Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (11): 3549-3559    DOI: 10.1016/j.jia.2023.07.008
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Assessment of the crucial factors influencing the responses of ammonia and nitrous oxide emissions to controlled release nitrogen fertilizer: A meta-analysis

LÜ Hui-dan, WANG Xi-ya, PAN Zhao-long, ZHAO Shi-cheng#

State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

降低农田氨和氧化亚氮排放对减少氮素损失和温室气体排放有极大影响。相对于常规尿素,控释尿素可以调控氮素的释放速率以减少活性氮损失并提高氮素利用效率。然而,与常规尿素相比,对控释尿素施用下影响氨和氧化亚氮排放的关键因素仍不清楚。我们收集大量试验数据并利用荟萃分析评估了氨和氧化亚氮排放对控释尿素的响应及关键影响因素。控释尿素施用较常规尿素降低32.7%的氨和25.0%氧化亚氮排放。根据亚组分析,控释尿素对土壤氨和氧化亚氮排放的缓解效pH6.5-7.5-47.9-23.7%)土壤、水稻季(-34.8-29.1%)较pH6.5-28.5-21.4%)、pH7.5-29.3-17.3%)土壤和小麦季(-19.8-22.8%)更好;同时,控释尿素氨和氧化亚氮排放的缓解效应从雨养农田(-30.5%-17.0%)到灌溉农田(-32.5%-22.9%),到水-34.8%-29.1%)逐步增加。此外,氧化亚氮减排应随土壤总氮的增加而增加,但土壤对氨挥发缓解的影响不显著。相对于壤质(-32.9%)和质(-32.3%)土壤,砂质土壤(-57.7%)施用控释肥的氨排放降低幅度更大,而土壤质地对氧化亚氮排放影响不显著。总之,相对于常规尿素,施用控释尿素是减少农活性排放的一个有效措施,该分析增强了对控释尿素施用下影响氨和氧化亚氮排放缓解的关键环境和管理因素的理解,在应用控释尿素增加氮肥利用率时应考虑这些区域特异性的因素。



Abstract  

Reducing ammonia (NH3) and nitrous oxide (N2O) emissions have great effects on mitigating nitrogen (N) nutrient loss and greenhouse gas emissions.  Controlled release urea (CRU) can control the N release rate, which reduces reactive N loss and increases nitrogen use efficiency relative to conventional urea (CU).  However, the crucial factors influencing the responses of NH3 and N2O emissions to CRU relative to CU are still unclear.  In this study, we evaluated the responses of NH3 and N2O emissions to CRU based on collected field data with a meta-analysis.  CRU reduced the NH3 and N2O emissions by 32.7 and 25.0% compared with CU, respectively.  According to subgroup analysis, CRU presented better mitigation of NH3 and N2O emissions in soils with pH 6.5–7.5 (–47.9 and –23.7%) relative to either pH<6.5 (–28.5 and –21.4%) or pH>7.5 (–29.3 and –17.3%), and in the rice season (–34.8 and –29.1%) relative to the wheat season (–19.8 and –22.8%).  The responses of NH3 and N2O emissions to CRU increased from rainfed (–30.5 and –17.0%) to irrigated (–32.5 and –22.9%), and then to paddy (–34.8 and –29.1%) systems.  In addition, the response of N2O emission mitigation increased with increases in soil total nitrogen (TN); however, soil TN did not significantly affect the response of NH3 volatilization.  The reduction in NH3 emission was greater in sandy-textured soil (–57.7%) relative to loam-textured (–32.9%) and clay-textured (–32.3%) soils, whereas soil texture did not affect N2O emission.  Overall, CRU was a good option for reducing the NH3 and N2O emissions relative to CU in agricultural production.  This analysis improves our understanding of the crucial environmental and management factors influencing the mitigation of NH3 and N2O emissions under CRU application, and these site-specific factors should be considered when applying CRU to reduce reactive N loss and increase NUE.

Keywords:  controlled release urea        NH3 volatilization        N2O emission        environmental factor        management practice  
Received: 19 April 2023   Accepted: 14 June 2023
Fund: This project was financially supported by the Smart Fertilization Project (05) and the National Key Research & Development Program of China (2022YFD1700605).

About author:  LÜ Hui-dan, E-mail: lvhuidan1226@163.com; #Correspondence ZHAO Shi-cheng, Tel: +86-10-82105029, E-mail: zhaoshicheng@caas.cn

Cite this article: 

LÜ Hui-dan, WANG Xi-ya, PAN Zhao-long, ZHAO Shi-cheng. 2023. Assessment of the crucial factors influencing the responses of ammonia and nitrous oxide emissions to controlled release nitrogen fertilizer: A meta-analysis. Journal of Integrative Agriculture, 22(11): 3549-3559.

Ardell D H, Stephen J D G. 2012. Nitrogen source and placement effects on soil nitrous oxide emissions from no-till corn. Journal of Environmental Quality41, 1349–1352.

Behera S N, Sharma M, Aneja V P, Balasubramanian R. 2013. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry, and deposition on terrestrial bodies. Environmental Science and Pollution Research20, 8092–8131.

Cai G X, Peng G H. 1992. Ammonia volatilization from urea applied to acid paddy soil in southern China and its control. Pedosphere4, 345–354.

Chen D D. 2015. Study on nutrient release characteristics and the application effect of polymeric slow/controlled release fertilizer. Ph D thesis. North University, China. (in Chinese)

Davidson E A. 2009. The contribution of manure and fertilizer N to atmospheric nitrous oxide since. Nature Geoscience2, 659–662.

Ding W H, Lei H J, Zhang J, Wang L G, Zhang J F, Ju X H, Li H, Zhang G L. 2022. One-time N fertilization reduces greenhouse emissions and N leaching while maintaining high yields in a rape–rice rotation system. Agronomy Journal114, 427–439.

Dobbie K E, Smith K A. 2003. N2O emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables. Global Change Biology9, 204–218.

Fan D J, He W T, Ward N S, Craig F D, Jiang R, Brian B G, Shi Y Y, Song D P, Chen Y H, Wang X X, He P, Zou G Y. 2022. Global evaluation of inhibitor impacts on ammonia and nitrous oxide emissions from agricultural soils: A meta-analysis. Global Change Biology28, 5121–5141.

Farmaha B S, Sims A L. 2013. The influence of polymer-coated urea and urea fertilizer mixtures on spring wheat protein concentrations and economic returns. Agronomy Journal105, 1328 –1334.

Gattinger A, Müller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, Mader P, Stolze M, Smith P, Scialabba N, Niggli U. 2012. Enhanced top soil carbon stocks under organic farming. Proceedings of the National Academy of Sciences of the United States of America109, 18226–18231.

Geng J, Chen J, Sun Y, Zheng W, Tian X, Yang Y, Li C, Zhang M. 2016. Controlled release urea improved N use efficiency and yield of wheat and corn. Agronomy Journal108, 1666–1673.

Geng J, Sun Y, Zhang M, Li C, Yang Y, Liu Z, Li S. 2015. Long-term effects of controlled release urea application on crop yields and soil fertility under rice-oilseed rape rotation system. Field Crops Research184, 65–73.

Van Grinsven H J M, Holland M, Jacobsen B H, Klimont Z, Sutton M A, Willems W J. 2013. Costs and benefits of nitrogen for Europe and implications for mitigation. Environment Science & Technology47, 3571–3579.

Guo J M, He L Z, Yan D L, Li Z, Wang Y C, Shao R X, Yang Q H. 2021. Effects of controlled release nitrogen and urea ratio on nitrogen accumulation, transfer, and nitrogen-use efficiency of different summer maize varieties. Acta Prataculturae Sinica30, 81–95. (in Chinese)

Guo L B, Gifford R M. 2002. Soil carbon stocks and land use change: A meta-analysis. Global Change Biology8, 345–360.

Halvorson A D, Del Grosso S J, Alluvione F. 2010. Tillage and inorganic N source effects on N2O emissions from irrigated cropping systems. Soil Science Society of America Journal74, 436–445.

Ji Y, Liu G, Ma J, Xu H, Yagi K. 2012. Effect of controlled-release fertilizer on nitrous oxide emission from a winter wheat field. Nutrient Cycling in Agroecosystems94, 111–122.

Jiang J Y, Hu Z H, Sun W J, Huang Y. 2010. N2O emissions from Chinese cropland fertilized with a range of slow-release N compounds. AgricultureEcosystems & Environment135, 216–225.

Jiang Z W, Yang S H, Chen X, Pang Q Q, Xu Y, Qi S T, Yu W Q, Dai H D. 2022. Controlled release urea improves rice production and reduces environmental pollution: A research based on meta-analysis and machine learning. Environmental Science and Pollution Research29, 3587–3599.

Ke J, He R C, Hou P F, Ding C, Ding Y F, Wang S H, Liu Z H, Tang S, Ding C Q. Chen L, Li G H. 2018. Combined controlled-released N fertilizers and deep placement effects of N leaching, rice yield and N recovery in machine-transplanted rice. AgricultureEcosystems & Environment265, 402–412.

Lam S K, Suter H, Bai M, Walker C, Mosier A R, Grinsven H, Chen D L. 2019. Decreasing ammonia loss from an Australian pasture with the use of enhanced efficiency fertilizers. AgricultureEcosystems & Environment283, 106553.

Lan T, Zhang H, Han Y, Deng O P, Tang X Y, Luo L, Zeng J, Chen G D, Wang C Q, Gao X S. 2021. Regulating CH4, N2O, and NO emissions from an alkaline paddy field under rice–wheat rotation with controlled release N fertilizer. Environmental Science and Pollution Research28, 18246–18259.

Li P, Lu J, Hou W, Pan Y, Wang Y, Khan M R, Ren T, Cong R, Li X. 2017. Reducing N losses through NH3 volatilization and surface runoff to improve apparent N recovery of double cropping of late rice using controlled release urea. Environmental Science and Pollution Research24, 11722–11733.

Li X L, Xu H, Cai Z C. 2008. Trade-off relationship and mitigation options of methane and nitrous oxide emissions from rice paddy field. Journal of Agro-Environment Science27, 2123–2130.

Li Z L, Tang Z, Chen W N, Tian D S, Tang S M, Wang X Y, Wang J S, Liu W J, Wang Y, Li J, Jiang L F, Luo Y Q, Niu S L. 2022. Variations and controlling factors of soil denitrification rate. Global Change Biology28, 2133–2145.

Liu L, Zhang X Y, Xu W, Liu X G, Wei J, Wang Z, Lu X H. 2020. Ammonia volatilization as the major nitrogen loss pathway in dryland agro-ecosystems. Environmental Pollution265, 114862.

Liu S, Wang J J, Tian Z, Wang X D, Harrison S. 2017. Ammonia and greenhouse gas emissions from a subtropical wheat field under different N fertilization strategies. Journal of Environmental Science57, 196–210.

Liu S L, Wang X H, Yin X H, Savoy H J, McClure A, Essington M E. 2019. Ammonia volatilization loss and corn N nutrition and productivity with efficiency enhanced UAN and urea under no-tillage. Scientific Reports9, 6610.

Luo Y, Hui D, Zhang D. 2006. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology87, 53–63.

Ma Q, Wang M Y, Zheng G l, Yao Y, Tao R R, Zhu M, Ding J F, Li C Y, Guo W S, Zhu X. 2021. Twice-split application of controlled-release N fertilizer met the N demand of winter wheat. Field Crops Research267, 108163.

Maharjan B, Venterea R T, Rosen C. 2014. Fertilizer and irrigation management effects on nitrous oxide emissions and nitrate leaching. Agronomy Journal106, 703–714.

Min J, Sun H J, Wang Y, Pan Y F, Kronzucker H J, Zhao D Q, Shi W M. 2021. Mechanical side-deep fertilization mitigates ammonia volatilization and N runoff and increases profitability in rice production independent of fertilizer type and split ratio. Journal of Cleaner Production316, 128370.

Nishimura S, Yoshimura M, Yamane T, Oka N. 2022. Effects of coated slow-release fertilizers on nitrous oxide emission from winter wheat field in a cool-temperate region in Japan. Soil Science and Plant Nutrition68, 305–316.

Qiao D, Liu H, Yu L, Bao X, Simon G P, Petinakis E, Chen L. 2016. Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydrate Polymer147, 146–154.

Ravishankara A R, Daniel J S, Portmann R W. 2009. Nitrous oxide: the dominant ozone-depleting substance emitted in the 21st century. Science326, 123–125.

Ribeiro R H, Besen M R, Simon P L, Bayer C, Piva J T. 2020. Enhanced-efficiency nitrogen fertilizers reduce winter losses of nitrous oxide, but not of ammonia, from no-till soil in a subtropical agroecosystem. Soil Use and Management36, 420–428.

Ross C B, Dale J B. 2018. Nitrous oxide emissions from turfgrass receiving different irrigation amounts and nitrogen fertilizer forms. Crop Science58, 1762–1775.

Sha Z P, Liu H J, Wang J X, Ma X, Liu X J, Misselbrook T. 2021. Improved soil-crop system management aids in NH3 emission mitigation in China. Environment Pollution289, 117844.

Shen Y Z, Wang B C, Zhu S X, Xie W, Wang S Q, Zhao X. 2022. Single application of a new polymer-coated urea improves yield while mitigates environmental issues associated with winter wheat grown in rice paddy soil. Field Crops Research285, 108592.

Thapa R, Chatterjee A, Awale R, McGranahan D A, Daigh A. 2016. Effect of enhanced efficiency fertilizers on nitrous oxide emissions and crop yields: A meta-analysis. Soil Science Society of America Journal80, 1121–1134.

Torralbo F, Boardman D, Houx III J H, Fritschi F B. 2022. Distinct enhanced efficiency urea fertilizers differentially influence ammonia volatilization losses and maize yield. Plant and Soil475, 551–563.

Vejan P, Khadiran T, Rosazlin A, Ahmad N. 2021. Controlled release fertilizer: A review on developments, applications, and potential in agriculture. Journal of Controlled Release339, 321–334.

Wallace B C, Lajeunesse M J, Dietz G, Dahabreh I J, Trikalinos T A, Schmid C H, Gurevitch J. 2017. OpenMEE: intuitive, open-source software for meta-analysis in ecology and evolutionary biology. Methods in Ecology and Evolution, 8, 941–947.

Wu D, Zhang Y X, Dong G, Du Z L, Wu W L, David C, Roland B. 2021. The importance of ammonia volatilization in estimating the efficacy of nitrification inhibitors to reduce N2O emissions: A global meta-analysis. Environmental Pollution271, 116365.

Xu R, Tian H, Pan S, Prior S A, Feng Y, Batchelor W D, Chen J, Yang J. 2019. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and process-based estimates and uncertainty. Global Change Biology25, 314–326.

Yang C L, Yuan L, Li Y C, Liang X Q, Wu L H, Chen H K. 2013. Effect of controlled release coated urea on rice yield and N loss in paddy fields in the South Taihu Basin. Chinese Journal of Soil Science44, 184–190. (in Chinese)

Yang M, Zhu X Q, Bai Y, Sun D, Zou H T, Fang Y T, Zhang Y L. 2021. Coated controlled-release urea creates a win–win scenario for producing more staple grains and resolving N loss dilemma worldwide. Journal of Cleaner Production, 288, 125660.

Yang Y, Liang C, Wang Y Q, Cheng H, An S S, Chang S X. 2020. Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration. Soil Biology and Biochemistry149, 107928.

Yang Y C, Zhang M, Zheng L, Cheng D D, Liu M, Geng Y Q. 2011. Controlled release urea improved N use efficiency, yield, and quality of wheat. Agronomy Journal103, 479–485.

Zebarth B J, Snowdon E, Burton D L, Goyer C, Dowbenko R. 2012. Controlled release fertilizer product effects on potato crop response and nitrous oxide emissions under rain-fed production on a medium-textured soil. Canada Journal of Soil Science92, 759–769.

Zhang W S, Liang Z Y, He X M, Wang X Z, Shi X J, Zou C Q, Chen X P. 2019. The effects of controlled release urea on maize productivity and reactive N losses: A meta-analysis. Environmental Pollution246, 559–565.

[1] BI Shi-ting, LUO Xiang-yu, ZHANG Chen, LI Peng-fei, YU Cai-lian, LIU Zhi-lei, PENG Xian-long. Fate of fertilizer nitrogen and residual nitrogen in paddy soil in Northeast China[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3535-3548.
No Suggested Reading articles found!