤。接种腐皮镰孢菌后,MdGH3-2/12 RNAi抑制了酰胺合成酶的生物合成。这导致游离IAA与氨基酸结合受到抑制,最终导致过量的游离IAA积累。过量的游离IAA改变了植物组织结构,加速了真菌菌丝的入侵,降低了抗氧化酶(SOD、POD和CAT)的活性,增加了活性氧(ROS)水平,降低了总叶绿素含量和光合能力,同时调节了PR1PR4PR5PR8等相关抗病基因的表达。此外还改变了植物激素和氨基酸的含量,最终降低了苹果植株对腐皮镰孢菌的抗性。总之,这些结果表明MdGH3-2MdGH3-12在ARD中对腐皮镰孢菌的抗性起着重要作用。


Abstract  
Apple replant disease (ARD) has led to severe yield and quality reduction in the apple industry.  Fusarium solani (Fsolani) has been identified as one of the main microbial pathogens responsible for ARD.  Auxin (indole-3-acetic acid, IAA), an endogenous hormone in plants, is involved in almost all plant growth and development processes and plays a role in plant immunity against pathogens.  Gretchen Hagen3 (GH3) is one of the early/primary auxin response genes.  The aim of this study was to evaluate the function of MdGH3-2 and MdGH3-12 in the defense response of Fsolani by treating MdGH3-2/12 RNAi plants with Fsolani.  The results show that under Fsolani infection, RNAi of MdGH3-2/12 inhibited plant biomass accumulation and exacerbated root damage.  After inoculation with Fsolani, MdGH3-2/12 RNAi inhibited the biosynthesis of acid-amido synthetase.  This led to the inhibition of free IAA combining with amino acids, resulting in excessive free IAA accumulation.  This excessive free IAA altered plant tissue structure, accelerated fungal hyphal invasion, reduced the activity of antioxidant enzymes (SOD, POD and CAT), increased the reactive oxygen species (ROS) level, and reduced total chlorophyll content and photosynthetic ability, while regulating the expression of PR-related genes including PR1, PR4, PR5 and PR8.  It also changed the contents of plant hormones and amino acids, and ultimately reduced the resistance to Fsolani.  In conclusion, these results demonstrate that MdGH3-2 and MdGH3-12 play an important role in apple tolerance to Fsolani and ARD.


Keywords:  Fusarium solani       early auxin responsive gene       apple replant disease       plant hormone       antioxidant  
Received: 10 August 2023   Accepted: 25 January 2024
Fund: 
This work was supported by the Earmarked Fund for the China Agriculture Research System (CARS-27) and the Key Science and Technology Special Projects of Shaanxi Province, China (2020zdzx03-01-02). We sincerely thank Prof. Zhiquan Mao (Shandong Agricultural University, China) for providing strains of F. solani and Prof. Zhihong Zhang (Shenyang Agricultural University, China) for providing tissue-cultured GL-3 apple plants.
About author:  Qianwei Liu, E-mail: 1002903116@qq.com; #Correspondence Chao Li, E-mail: lc453@163.com; Fengwang Ma, Tel/Fax: +86-29-87082648, E-mail: fwm64@sina.com

Cite this article: 

Qianwei Liu, Shuo Xu, Lu Jin, Xi Yu, Chao Yang, Xiaomin Liu, Zhijun Zhang, Yusong Liu, Chao Li, Fengwang Ma. 2024. Silencing of early auxin responsive genes MdGH3-2/12 reduces the resistance to Fusarium solani in apple. Journal of Integrative Agriculture, 23(9): 3012-3024.

Adams A, Kimpe N, Van Boekel M A J S. 2008. Modification of casein by the lipid oxidation product malondialdehyde. Journal of Agricultural and Food Chemistry56, 1713–1719.

Anisimova O K, Shchennikova A V, Kochieva E Z, Filyushin M A. 2021. Pathogenesis-related genes of PR1PR2PR4, and PR5 families are involved in the response to Fusarium infection in garlic (Allium sativum L.). International Journal of Molecular Sciences22, 6688.

Bent A F, Innes R W, Ecker J R, Staskawicz B J. 1991. Disease development in ethylene-insensitive Arabidopsis thaliana infected with virulent and avirulent Pseudomonas and Xanthomonas pathogens. Molecular Plant-Microbe Interactions5, 372–378.

Chen Z, Agnew J L, Cohen J D, He P, Shan L, Sheen J, Kunkel B N. 2007. Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proceedings of the National Academy of Sciences of the United States of America104, 20131–20136.

Conner T W, Goekjian V H, LaFayette P R, Key J L. 1990. Structure and expression of two auxin-inducible genes from ArabidopsisPlant Molecular Biology15, 623–632.

Dietrich P, Sanders D, Hedrich R. 2001. The role of ion channels in light-dependent stomatal opening. Journal of Experimental Botany52, 1959–1967.

Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S. 2008. Activation of the indole-3-acetic acid-amido aynthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice. The Plant Cell20, 228–240.

Domingo C, Andrés F, Tharreau D, Iglesias D J, Talón M. 2009. Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Molecular Plant-Microbe Interactions22, 201–210.

Dong X, Wang M, Ling N, Shen Q R, Guo S W. 2016. Potential role of photosynthesis-related factors in banana metabolism and defense against Fusarium oxysporum f. sp. cubenseEnvironmental and Experimental Botany129, 4–12.

Fan S, Chang Y, Liu G, Shang S, Tian L, Shi H. 2020. Molecular functional analysis of auxin/indole-3-acetic acid proteins (Aux/IAAs) in plant disease resistance in cassava. Physiologia Plantarum168, 88–97.

Girhepuje P V, Shinde G B. 2011. Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f. sp lycopersiciPlant CellTissue and Organ Culture105, 243–251.

Guilfoyle T J, Ulmasov T, Hagen G. 1998. The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cellular and Molecular Life Sciences54, 619–627.

Gururani M A, Venkatesh J, Tran L S. 2015. Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant8, 1304–1320.

Hagen G, Guilfoyle T J. 1985. Rapid induction of selective transcription by auxins. Molecular and Cellular Biology5, 1197–1203.

Huang D, Wang Q, Jing G, Ma M, Li C, Ma F. 2021a. Overexpression of MdIAA24 improves apple drought resistance by positively regulating strigolactone biosynthesis and mycorrhization. Tree Physiology41, 134–146.

Huang D, Wang Q, Zhang Z, Jing G, Ma M, Ma F, Li C. 2021b. Silencing MdGH3-2/12 in apple reduces drought resistance by regulating AM colonization. Horticulture Research8, 84.

Irving H R, Gehring C A, Parish R W. 1992. Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proceedings of the National Academy of Sciences of the United States of America89, 1790–1794.

Jin X Q, Liu T, Xu J J, Gao Z X, Hu X H. 2019. Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis. BMC Plant Biology19, 15.

Kelderer M, Manici L M, Caputo F, Thalheimer M. 2012. Planting in the ‘inter-row’ to overcome replant disease in apple orchards: A study on the effectiveness of the practice based on microbial indicators. Plant and Soil357, 381–393.

Kunkel B N, Johnson J M B. 2021. Auxin plays multiple roles during plant-pathogen interactions. Cold Spring Harbor Perspectives in Biology13, 11.

Legrand M, Kauffmann S, Geoffroy P, Fritig B. 1987. Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases. Proceedings of the National Academy of Sciences of the United States of America84, 6750–6754.

Li C, Tan D X, Liang D, Chang C, Jia D, Ma F. 2015. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany66, 669–680.

Liscum E, Reed J W. 2002. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Molecular Biology49, 387–400.

Liu Q W, Gao T T, Liu W X, Liu Y S, Zhao Y J, Liu Y R, Li W J, Ding K, Ma F W, Li C. 2020. Functions of dopamine in plants: A review. Plant Signaling & Behavior15, 8.

Liu T, Chen T, Kan J, Yao Y, Guo D, Yang Y, Ling X, Wang J, Zhang B. 2022. The GhMYB36 transcription factor confers resistance to biotic and abiotic stress by enhancing PR1 gene expression in plants. Plant Biotechnology Journal20, 722–735.

Liu Y, Liu Q, Li X, Tang Z, Zhang Z, Gao H, Ma F, Li C. 2022. Exogenous dopamine and MdTyDC overexpression enhance apple resistance to Fusarium solaniPhytopathology112, 2503–2513.

Liu Y S, Liu Q W, Li X W, Zhang Z J, Ai S K, Liu C, Ma F W, Li C. 2023. MdERF114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63Plant Physiology192, 3.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods25, 402–408.

Lutts S, Kinet J M, Bouharmont J. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L) cultivars differing in salinity resistance. Annals of Botany78, 389–398.

Manici L M, Ciavatta C, Kelderer M, Erschbaumer G. 2003. Replant problems in South Tyrol: Role of fungal pathogens and microbial population in conventional and organic apple orchards. Plant and Soil256, 315–324.

Mauch F, Hadwiger L A, Boller T. 1988. Antifungal hydrolases in pea tissue: I. purification and characterization of two chitinases and two β-1,3-glucanases differentially regulated during development and in response to fungal infection. Plant Physiology87, 325–333.

Muller M. 2021. Foes or friends: ABA and ethylene interaction under abiotic stress. Plants-Basel10, 448.

Nogues S, Cotxarrera L, Alegre L, Trillas M I. 2002. Limitations to photosynthesis in tomato leaves induced by Fusarium wilt. New Phytologist154, 461–470.

Nookaraju A, Agrawal D C. 2012. Enhanced tolerance of transgenic grapevines expressing chitinase and β-1,3-glucanase genes to downy mildew. Plant CellTissue and Organ Culture111, 15–28.

Pan X, Guan L, Lei K, Li J, Zhang X. 2022. Transcriptional and physiological data revealed cold tolerance in a photo-thermo sensitive genic male sterile line Yu17S. BMC Plant Biology22, 44.

Pieterse C M, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees S C. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology28, 489–521.

Rodriguez-Brljevich C, Kanobe C, Shanahan J F, Robertson A E. 2010. Seed treatments enhance photosynthesis in maize seedlings by reducing infection with Fusarium spp. and consequent disease development in maize. European Journal of Plant Pathology126, 343–347.

van Schoor L, Denman S, Cook N C. 2009. Characterisation of apple replant disease under South African conditions and potential biological management strategies. Scientia Horticulturae119, 153–162.

Shah K, Nahakpam S. 2012. Heat exposure alters the expression of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars. Plant Physiology and Biochemistry57, 106–113.

Shao X, Tu K, Tu S, Su J, Zhao Y. 2010. Effects of heat treatment on wound healing in gala and red fuji apple fruits. Journal of Agricultural and Food Chemistry58, 4303–4309.

Spath M, Insam H, Peintner U, Kelderer M, Kuhnert R, Franke-Whittle I H. 2015. Linking soil biotic and abiotic factors to apple replant disease: A greenhouse approach. Journal of Phytopathology163, 287–299.

Staswick P E, Tiryaki I. 2004. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in ArabidopsisPlant Cell16, 2117–2127.

Terol J, Domingo C, Talón M. 2006. The GH3 family in plants: Genome wide analysis in rice and evolutionary history based on EST analysis. Gene371, 279–290.

Tilston E, Deakin G, Bennett J, Passey T, Harrison N, O’Brien F, Fernández-Fernández F, Xu X. 2018. Candidate causal organisms for apple replant disease in the UK. Phytobiomes Journal2, 261–274.

Torrens-Spence M P, Bobokalonova A, Carballo V, Glinkerman C M, Pluskal T, Shen A, Weng J K. 2019. PBS3 and EPS1 complete salicylic acid biosynthesis from isochorismate in ArabidopsisMolecular Plant12, 1577–1586.

Wang C, El-Shetehy M, Shine M B, Yu K, Navarre D, Wendehenne D, Kachroo A, Kachroo P. 2014. Free radicals mediate systemic acquired resistance. Cell Reports7, 348–355.

Wang G, Yin C, Pan F, Wang X, Xiang L, Wang Y, Wang J, Tian C, Chen J, Mao Z. 2018. Analysis of the fungal community in apple replanted soil around Bohai Gulf. Horticultural Plant Journal4, 175–181.

Wang M, Sun Y, Sun G, Liu X, Zhai L, Shen Q, Guo S. 2015. Water balance altered in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinumScientific Reports5, 7722.

Wang M, Tang W, Xiang L, Chen X, Shen X, Yin C, Mao Z. 2022. Involvement of MdWRKY40 in the defense of mycorrhizal apple against Fusarium solaniBMC Plant Biology22, 385.

Wang S, Wang Y, Cao K. 2018. Overview and research progress of important apple diseases in China in recent years. Plant Protection44, 14. (in Chinese)

Winkelmann T, Smalla K, Amelung W, Baab G, Grunewaldt-Stöcker G, Kanfra X, Meyhöfer R, Reim S, Schmitz M, Vetterlein D, Wrede A, Zühlke S, Grunewaldt J, Weiß S, Schloter M. 2019. Apple replant disease: Causes and mitigation strategies. Current Issues in Molecular Biology30, 89–106.

Xiang L, Wang M, Pan F B, Wang G S, Jiang W T, Wang Y F, Chen X S, Yin C M, Mao Z Q. 2021. Transcriptome analysis Malus domestica ‘M9T337’ root molecular responses to Fusarium solani infection. Physiological and Molecular Plant Pathology113, 12.

Yan K, Han G, Ren C, Zhao S, Wu X, Bian T. 2018. Fusarium solani infection depressed photosystem performance by inducing foliage wilting in apple seedlings. Frontiers in Plant Science9, 479.

Yang S M, Li X, Chen W Q, Liu T G, Zhong S F, Ma L X, Zhang M, Zhang H Y, Yu D L, Luo P G. 2016. Wheat resistance to Fusarium head blight is associated with changes in photosynthetic parameters. Plant Disease100, 847–852.

van der Zaal E J, Memelink J, Mennes A M, Quint A, Libbenga K R. 1987. Auxin-induced mRNA species in tobacco cell cultures. Plant Molecular Biology10, 145–157.

Zarembinski T I, Theologis A. 1993. Anaerobiosis and plant growth hormones induce two genes encoding 1-aminocyclopropane-1-carboxylate synthase in rice (Oryza sativa L.). Molecular Biology of the Cell4, 363–373.

Zhang S W, Li C H, Cao J, Zhang Y C, Zhang S Q, Xia Y F, Sun D Y, Sun Y. 2009. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiology151, 1889–1901.

Zhang Z Q, Li Q, Li Z M, Staswick P E, Wang M Y, Zhu Y, He Z H. 2007. Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiology145, 450–464.

Zhou K, Li Y T, Hu L Y, Zhang J Y, Yue H, Yang S L, Liu Y, Gong X Q, Ma F W. 2022. Overexpression of MdASMT9, an N-acetylserotonin methyltransferase gene, increases melatonin biosynthesis and improves water-use efficiency in transgenic apple. Tree Physiology42, 1114–1126.

[1] Li Miao, Xiangyu Wang, Chao Yu, Chengyang Ye, Yanyan Yan, Huasen Wang.

What factors control plant height? [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1803-1824.

[2] Kaiwen Lei, Hao Wu, Jerry W Spears, Xi Lin, Xi Wang, Xue Bai, Yanling Huang.

Responses of growth performance, antioxidant function, small intestinal morphology and mRNA expression of jejunal tight junction protein to dietary iron in yellow-feathered broilers [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1329-1337.

[3] YU Xiao, DUAN Zi-qiang, QIN Xiao-peng, ZHU Ying-ying, HUANG Feng-hong, PENG Deng-feng, BAI Yan-hong, DENG Qian-chun. Elucidation of the structure, antioxidant, and interfacial properties of flaxseed proteins tailored by microwave treatment[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1574-1589.
[4] Senouwa Segla Koffi DOSSOU, XU Fang-tao, Komivi DOSSA, ZHOU Rong, ZHAO Ying-zhong, WANG Lin-hai. Antioxidant lignans sesamin and sesamolin in sesame (Sesamum indicum L.): a comprehensive review and future prospects[J]. >Journal of Integrative Agriculture, 2023, 22(1): 14-30.
[5] ZHAO Ji-chun, AO Miao, HE Xiao-qin, LI Wei-zhou, DENG Li-li, ZENG Kai-fang, MING Jian. Changes in phenolic content, composition and antioxidant activity of blood oranges during cold and on-tree storage[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3669-3683.
[6] ZHANG Jun, ZHANG Jing-yi, SHAN You-xia, GUO Can, HE Lian, ZHANG Lin-yan, LING Wei, LIANG Yan, ZHONG Ba-lian . Effect of harvest time on the chemical composition and antioxidant capacity of Gannan navel orange (Citrus sinensis L. Osbeck ‘Newhall’) juice[J]. >Journal of Integrative Agriculture, 2022, 21(1): 261-272.
[7] Muhammad Ahsan ASGHAR, JIANG Heng-ke, SHUI Zhao-wei, CAO Xi-yu, HUANG Xi-yu, Shakeel IMRAN, Bushra AHMAD, ZHANG Hao, YANG Yue-ning, SHANG Jing, YANG Hui, YU Liang, LIU Chun-yan, YANG Wen-yu, SUN Xin, DU Jun-bo. Interactive effect of shade and PEG-induced osmotic stress on physiological responses of soybean seedlings[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2382-2394.
[8] WANG Yi-bo, HUANG Rui-dong, ZHOU Yu-fei. Effects of shading stress during the reproductive stages on photosynthetic physiology and yield characteristics of peanut (Arachis hypogaea Linn.)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1250-1265.
[9] DU Kang, ZHAO Wen-qing, ZHOU Zhi-guo, SHAO Jing-jing, HU Wei, KONG Ling-jie, WANG You-hua. Hormonal changes play important roles in the key period of superior and inferior earshoot differentiation in maize[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3143-3155.
[10] CHEN Li-li, WANG Hao-ying, GONG Xiao-chen, ZENG Zhao-hai, XUE Xu-zhang, HU Yue-gao. Transcriptome analysis reveals effects of red and blue lightemitting diodes (LEDs) on the growth, chlorophyll fluorescence and endogenous plant hormones of potato (Solanum tuberosum L.) plantlets cultured in vitro[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2914-2931.
[11] Iram SHAFIQ, Sajad HUSSAIN, Muhammad Ali RAZA, Nasir IQBAL, Muhammad Ahsan ASGHAR, Ali RAZA, FAN Yuan-fang, Maryam MUMTAZ, Muhammad SHOAIB, Muhammad ANSAR, Abdul MANAF, YANG Wen-yu, YANG Feng. Crop photosynthetic response to light quality and light intensity[J]. >Journal of Integrative Agriculture, 2021, 20(1): 4-23.
[12] Hamid NAWAZ, Nazim HUSSAIN, Niaz AHMED, Haseeb-ur-REHMAN, Javaiz ALAM. Efficiency of seed bio-priming technique for healthy mungbean productivity under terminal drought stress[J]. >Journal of Integrative Agriculture, 2021, 20(1): 87-99.
[13] YE Yu-xiu, WEN Zhang-rong, YANG Huan, LU Wei-ping, LU Da-lei. Effects of post-silking water deficit on the leaf photosynthesis and senescence of waxy maize[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2216-2228.
[14] LIU Hong-jiu, HUANG Cai-ping, TONG Pei-jiang, YANG Xue, CUI Ming-ming, CHENG Zhi-hui. Response of axillary bud development in garlic (Allium sativum L.) to seed cloves soaked in gibberellic acid (GA3) solution[J]. >Journal of Integrative Agriculture, 2020, 19(4): 1044-1054.
[15] WEN Bing-xiao, Sajad Hussain, YANG Jia-yue, WANG Shan, ZHANG Yi, QIN Si-si, XU Mei, YANG Wen-yu, LIU Wei-guo. Rejuvenating soybean (Glycine max L.) growth and development through slight shading stress[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2439-2450.
No Suggested Reading articles found!