Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (11): 3535-3548    DOI: 10.1016/j.jia.2023.06.010
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Fate of fertilizer nitrogen and residual nitrogen in paddy soil in Northeast China

BI Shi-ting1*, LUO Xiang-yu1*, ZHANG Chen1, LI Peng-fei1, 2, YU Cai-lian3, LIU Zhi-lei1, 2#, PENG Xian-long1, 2#

1 College of Agricultural Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, P.R.China
2 Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Ministry of Education, Northeast Agricultural University, Harbin 150030, P.R.China
3 The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin150080, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

国东北稻,肥料氮去向与施氮量间的关系以及残留氮的去向目前仍不清晰。为此本研究田间小区和15N微区试验,分别设置075105135165 kg N/hm2五个施氮水平,对应处理为N0N75N105N135N165。微区试验2017年施用15N标记尿素,2018年施用等量的普通尿素。分析了氨挥发、淋洗地表径流、水稻产量以及植物和土壤氮含量和15N丰度变化情况。结果表明,水稻产量与氮肥施用量呈线性平台关系,最佳施氮量为135 kg N/hm2水稻氮吸收量随着氮的增加而增加,差减法氮肥吸收利用率(REN)在2017年和2018年平均分别为45.23%56.98%2017年施氮量为135 kg N hm2时REN最高,2018年REN受施氮量影响不大,而氮量超过135 kg N hm2时氮肥农学利用率(AEN)和氮肥生理利用率(PEN)显著降低在中国东北稻区肥料氮氨挥发、淋洗和径流的损失较少。2017年和2018年氨挥发量分别占总施氮量的0.81%和2.99%,氮通过淋洗和径流的损失比例分别为4.45%和不到1.05%,东北稻区表观反硝化损率失约为42.63%。2017年0-40cm土层中残留氮量为18.37-31.81 kg/hm2,残留率为19.28-24.50%。土壤中15N肥料的残留量随施氮量增加而增加,残留氮主要集中在0-10cm土层中,占总残留氮的58.45-83.54%,并随深度增加而减少,但0-10cm土层残留氮占0-40cm土层残留氮的比例却随施氮量增加而减少平均约有5.4%的残留氮在下一季被水稻吸收利用50.2%流失44.4%继续残留在土壤中,因此在计算施氮量时考虑残留氮的数量考虑到水稻产量与氮效率的平衡,本试验中东北稻区适宜施氮量为105-135 kg N/hm2



Abstract  

The relationship between the fate of nitrogen (N) fertilizer and the N application rate in paddy fields in Northeast China is unclear, as is the fate of residual N.  To clarify these issues, paddy field and 15N microplot experiments were carried out in 2017 and 2018, with N applications at five levels: 0, 75, 105, 135 and 165 kg N ha–1 (N0, N75, N105, N135 and N165, respectively).  15N-labeled urea was applied to the microplots in 2017, and the same amount of unlabeled urea was applied in 2018.  Ammonia (NH3) volatilization, leaching, surface runoff, rice yield, the N contents and 15N abundances of both plants and soil were analyzed.  The results indicated a linear platform model for rice yield and the application rate of N fertilizer, and the optimal rate was 135 kg N ha–1.  N uptake increased with an increasing N rate, and the recovery efficiency of applied N (REN) values of the difference subtraction method were 45.23 and 56.98% on average in 2017 and 2018, respectively.  The REN was the highest at the N rate of 135 kg ha–1 in 2017 and it was insignificantly affected by the N application rate in 2018, while the agronomic efficiency of applied N (AEN) and physiological efficiency of applied N (PEN) decreased significantly when excessive N was applied.  N loss through NH3 volatilization, leaching and surface runoff was low in the paddy fields in Northeast China.  NH3 volatilization accounted for 0.81 and 2.99% of the total N application in 2017 and 2018, respectively.  On average, the leaching and surface runoff rates were 4.45% and less than 1.05%, respectively, but the apparent denitrification loss was approximately 42.63%.  The residual N fertilizer in the soil layer (0–40 cm) was 18.37–31.81 kg N ha–1 in 2017, and the residual rate was 19.28–24.50%.  Residual 15N from fertilizer in the soil increased significantly with increasing N fertilizer, which was mainly concentrated in the 0–10 cm soil layer, accounting for 58.45–83.54% of the total residual N, and decreased with increasing depth.  While the ratio of residual N in the 0–10 cm soil layer to that in the 0–40 cm soil layer was decreased with increasing N application.  Furthermore, of the residual N, approximately 5.4% was taken up on average in the following season and 50.2% was lost, but 44.4% remained in the soil.  Hence, the amount of applied N fertilizer should be reduced appropriately due to the high residual N in paddy fields in Northeast China.  The appropriate N fertilizer rate in the northern fields in China was determined to be 105–135 kg N ha–1 in order to achieve a balance between rice yield and high N fertilizer uptake.

Keywords:  fate of N fertilizer        NH3 volatilization        leaching        surface runoff        residual nitrogen        yield  
Received: 22 December 2022   Accepted: 07 April 2023
Fund: This research was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28100302), the earmarked fund for China Agriculture Research System (CARS-01-29), the National Key Research and Development Program of China (2017YFD0200104), the Fifth (2019) of ‘Young Talents’ Project of Northeast Agricultural University, China, and the Open Program of Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University (CXSTOP2021009).
About author:  #Correspondence LIU Zhi-lei, Mobile: +86-18845752275, E-mail: hlliuzhilei@126.com; PENG Xian-long, Mobile: +86-18800430515, E-mail: pxl0508@163.com * These authors contributed equally to this study.

Cite this article: 

BI Shi-ting, LUO Xiang-yu, ZHANG Chen, LI Peng-fei, YU Cai-lian, LIU Zhi-lei, PENG Xian-long. 2023. Fate of fertilizer nitrogen and residual nitrogen in paddy soil in Northeast China. Journal of Integrative Agriculture, 22(11): 3535-3548.

Broadbent F E. 1980. Residual effects of labeled N in field trials. Agronomy Journal72, 325–329.

Bu R, Ren T, Lu J, Li X, Li Y, Wang Y, Lu J. 2012. Study on N fertilizer efficiency and the residual effect under rice–oilseed rape rotation system. Scientia Agricultura Sinica45, 5049–5056. (in Chinese)

Cai S, Zhao X, Pittelkow C M, Fan M, Zhang X, Yan X. 2023. Optimal nitrogen rate strategy for sustainable rice production in China. Nature615, 73–79.

Cao X, Qin B, Ma Q, Zhu L, Zhu C, Kong Y, Tian W, Jin Q, Zhang J, Yu Y. 2023. Predicting the nitrogen quota application rate in a double rice cropping system based on rice–soil nitrogen balance and 15N labelling analysis. Agriculture13, 612.

Cao Y, Sun H, Liu Y, Fu Z, Chen G, Zou G, Zhou S. 2017. Reducing N losses through surface runoff from rice–wheat rotation by improving fertilizer management. Environmental Science and Pollution Research24, 4841–4850.

Chen A, Lei B, Hu W, Lu Y, Mao Y, Duan Z, Shi Z. 2015. Characteristics of ammonia volatilization on rice grown under different nitrogen application rates and its quantitative predictions in Erhai Lake Watershed, China. Nutrient Cycling in Agroecosystems101, 139–152.

Chen P, Nie T, Chen S, Zhang Z, Qi Z, Liu W. 2019. Recovery efficiency and loss of 15N-labelled urea in a rice–soil system under water saving irrigation in the Songnen Plain of Northeast China. Agricultural Water Management222, 139–153.

Chien S H, Prochnow L, Cantarella H. 2009. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Advances in Agronomy102, 267–322.

Eldridge S M, Pandey A, Weatherley A, Willett I R, Myint A K, Oo A N, Ngwe K, Mang Z T, Singh U, Chen D. 2022. Recovery of nitrogen fertilizer can be doubled by urea-briquette deep placement in rice paddies. European Journal of Agronomy140, 126605.

Du S, Zhang Z, Chen P, Li T, Han Y, Song J. 2022. Fate of each period fertilizer N in Mollisols under water and N management: A 15N tracer study. Agricultural Water Management272, 107872.

Hauck R D, Bremner J M. 1976. Use of tracers for soil and fertilizer nitrogen research. Advances in Agronomy28, 219–266.

Jin S K, Oh S Y, Oh K Y. 2006. Nutrient runoff from a Korean rice paddy watershed during multiple storm events in the growing season. Journal of Hydrology327, 128–139.

Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L. 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America106, 3041–3046.

Kadiyala M D M, Mylavarapu R S, Li Y C, Reddy G B, Reddy K R, Reddy M D. 2015. Uptake efficiency of 15N-urea in flooded and aerobic rice fields under semi-arid conditions. Paddy and Water Environment13, 545–556.

Kanthilanka H, Farquharson R, Ramilan T, Weerahewa J. 2021. Economically optimum N fertiliser decisions for rice cultivation in Sri Lanka: Does soil type matter? In: 24th International Congress on Modelling and Simulation, Australia. pp. 134–140.

Li P, Lu J, Hou W, Pan Y, Wang Y, Khan M R, Ren T, Cong R, Li X. 2017. Reducing nitrogen losses through ammonia volatilization and surface runoff to improve apparent nitrogen recovery of double cropping of late rice using controlled release urea. Environmental Science and Pollution Research24, 11722–11733.

Li P, Lu J, Wang Y, Wang S, Hussain S, Ren T, Cong R, Li X. 2018. Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea. Agriculture Ecosystems and Environment251, 78–87.

Li X, Wang Y, Feng G, Xu Z, Meng F, Gao Q. 2023. Differential fertilizer nitrogen fates in maize cropping system among three soil textures based on 15N. Field Crops Research291, 108780.

Li Y L, Wang K, Wu G, Mao Y. 2022. Proportion and distribution of rain and snow in China from 1960 to 2018. Journal of Hydrometeorology23, 225–238.

Liang H, Gao S, Ma J, Zhang T, Wang T, Zhang S, Wu Z. 2021. Effect of nitrogen application rates on the nitrogen utilization, yield and quality of rice. Food and Nutrition Sciences12, 13–27.

Liu S, Chi Q, Cheng Y, Zhu B, Li W, Zhang X, Huang Y, Müller C, Cai Z, Zhang J. 2019. Importance of matching soil N transformations, crop N form preference, and climate to enhance crop yield and reducing N loss. Science of the Total Environment657, 1265–1273.

Liu Y, Heuvelink G B M, Bai Z, He P, Jiang R, Huang S H, Xu X P. 2022. Statistical analysis of nitrogen use efficiency in Northeast China using multiple linear regression and Random Forest. Journal of Integrative Agriculture21, 3637–3657.

Liu Y, Zhou Z, Zhang X, Xu X, Chen H, Xiong Z. 2015. Net global warming potential and greenhouse gas intensity from the double rice system with integrated soil–crop system management: A three-year field study. Atmospheric Environment116, 92–101.

Ma R, Zou J W, Han Z Q, Yu K, Wu S, Li Z F, Liu S W, Niu S L, Horwath W R, Zhu-Barker X. 2020. Global soilderived ammonia emissions from agricultural nitrogen fertilizer application: A refinement based on regional and crop-specific emission factors. Global Change Biology27, 855–867.

Macdonald A, Poulton P, Stockdale E, Powlson D S, Jenkinson D. 2002. The fate of residual 15N-labelled fertilizer in arable soils: Its availability to subsequent crops and retention in soil. Plant and Soil246, 123–137.

Makino Y, Hirooka Y, Homma K, Kondo R, Liu T S, Tang L, Nakazaki T, Xu Z J, Tatsuhiko S. 2021. Effect of flag leaf length of erect panicle rice on the canopy structure and biomass production after heading. Plant Production Science25, 1–10.

NBS (National Bureau of Statistics, China). 2023. China Statistical Yearbook. China Statistical Publishing House, Beijing. (in Chinese)

Nkebiwe P, Weinmann M, Bar-Tal A, Müller T. 2016. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Research196, 389–401.

Olusegun I, Wang Y, Homma K, Nakazaki T, Xu Z, Tatsuhiko S. 2022. Interaction of erect panicle genotype and nitrogen fertilizer application on the source-sink ratio and nitrogen use efficiency in rice. Field Crops Research278, 108430.

Pan B, Lam S, Mosier A, Luo Y, Chen D. 2016. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agriculture Ecosystems and Environment232, 283–289.

Peng S, Yang S, Xu J, Luo Y, Hou H. 2011. Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements. Paddy and Water Environment9, 333–342.

Peng X, Kuang X, Li P, Che J, Liu Z, Yu C. 2021. Determination of critical nitrogen concentration for coordinating yield and quality of rice. Chinese Journal of Soil Science52, 109–116. (in Chinese)

Peng X, Wang W, Zhou N, Liu H, Li P, Liu Z, Yu C. 2019. Analysis of fertilizer application and its reduction potential in paddy fields of Heilongjiang Province. Scientia Agricultura Sinica52, 2092–2100. (in Chinese)

Peng X, Yang Y, Yu C, Chen L, Zhang M, Liu Z, Sun Y, Luo S, Liu Y. 2015. Crop management for increasing rice yield and nitrogen use efficiency in Northeast China. Agronomy Journal107, 1682–1690.

Quan Z, Li S, Zhang X, Zhu F, Li P, Sheng R, Chen X, Zhang L M, He J Z, Wei W, Fang Y. 2020. Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: Field 15N tracer studies. Soil and Tillage Research197, 104498.

Ray D K, Foley J A. 2013. Increasing global crop harvest frequency: Recent trends and future directions. Environmental Research Letters8, 044041.

Sha Z, Li Q, Lv T, Misselbrook T, Liu X. 2019. Response of ammonia volatilization to biochar addition: A meta-analysis. Science of the Total Environment655, 1387–1396.

Sparks D L, Page A, Helmke P A, Loeppert R H, Bremner J. 1996. Nitrogen-total. In: Methods of Soil AnalysisPart 2: Chemical and Microbiological Properties. American Society of Agronomy, Inc. and Soil Science Society of America, Inc., American. pp. 475–490.

Tang J, Wang J, Li Z, Wang S, Qu Y. 2018. Effects of irrigation regime and nitrogen fertilizer management on CH4, N2O and CO2 emissions from saline–alkaline paddy fields in Northeast China. Sustainability10, 475.

Tian C, Sun M, Zhou X, Li J, Xie G, Yang X, Peng J. 2022. Increase in yield and nitrogen use efficiency of double rice with long-term application of controlled-release urea. Journal of Integrative Agriculture21, 2106–2118.

Tian G, Cao J, Cai Z, Ren L. 1998. Ammonia volatilization from winter wheat field top-dressed with urea. Pedosphere8, 331–336.

Tian Y, Zhao X, Yin B, Yan X. 2023. Delaying tillering nitrogen topdressing until the midtillering phase improves nitrogen use efficiency and reduces ammonia emission via rice canopy recapture. European Journal of Agronomy142, 126657.

Tian Y H, Yin B,Yang L Z, Yin S X, Zhu Z L. 2007. Nitrogen runoff and leaching losses during rice–wheat rotations in Taihu Lake Region China. Pedosphere17, 445–456.

Tu D, Jiang Y, Zhang L, Cai M, Li C, Cao C. 2022. Effect of various combinations of temperature during different phenological periods on indica rice yield and quality in the Yangtze River Basin in China. Journal of Integrative Agriculture21, 2900–2909.

Wang G L, Cui Z L, Chen X P, Zhang F S, Zhang J H, Wang S H, Resources C F. 2015. Reactive nitrogen loss pathways and their effective factors in paddy field in southern China. Chinese Journal of Applied Ecology26, 2337–2345. (in Chinese)

Wang H, Zhang D, Zhang Y, Zhai L, Yin B, Zhou F, Geng Y, Pan J, Luo J, Gu B, Liu H. 2018. Ammonia emissions from paddy fields are underestimated in China. Environmental Pollution235, 482–488.

Wang Q, Gao Z, Zhang J, Chang B, Jiang H, Sun B, Guo Z, Jia H, Jiao F, Liu F. 2017. Black-soil paddy field experiment on improving soil physical and chemical properties and increasing rice yield by continuous deep ploughing. Transactions of the Chinese Society of Agricultural Engineering33, 126–132. (in Chinese)

Wrb I W G. 2014. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Food and Agriculture Organization of the United Nations, Italy.

Xu H, Zhong G, Lin J, Ding Y, Li G, Wang S, Liu Z H, Tang S, Ding C. 2015. Effect of nitrogen management during the panicle stage in rice on the nitrogen utilization of rice and succeeding wheat crops. European Journal of Agronomy70, 41–47.

Xu X, Ouyang X, Gu Y, Cheng K, Smith P, Jianfei S, Li Y, Pan G. 2021. Climate change may interact with nitrogen fertilizer management leading to different ammonia loss in China’s croplands. Global Change Biology27, 6525–6535.

Xu Z, He P, Yin X, Struik P, Ding W, Liu K, Huang Q. 2022. Simultaneously improving yield and nitrogen use efficiency in a double rice cropping system in China. European Journal of Agronomy137, 126513.

Xue L, Yu Y, Yang L. 2014. Maintaining yields and reducing nitrogen loss in rice–wheat rotation system in Taihu Lake region with proper fertilizer management. Environmental Research Letters9, 115010.

Yan X, Ti C, Vitousek P, Chen D, Leip A, Cai Z, Zhu Z. 2014. Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen. Environmental Research Letters9, 095002.

Yang B, Cai S, Liu Y, Xu L, Wang Y, Peng X, Zhao X, Yan X. 2021. Soil nitrogen supply and retention capacity determine the effect and utilization rate of nitrogen fertilizer in paddy field. Acta Pedologica Sinica244, 118745. (in Chinese)

Yang T, Zeng Y, Sun Y, Zhang J U N, Tan X, Zeng Y, Huang S, Pan X. 2019. Experimental warming reduces fertilizer nitrogen use efficiency in a double rice cropping system. PlantSoil and Environment65, 483–489.

Yang Y, Li N, Ni X, Yu L, Yang Y, Wang Q, Liu J, Ye Y, Tao L, Liu B, Wu Y J. 2019. Combining deep flooding and slow-release urea to reduce ammonia emission from rice fields. Journal of Cleaner Production244, 118745.

Yang Y, Min Z, Li Y, Fan X, Geng Y. 2013. Controlled-release urea commingled with rice seeds reduced emission of ammonia and nitrous oxide in rice paddy soil. Journal of Environmental Quality42, 1661–1673.

Yao Y L, Zhang M, Tian Y H, Zhao M, Zhang B W, Zhao M, Zeng K, Yin B. 2018. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system. Field Crops Research218, 254–266.

Yu X, Wang F, Xu L, Chen Z, Yuan S, Wang X, Huang J, Peng S. 2022. Optimization of nitrogen management in both early and late seasons of direct-seeded double-season rice with an ultrashort-duration variety in Central China. Journal of Plant Growth Regulation42, 3173–3183.

Zhang C, Rees B, Ju X. 2021. Fate of 15N-labelled urea when applied to long-term fertilized soils of varying fertility. Nutrient Cycling in Agroecosystems121, 151–165.

Zhang D, Wang H, Pan J, Luo J, Liu J, Gu B, Liu S, Zhai L, Lindsey S, Zhang Y, Lei Q, Wu S, Smith P, Liu H. 2018. Nitrogen application rates need to be reduced for half of the rice paddy fields in China. Agriculture Ecosystems and Environment265, 8–14.

Zhang J, Li G, Song Y, Liu Z, Yang C, Tang S, Zheng C, Wang S, Ding Y. 2014. Lodging resistance characteristics of high-yielding rice populations. Field Crops Research161, 64–74.

Zhang J, Yu Z, Li Y, Liu X, Tang C, Adams J, Liu J, Liu J, Zhang S, Wu J, Jin J. 2022. Co-elevation of CO2 and temperature enhances nitrogen mineralization in the rhizosphere of rice. Biology and Fertility of Soils24, 1–13.

Zhang W, Wu L, Wu X, Ding Y, Li G, Li J, Weng F, Liu Z, Tang S, Ding C, Wang S. 2016. Lodging resistance of japonica rice (Oryza sativa L.): morphological and anatomical traits due to top-dressing nitrogen application rates. Rice9, 31.

Zhang Y, Luan S, Chen L, Shao M. 2011. Estimating the volatilization of ammonia from synthetic nitrogenous fertilizers used in China. Journal of Environmental Management92, 480–493.

Zhang Z, Chen P, Chen S, Shang W, Jiang L, Hou J. 2018. Effects of water-saving irrigation on residues of different periods fertilizer nitrogen in black soils. Transactions of the Chinese Society for Agricultural Machinery49, 240–250. (in Chinese)

Zhao X, Cai S, Yang B, Zhao H, Zeng K, Fan P, Bi S, Li P, Liu Y, Wang Y, Liu X, Yang Y, Zhou W, Yin B, Liu B, Zhang Z, Peng X, Müller C, Zhang J, Yan X. 2023. Soil nitrogen dynamics drive regional variation in nitrogen use efficiency in rice: A multi-scale study. European Journal of Soil Science74, 1–16.

Zhao X, Zhou Y, Min J, Wang S, Shi W, Xing G. 2012. Nitrogen runoff dominates water nitrogen pollution from rice–wheat rotation in the Taihu Lake region of China. AgricultureEcosystems & Environment156, 1–11.

Zhou Q, Yuan R, Zhang W, Gu J, Liu L J, Zhang H, Wang Z, Yang J. 2022. Grain yield, nitrogen use efficiency and physiological performance of indica/japonica hybrid rice in response to nitrogen rates. Journal of Integrative Agriculture21, 2106–2118.

Zhu H, Zhang T, Wang X, Wang Y, Shi A. 2022. 15N tracer-based analysis on nitrogen utilization laws of rice under different irrigation modes. Molecular Plant Breeding13, 1–11.

[1] TIAN Jin-yu, LI Shao-ping, CHENG Shuang, LIU Qiu-yuan, ZHOU Lei, TAO Yu, XING Zhi-peng, HU Ya-jie, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Increasing the appropriate seedling density for higher yield in dry direct-seeded rice sown by a multifunctional seeder after wheat-straw return[J]. >Journal of Integrative Agriculture, 2023, 22(2): 400-416.
[2] HE Wen-jun, HE Bin, WU Bo-yang, WANG Yu-hui, YAN Fei-yu, DING Yan-feng, LI Gang-hua. Growth of tandem long-mat rice seedlings using controlled release fertilizers: Mechanical transplantation can be more economical and high yielding[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3652-3666.
[3] LÜ Hui-dan, WANG Xi-ya, PAN Zhao-long, ZHAO Shi-cheng. Assessment of the crucial factors influencing the responses of ammonia and nitrous oxide emissions to controlled release nitrogen fertilizer: A meta-analysis[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3549-3559.
[4] ZHANG Guang-xin, ZHAO De-hao, FAN Heng-zhi, LIU Shi-ju, LIAO Yun-cheng, HAN Juan. Combining controlled-release urea and normal urea with appropriate nitrogen application rate to reduce wheat stem lodging risk and increase grain yield and yield stability[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3006-3021.
[5] YANG Wen-jia, LI Yu-lin, LIU Wei-jian, WANG Shi-wen, YIN Li-na, DENG Xi-ping. Agronomic management practices in dryland wheat result in variations in precipitation use efficiency due to their differential impacts on the steps in the precipitation use process[J]. >Journal of Integrative Agriculture, 2023, 22(1): 92-107.
[6] JIANG Hui, GAO Ming-wei, CHEN Ying, ZHANG Chao, WANG Jia-bao, CHAI Qi-chao, WANG Yong-cui, ZHENG Jin-xiu, WANG Xiu-li, ZHAO Jun-sheng. Effect of the L-D1 alleles on leaf morphology, canopy structure and photosynthetic productivity in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2023, 22(1): 108-119.
[7] LI Teng, ZHANG Xue-peng, LIU Qing, LIU Jin, CHEN Yuan-quan, SUI Peng. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2465-2476.
[8] TIAN Chang, SUN Ming-xue, ZHOU Xuan, LI Juan, XIE Gui-xian, YANG Xiang-dong, PENG Jian-wei. Increase in yield and nitrogen use efficiency of double rice with long-term application of controlled-release urea[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2106-2118.
[9] Ebrahim ROOHI, Reza MOHAMMADI, Abdoul Aziz NIANE, Javad VAFABAKHSH, Mozaffar ROUSTAEE, Mohammad Reza JALAL KAMALI, Shahriar SOHRABI, Shahriar FATEHI, Hossain TARIMORADI. Genotype×tillage interaction and the performance of winter bread wheat genotypes in temperate and cold dryland conditions[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3199-3215.
[10] XIE Jun, Blagodatskaya EVGENIA, ZHANG Yu, WAN Yu, HU Qi-juan, ZHANG Cheng-ming, WANG Jie, ZHANG Yue-qiang, SHI Xiao-jun. Substituting nitrogen and phosphorus fertilizer with optimal amount of crop straw improved rice grain yield, nutrient use efficiency and soil carbon sequestration[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3345-3355.
[11] LIU Xue-jing, YIN Bao-zhong, HU Zhao-hui, BAO Xiao-yuan, WANG Yan-dong, ZHEN Wen-chao. Physiological response of flag leaf and yield formation of winter wheat under different spring restrictive irrigation regimes in the Haihe Plain, China[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2343-2359.
[12] CHEN Yuan, LIU Zhen-yu, HENG Li, Leila I. M. TAMBEL, ZHANG Xiang, CHEN Yuan, CHEN De-hua. Effects of plant density and mepiquat chloride application on cotton boll setting in wheat–cotton double cropping system[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2372-2381.
[13] LIU Zheng-chun, WANG Chao, BI Ru-tian, ZHU Hong-fen, HE Peng, JING Yao-dong, YANG Wu-de. Winter wheat yield estimation based on assimilated Sentinel-2 images with the CERES-Wheat model[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1958-1968.
[14] YAO Bo, HE Hai-bing, XU Hao-cong, ZHU Tie-zhong, LIU Tao, KE Jian, YOU Cui-cui, ZHU De-quan, WU Li-quan. Determining nitrogen status and quantifying nitrogen fertilizer requirement using a critical nitrogen dilution curve for hybrid indica rice under mechanical pot-seedling transplanting pattern[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1474-1486.
[15] WANG Yi-bo, HUANG Rui-dong, ZHOU Yu-fei. Effects of shading stress during the reproductive stages on photosynthetic physiology and yield characteristics of peanut (Arachis hypogaea Linn.)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1250-1265.
No Suggested Reading articles found!