Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (1): 261-272    DOI: 10.1016/S2095-3119(20)63395-0
Special Issue: 食品科学合辑Food Science
Food Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Effect of harvest time on the chemical composition and antioxidant capacity of Gannan navel orange (Citrus sinensis L. Osbeck ‘Newhall’) juice
ZHANG Jun1, 2, ZHANG Jing-yi1, SHAN You-xia2, GUO Can1, HE Lian1, ZHANG Lin-yan1, LING Wei1, LIANG Yan1, ZHONG Ba-lian1
1 National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, P.R.China
2 South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

研究不同采收时间间隔1-2对赣南脐橙果汁的化学成分及其抗氧化能力的影响。研究结果表明随着果实逐渐成熟,果汁中可溶性固形物 (TSS)、总酚 (TPC)、总黄酮(TFC)、蔗糖以及橙皮苷含量均逐渐增加,在成熟后期阶段略有下降。可滴定酸 (TA)、维生素C (VC) 和柠檬苦素的含量在整个成熟期呈下降趋势。果糖、葡萄糖以及芸香柚皮苷含量在整个采收期均有波动,没有明确的上升或下降趋势。运用三种体外抗氧化筛选平台DPPH, FRAP, ABTS)对果汁的抗氧化活性进行评价,结果表明采收时间赣南脐橙果汁体外抗氧化能力无显著性影响 (p>0.01)在此基础上,本文运用主成分分析和皮尔逊相关分析对不采收期赣南脐橙果汁的化学成分及抗氧化能力进行了归类相关性分析。本文首次深入系统的研究了采收时间对赣南脐橙果汁的化学成分及抗氧化能的影响,研究成果有望为赣南脐橙品质评价提供重要科学依据。同时,我们研究结果表明,成熟后期采摘赣南脐橙果汁不仅柠檬苦素含量低而且具有很的抗氧化能力和很高黄酮类化合物含量,非常适合用于果汁加工。



Abstract  The present study investigates the chemical composition and antioxidant capacity of juice from the Gannan navel orange, which is harvested at one- to two-week intervals during the ripening period.  The total soluble solid (TSS), total polyphenol content (TPC), total flavonoid content (TFC), sucrose and hesperidin contents gradually increase with the ripening of the fruit, followed by slight declines at the late maturity stage.  Contrary to these observations, the contents of titratable acid (TA), vitamin C (Vc), and limonin trend downward throughout the ripening period.  However, the contents of fructose, glucose, and narirutin fluctuate throughout the harvest time.  Three in vitro antioxidant assays consistently indicate that the harvest time exerts no significant influence (P>0.01) on the antioxidant capacity.  Furthermore, principal component analysis (PCA) and Pearson’s correlation test are performed to provide an overview of the complete dataset. This study provides valuable information for evaluating the fruit quality and determining when to harvest the fruit in order to meet the preferences of consumers.  Meanwhile, our observations suggest that the fruits subjected to juice processing should be harvested at the late maturity stage to alleviate the “delayed bitterness” problem without compromising the antioxidant capacity and the flavonoid content in the juice.
Keywords:  navel orange       antioxidant       harvest time       chemical composition  
Received: 07 July 2020   Accepted: 16 August 2020
Fund: This research work was financially supported by the National Natural Science Foundation of China (31860091), the Natural Science Foundation of Jiangxi Province, China (20171BCB24011), the Open Foundation of National Engineering Research Center of Navel Orange, and the Research Foundation of Ganzhou, Jiangxi, China (2017179 and 201960).  
About author:  Correspondence ZHANG Jun, Tel/Fax: +86-797-8393068, E-mail: tzhangjun@gnnu.edu.cn; LIANG Yan, E-mail: zjzzf2011@gmail.com

Cite this article: 

ZHANG Jun, ZHANG Jing-yi, SHAN You-xia, GUO Can, HE Lian, ZHANG Lin-yan, LING Wei, LIANG Yan, ZHONG Ba-lian . 2022. Effect of harvest time on the chemical composition and antioxidant capacity of Gannan navel orange (Citrus sinensis L. Osbeck ‘Newhall’) juice. Journal of Integrative Agriculture, 21(1): 261-272.

Albach R F, Redman G H, Lime B J. 1981. Limonin content of juice from Marrs and Hamlin oranges [Citrus sinensis (L.) Osbeck]. Journal of Agricultural and Food Chemistry, 29, 313–315.
Arena E, Fallico B, Maccarone E. 2001. Evaluation of antioxidant capacity of blood orange juices as influenced by constituents, concentration process and storage. Food Chemistry, 74, 423–427.
Bai J, Baldwin E, McCollum G, Plotto A, Manthey J, Widmer W, Cameron R. 2016. Changes in volatile and non-volatile flavor chemicals of ‘Valencia’ orange juice over the harvest seasons. Foods, 5, 4.
Bai J, Baldwin E, Plotto A, Manthey J A, McCollum G, Irey M, Luzio G. 2009. Influence of harvest time on quality of ‘Valencia’ oranges and juice. Proceedings of Florida State Horticultural Society, 122, 308–315.
Eckert J W, Eaks I L. 1989. Postharvest disorders and diseases of citrus fruits. The Citrus Industry, 5, 179–260.
Fiore A, La Fauci L, Cervellati R, Guerra M C, Speroni E, Costa S, Galvano F. 2005. Antioxidant activity of pasteurized and sterilized commercial red orange juices. Molecular Nutrition & Food Research, 49, 1129–1135.
Floegel A, Kim D O, Chung S J, Koo S I, Chun O K. 2011. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis, 24, 1043–1048.
Gardner P T, White T A, McPhail D B, Duthie G G. 2000. The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chemistry, 68, 471–474.
GGC (Government of Ganzhou, China). 2020. Regional brand for products with geographical indication in China  - Gannan navel orange and Gannan tea oil both on the list. [2019-5-8]. https://www.ganzhou.gov.cn/gzszf/c100046/201912/fa3a9523fec446a8986b3752fbcc4336.shtml (in Chinese)
Giuffrè A M. 2019. Bergamot (Citrus bergamia Risso): The effects of cultivar and harvest date on functional properties of juice and cloudy juice. Antioxidants, 8, 221.
Giuffrè A M, Zappia C, Capocasale M. 2017. Physico-chemical stability of blood orange juice during frozen storage. International Journal of Food Properties, 20, 1930–1943.
Guo C, Shan Y, Yang Z, Zhang L, Ling W, Liang Y, Ouyang Z, Zhong B, Zhang J. 2020. Chemical composition, antioxidant, antibacterial and tyrosinase inhibition activities of extracts from Newhall navel orange (Citrus sinensis Osbeck cv. Newhall) peel. Journal of the Science of Food and Agriculture, 100, 2664–2674.
Hao Y, Sun X, Zhang H, Liu Y. 2011. Application of effective wavelength selection methods to determine total acidity of navel orange. Sensor Letters, 9, 1229–1234.
Hunlun C, De Beer D, Sigge G O, Van Wyk J. 2019. Phenolic composition and total antioxidant capacity of South African frozen concentrated orange juice as affected by varietal, seasonal and regional differences. Journal of the Science of Food and Agriculture, 99, 1029–1037.
Jungsakulrujirek S, Noomhorm A. 1998. Effect of harvesting time and fruit size on titratable acidity, soluble solid and distribution of limonin in Thai tangerine juice. International Journal of Food Science & Technology, 33, 367–374.
Katariya P, Arya S S, Pandit A B. 2020. Novel, non-thermal hydrodynamic cavitation of orange juice: Effects on physical properties and stability of bioactive compound. Innovative Food Science and Emerging Technologies, 62, 102364.
Kawaii S, Tomono Y, Katase E, Ogawa K, Yano M. 1999. Quantitation of flavonoid constituents in citrus fruits. Journal of Agricultural and Food Chemistry, 47, 3565–3571.
Kelebek H, Selli S, Canbas A, Cabaroglu T. 2009. HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan. Microchemical Journal, 91, 187–192.
Kevers C, Falkowski M, Tabart J, Defraigne J O, Dommes J, Pincemail J. 2007. Evolution of antioxidant capacity during storage of selected fruits and vegetables. Journal of Agricultural and Food Chemistry, 55, 8596–8603.
Kimball D A, Norman S I. 1990. Processing effects during commercial debittering of California navel orange juice. Journal of Agricultural and Food Chemistry, 38, 1396–1400.
Klimczak I, Małecka M, Szlachta M, Gliszczyńska-Świgło A. 2007. Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. Journal of Food Composition and Analysis, 20, 313–322.
Kumar D, Ladaniya M S, Gurjar M. 2019. Underutilized Citrus sp. Pomelo (Citrus grandis) and Kachai lemon (Citrus jambhiri) exhale in phytochemicals and antioxidant potential. Journal of Food Science and Technology, 56, 217–223.
Ledesma-Escobar C A, Priego-Capote F, Robles Olvera V J, Luque de Castro M D. 2018. Targeted analysis of the concentration changes of phenolic compounds in persian lime (Citrus latifolia) during fruit growth. Journal of Agricultural and Food Chemistry, 66, 1813–1820.
Lee H S, Coates G A. 2000. Quantitative study of free sugars and myo-inositol in citrus juices by HPLC and a literature compilation. Journal of Liquid Chromatography & Related Technologies, 23, 2123–2141. 
Leuzzi U, Caristi C, Panzera V, Licandro G. 2000. Flavonoids in pigmented orange juice and second-pressure extracts. Journal of Agricultural and Food Chemistry, 48, 5501–5506.
Muhtaseb J. 2007. Effect of harvesting date on fruit quality of grapefruit cv. ‘Red Blush’ under Jordan Valley conditions. Fruits, 62, 107–113.
R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing. [2018-8-16]. https://www.R-project.org/
Raithore S, Dea S, McCollum G, Manthey J A, Bai J, Leclair C, Plotto A. 2016. Development of delayed bitterness and effect of harvest date in stored juice from two complex citrus hybrids. Journal of the Science of Food and Agriculture, 96, 422–429.
Rapisarda P, Bianco M L, Pannuzzo P, Timpanaro N. 2008. Effect of cold storage on vitamin C, phenolics and antioxidant activity of five orange genotypes [Citrus sinensis (L.) Osbeck]. Postharvest Biology and Technology, 49, 348–354.
Rapisarda P, Tomaino A, Lo Cascio R, Bonina F, De Pasquale A, Saija A. 1999. Antioxidant effectiveness as influenced by phenolic content of fresh orange juices. Journal of Agricultural and Food Chemistry, 47, 4718–4723.
Romani R J. 1978. Metabolic integrity and postharvest homeostasis - A brief review. Journal of Food Biochemistry, 2, 221–228.
Roussos P A. 2011. Phytochemicals and antioxidant capacity of orange (Citrus sinensis (l.) Osbeck cv. Salustiana) juice produced under organic and integrated farming system in Greece. Scientia Horticulturae, 129, 253–258.
Sdiri S, Bermejo A, Aleza P, Navarro P, Salvador A. 2012. Phenolic composition, organic acids, sugars, vitamin C and antioxidant activity in the juice of two new triploid late-season mandarins. Food Research International, 49, 462–468.
Stella S P, Ferrarezi A C, dos Santos K O, Monteiro M. 2011. Antioxidant activity of commercial ready-to-drink orange juice and nectar. Journal of Food Science, 76, C392–C397.
Stinco C M, Fernández-Vázquez R, Escudero-Gilete M L, Heredia F J, Meléndez-Martínez A J, Vicario I M. 2012. Effect of orange juice’s processing on the color, particle size, and bioaccessibility of carotenoids. Journal of Agricultural and Food Chemistry, 60, 1447–1455.
Wang H, Chen G, Guo X, Abbasi A M, Liu R H. 2016. Influence of the stage of ripeness on the phytochemical profiles, antioxidant and antiproliferative activities in different parts of Citrus reticulata Blanco cv. Chachiensis. LWT-Food Science and Technology, 69, 67–75.
Xu G, Liu D, Chen J, Ye X, Ma Y, Shi J. 2008. Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chemistry, 106, 545–551.
Zeng R, Zhang A, Chen J, Fu Y. 2012. Postharvest quality and physiological responses of clove bud extract dip on ‘Newhall’ navel orange. Scientia Horticulturae, 138, 253–258.
Zhang J, Yang Z, Liang Y, Zhang L, Ling W, Guo C, Zhong B. 2018. Effects of postharvest time, heat treatment, pH and filtration on the limonin content in Newhall navel orange (Citrus sinensis Osbeck cv. Newhall) juice. Molecules, 23, 2691.
Zhang L, Ling W, Yan Z, Liang Y, Guo C, Ouyang Z, Wang X, Kumaravel K, Ye Q, Zhong B, Zhang J. 2020. Effects of storage conditions and heat treatment on the hesperidin concentration in Newhall navel orange (Citrus sinensis Osbeck cv. Newhall) juice. Journal of Food Composition and Analysis, 85, 103338.
Zulueta A, Esteve M J, Frasquet I, Frígola A. 2007. Vitamin C, vitamin A, phenolic compounds and total antioxidant capacity of new fruit juice and skim milk mixture beverages marketed in Spain. Food Chemistry, 103, 1365–1374.

[1] ZHU Shi-ping, HUANG Tao-jiang, YU Xin, HONG Qi-bin, XIANG Jin-song, ZENG An-zhong, GONG Gui-zhi, ZHAO Xiao-chun. The effects of rootstocks on performances of three late-ripening navel orange varieties[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1802-1812.
[2] ZHENG Yong-qiang, YANG Qiong, JIA Xue-mei, LIU Yan-mei, HE Shao-lan, DENG Lie, XIE Rang-jin, YI Shi-lai, Lü Qiang . Ca(NO3)2 canopy spraying during physiological fruit drop period has a better influence on the tree character and fruit quality of Newhall navel orange (Citrus sinensis Osbeck)[J]. >Journal of Integrative Agriculture, 2017, 16(07): 1513-1519.
[3] XING Fei, FU Xing-zheng, WANG Nan-qi, XI Jian-long, HUANG Yi, ZHOU Wei, LING Li-li, PENG Liang-zhi. Physiological changes and expression characteristics of ZIP family genes under zinc deficiency in navel orange (Citrus sinensis)[J]. >Journal of Integrative Agriculture, 2016, 15(4): 803-811.
No Suggested Reading articles found!