Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (11): 3517-3534    DOI: 10.1016/j.jia.2023.09.012
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study

BAI Jin-shun1, 2*, ZHANG Shui-qing3*, HUANG Shao-min3, XU Xin-peng1, 2, ZHAO Shi-cheng1, 2, QIU Shao-jun1, 2#, HE Ping1, 2, ZHOU Wei1, 2

1 State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
2 Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
3 Institute of Plant Nutrition and Resource Environment, Henan Academy of Agricultural Sciences, Zhengzhou 450002, P.R.China 
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

为理解长期有机物料与化学氮肥配施对土壤有机碳和全氮的影响,在黄淮海平原开展了长达30年的小麦-玉米轮作田间试验(1990–2019)。试验包含5个施肥处理:不施肥(control)、单施化肥(NPK)、化肥与秸秆配施NPKS)、化肥与有机肥配施(NPKM)和1.5倍化肥与有机肥配施1.5NPKM),NPKNPKSNPKM处理氮投入总量相同。测定试验期间作物产量,采集土壤表层(0–10 and 10–20 cm)和下层(20–40 cm)样品,进行土壤团聚体分级并测定团聚体碳氮含量。有机无机配合处理NPKS, NPKM1.5NPKM)与NPK处理相比30年平均作物产量无显著差异,土壤表层和下层有机碳和全氮均显著提高,表层土壤有机碳和全氮分别提高24.1–44.4%22.8–47.7%下层土壤有机碳和全氮分别提高22.0–47.9%19.8–41.8%%。与NPK处理相比NPKS处理0-10cm土层和NPKM处理20-40cm土层具有显著较高的大团聚体组分质量比例,提高幅度分别为19.827.0%然而1.5NPKM处理在0-10cm20-40cm土层的土壤大团聚体组分质量比例较对照显著降低下降幅度分别为-19.2-29.1%。分析表明有机无机配合处理较NPK处理有显著较高土壤有机碳和全氮主要与自由态微团聚体和大团聚体中的微团聚体等土壤稳定性组分的碳氮增加有关,稳定性组分对土壤碳氮含量增加的贡献率分别达81.1–91.7%和 83.3–94.0%。不同施肥处理0-40cm土层的土壤稳定性碳库和氮库与处理年平均碳投入量均呈显著正相关,回归系数分别为0.740.72(P<0.01),表明土壤氮对碳贮存的重要性。我们研究为长期有机物料与化学氮肥配施措施在保持合理总氮投入下有利于上层和下层土壤碳氮的保蓄提供了证据。



Abstract  

To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C (SOC) and total N (TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Huang-Huai-Hai Plain during 1990–2019.  The experimental treatments consisted of five fertilizer regimes: no fertilizer (control), chemical fertilizer only (NPK), chemical fertilizer with straw (NPKS), chemical fertilizer with manure (NPKM), and 1.5 times the rate of NPKM (1.5NPKM).  The NPK, NPKS, and NPKM treatments had equal N inputs.  The crop yields were measured over the whole experimental duration.  Soil samples were collected from the topsoil (0–10 and 10–20 cm) and subsoil (20–40 cm) layers for assessing soil aggregates and taking SOC and TN measurements.  Compared with the NPK treatment, the SOC and TN contents increased significantly in both the topsoil (24.1–44.4% for SOC and 22.8–47.7% for TN) and subsoil layers (22.0–47.9% for SOC and 19.8–41.8% for TN) for the organically amended treatments (NPKS, NPKM and 1.5NPKM) after 30 years, while no significant differences were found for the average annual crop yields over the 30 years of the experiment.  The 0–10 cm layer of the NPKS treatment and the 20–40 cm layer of the NPKM treatment had significantly higher macroaggregate fraction mass proportions (19.8 and 27.0%) than the NPK treatment.  However, the 0–10 and 20–40 cm layers of the 1.5NPKM treatment had significantly lower macroaggregate fraction mass proportions (–19.2 and –29.1%) than the control.  The analysis showed that the higher SOC and TN in the soil of organically amended treatments compared to the NPK treatment were related to the increases in SOC and TN protected in the stable fractions (i.e., free microaggregates and microaggregates within macroaggregates), in which the contributions of the stable fractions were 81.1–91.7% of the increase in SOC and 83.3–94.0% of the increase in TN, respectively.  The relationships between average C inputs and both stable SOC and TN stocks were significantly positive with R2 values of 0.74 and 0.72 (P<0.01) for the whole 40 cm soil profile, which indicates the importance of N for soil C storage.  The results of our study provide key evidence that long-term combined organic and chemical nitrogen fertilization, while maintaining reasonable total N inputs, benefited soil C and N storage in both the topsoil and subsoil layers.


Keywords:  soil aggregate fractions        soil organic matter        manure application        straw return        C:N ratio  
Received: 15 April 2023   Accepted: 10 July 2023
Fund: This study was supported by the Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences (CAAS-CSAL-202302 and GY2023-12-7), the Fundamental Research Funds for Central Non-Profit Scientific Institutions, China (1610132019014) and the National Key Research and Development Program of China (2016YFD0200101 and 2018YFD0200804).
About author:  BAI Jin-shun, E-mail: baijinshun@caas.cn; ZHANG Shui-qing, E-mail: shqing_zhang@163.com; #Correspondence QIU Shao-jun, Tel/Fax: +86-10-82105029, E-mail: qiusj82105029@126.com * These authors contributed equally to this study.

Cite this article: 

BAI Jin-shun, ZHANG Shui-qing, HUANG Shao-min, XU Xin-peng, ZHAO Shi-cheng, QIU Shao-jun, HE Ping, ZHOU Wei. 2023. Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study. Journal of Integrative Agriculture, 22(11): 3517-3534.

Abrar M M, Xu M G, Shah S A, Ali A, Muhammad W A, Tariq M, Adnan A, Muhammad N, Zhou B K, Ma X, Zhu M. 2020. Variations in the profile distribution and protection mechanisms of organic carbon under long-term fertilization in a Chinese Mollisol. Science of the Total Environment723, 138181.

Angers D A, Recous S, Aita C. 1997. Fate of C and nitrogen in water-stable aggregates during decomposition of 13C15N-labbelled wheat straw in situEuropean Journal of Soil Science48, 295–300.

Bai J S, Qiu S J, Jin J, Wei D, Xu X P, Zhao S C, He P, Wang L G, Christie P, Zhou W. 2020. Quantifying soil N pools and N2O emissions after application of chemical fertilizer and straw to a typical chernozem soil. Biology and Fertility of Soils56, 319–329.

Bandyopadhyay K K, Misra A K, Ghosh P K, Hati K M. 2010. Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean. Soil and Tillage Research110, 115–125.

Berhane M, Xu M, Liang Z Y, Shi J L, Wei G H, Tian X H. 2020. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis. Global Change Biology26, 2686–2701.

Brar B S, Singh K, Dheri G S, Balwinder-Kumar. 2013. Carbon sequestration and soil carbon pools in a rice–wheat cropping system: Effect of long-term use of inorganic fertilizers and organic manure. Soil and Tillage Research128, 30–36.

Brown K H, Bach E M, Drijber R A, Hofmockel K S, Jeske E S, Sawyer J E, Castellano M J. 2014. A long-term nitrogen fertilizer gradient has little effect on soil organic matter in a high-intensity maize production system. Global Change Biology20, 1339–1350.

Castellano M J, Kaye J P, Schmidt L J P. 2012. Linking carbon saturation concepts to nitrogen saturation and retention. Ecosystems15, 175–187.

Castellano M J, Mueller K E, Olk D C, Sawyer J E, Six J. 2015. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology21, 3200–3209.

Chai Y, Ma S, Zeng X, Che Z, Li L, Duan R, Su S. 2015. Long-term fertilization effects on soil organic carbon stocks in the irrigated desert soil of NW China. Journal of Plant Nutrition and Soil Science178, 622–630.

Cleveland C C, Liptzin D. 2007. C:N:P stoichiometry in soil: Is there a ‘‘Redfeld ratio’’ for the microbial biomass? Biogeochemistry85, 235–252.

Cotrufo M F, Ranalli M G, Haddix M L, Six J, Lugato E. 2019. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience12, 989–994.

Cotrufo M F, Soong J L, Horton A J, Campbell E E, Haddix M L, Wall D H, Parton W J. 2015. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience8, 776–779.

Courtier-Murias D, Simpson A J, Marzadori C, Baldoni G, Ciavatta C, Fernández J M, López-de-Sá E G, Plaza C. 2013. Unraveling the long-term stabilization mechanisms of organic materials in soils by physical fractionation and NMR spectroscopy. Agriculture Ecosystems & Environment171, 9–18.

Cui Z L, Zhang F S, Chen X P. 2008. On-farm estimation of indigenous N supply for site-specific N management in the North China plain. Nutrient Cycling in Agroecosystem81, 37–47.

Dai H C, Chen Y Q, Liu K C, Li Z X, Qian X, Zang H D, Yang X L, Zhao Y X, Shen Y W, Li Z J, Sui P. 2019. Water-stable aggregates and carbon accumulaton in barren sandy soil depend on organic amendment method: A three-year field study. Journal of Cleaner Production212, 393–400.

Drinkwater L E, Snapp S S. 2007. Nutrients in agroecosystems: Rethinking the management paradigm. Advances in Agronomy92, 163–186.

Elliott E T. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal50, 627–633.

Guenet B, Gabrielle B, Chenu C, Arrouays D, Balesdent J, Bernoux M, Bruni E, Caliman J P, Cardinael R, Chen S, Ciais P, Desbois D, Fouche J, Frank S, Henault C, Lugato E, Naipal V, Nesme T, Obersteiner M, Pellerin S, et al. 2020. Can N2O emissions offset the benefits from soil organic carbon storage? Global Change Biology27, 237–256.

Guo Z, Zhang J, Fan J, Yang X, Yi Y, Han X, Wang D, Zhu P, Peng X. 2019. Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments. Science of the Total Environment660, 1029–1037.

Guo Z C, Zhang Z B, Zhou H, Wang D Z, Peng X H. 2019. The efect of 34-year continuous fertilization on the SOC physical fractions and its chemical composition in a Vertisol. Scientific Reports9, 2505.

He Y T, Zhang W J, Xu M G, Tong X G, Sun F X, Wang J Z, Huang S M, Zhu P, He X H. 2015. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. Science of the Total Environment532, 635–644.

Jastrow J D. 1996. Soil aggregate formation and the accrual of particulate and mineral associated organic matter. Soil Biology and Biochemistry28, 656–676.

Kong A, Fonte S, van Kessel C, Six J. 2007. Soil aggregates control N cycling effciency in long-term conventional and alternative cropping systems. Nutrient Cycling in Agroecosystem79, 45–58.

Li C, Frolking S, Harriss R. 1994. Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles8, 237–254.

Li T T, Zhang Y L, Bei S K, Li X L, Reinsch S, Zhang H Y, Zhang J L. 2020. Contrasting impacts of manure and inorganic fertilizer applications for nine years on soil organic carbon and its labile fractions in bulk soil and soil aggregates. Catena194, 104739.

Liu C, Lu M, Cui J, Li B, Fang C. 2014. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Global Change Biology20, 1366–1381.

Liu S, Wang J, Pu S, Blagodatskaya E, Razavi B S. 2020. Impact of manure on soil biochemical properties: A global synthesis. Science of the Total Environment745, 141003.

Lützow M V, Kögel-Knabner I, Ludwig B, Matzner M, Flessa H, Ekschmitt K, Guggenberger G, Marschner P, Kalbitz K. 2008. Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. Journal of Soil Science and Plant Nutrition171, 111–124.

Maillard É, Angers D A. 2014. Animal manure application and soil organic carbon stocks: A meta-analysis. Global Change Biology20, 666–679.

Michalzik B, Kalbitz K, Park J H, Solinger S, Matzner E. 2001. Fluxes and concentrations of dissolved organic carbon and nitrogen - A synthesis for temperate forests. Biogeochemistry52, 173–205.

Pan J X, Zhang L, He X M, Chen X P, Cui Z L. 2019. Long-term optimization of crop yield while concurrently improving soil quality. Land Degradation & Development30, 897–909.

Pan L, Sui P, Gao W S, Wang B B, Huang J X, Yan P, Zou J X, Yan L L, Chen Y Q. 2015. Aggregate stability and associated C and N in a silty loam soil as affected by organic material inputs. Journal of Integrative Agriculture14, 774–787.

Paustian K, Lehmann J, Ogle S, Reay D, Robertson G P, Smith P. 2016. Climate-smart soils. Nature532, 49–57.

Peng Y F, Li X X, Li C J. 2012. Temporal and spatial profiling of root growth revealed novel response of maize roots under various nitrogen supplies in the field. PLoS ONE7, e37726.

Qiu S J, Gao H J, Zhu P, Hou Y P, Zhao S C, Rong X M, Zhang Y P, He P, Christie P, Zhou W. 2016. Changes in soil carbon and nitrogen pools in a mollisol after long-term fallow or application of chemical fertilizers, straw or manures. Soil and Tillage Research163, 255–265.

Robertson A D, Paustian K, Ogle S, Wallenstein M D, Lugato E, Cotrufo M F. 2019. Unifying soil organic matter formation and persistence frameworks: The MEMS model. Biogeosciences16, 1225–1248.

Robertson G P, Bruulsema T W, Gehl R, Kanter D, Mauzerall D, Rotz A, Williams C. 2013. Nitrogen-climate interactions in US agriculture. Biogeochemistry114, 41–70.

Samson M É, Chantigny M H, Vanasse A, Menasseri-Aubry S, Royer I, Angers D A. 2020. Management practices differently affect particulate and mineral-associated organic matter and their precursors in arable soils. Soil Biology and Biochemistry148, 107867.

Sarker T C, Zotti M, Fang Y N, Giannino F, Mazzoleni S, Bonanomi G, Cai Y J, Chang S X. 2022. Soil aggregation in relation to organic amendment: A synthesis. Journal of Soil Science and Plant Nutrition22, 2481–2502.

Six J, Conant R T, Paul A, Paustian K. 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil241, 155–176.

Six J, Elliott E T, Paustian K. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 32, 2099–2013.

Six J, Elliott E T, Paustian K, Doran J W. 1998. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal62, 1367–1377.

Six J, Paustian K. 2014. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry68, A4–A9.

Song D L, Hou S P, Wang X B, Liang G Q, Zhou W. 2018a. Nutrient resource quantity of animal manure and its utilization potential in China. Journal of Plant Nutrition and Fertilizers24, 1131–1148. (in Chinese)

Song D L, Hou S P, Wang X B, Liang G Q, Zhou W. 2018b. Nutrient resource quantity of crop straw and its potential of substituting. Journal of Plant Nutrition and Fertilizers24, 1–21. (in Chinese)

Soon Y K, Lupwayi N Z. 2012. Straw management in a cold semi-arid region: Impact on soil quality and crop productivity. Field Crops Research139, 39–46.

Sun Y, Wang C, Chen H Y H, Ruan H. 2020. Responses of C:N stoichiometry in plants, soil, and microorganisms to nitrogen addition. Plant and Soil456, 1–11.

Taghizadeh-Toosi A, Christensen B T, Hutchings N J, Vejlin J, Katterer T, Glendining M, Olesen J E. 2014. C-tool: A simple model for simulating whole-profile carbon storage in temperate agricultural soils. Ecological Modelling292, 11–25.

Tong X, Xu M, Wang X, Bhattacharyya R, Zhang W, Cong R. 2014. Long-term fertilization effects on organic carbon fractions in a red soil of China. Catena113, 251–259.

Tripathi R, Nayak A K, Bhattacharyya P, Shukla A K, Shahid M, Raja R, Panda B B, Mohanty S, Kumar A, Thilagam V K. 2014. Soil aggregation and distribution of carbon and nitrogen in different fractions after 41 years long term fertilizer experiment in tropical rice–rice system. Geoderma213, 280–286.

Wang J, Lu C, Xu M, Zhu P, Huang S, Zhang W, Peng C, Chen X, Wu L. 2013. Soil organic carbon sequestration under different fertilizer regimes in north and northeast China: RothC simulation. Soil Use and Management29, 182–190.

Wiesmeier M, Urbanski L, Hobley E U, Lang B, Kgel-Knabner I. 2019. Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma333, 149–162.

Xie J Y, Xu M G, Ciren Q J, Yang Y, Zhang S L, Sun B H, Yang X Y. 2015. Soil aggregation and aggregate associated organic carbon and total nitrogen under long-term contrasting soil management regimes in loess soil. Journal of Integrative Agriculture14, 2405–2416.

Xu M G, Liang G Q, Zhang F D. 2006. Evolution of Chinese Soil Fertility in China. China Agricultural Science and Technology Press, Beijing. (in Chinese)

Yan Y, Tian J, Fan M S, Zhang F S, Li X L, Christie P, Chen H Q, Juhwan L, Kuzyakov Y, Six J. 2012. Soil organic carbon and total nitrogen in intensively managed arable soils. Agriculture Ecosystems & Environment150, 102–110.

Zhang F S, Chen X P, Chen Q. 2009. Fertilization Guidelines for Major Crops in China. China Agricultural University Press, Beijing. (in Chinese)

Zhang G, Sun B F, Zhao H, Wang X K, Zheng C Y, Xiong K N, Quyang Z Y, Lu F, Yuan Y F. 2019. Estimation of greenhouse gas mitigation potential through optimized application of synthetic N, P and K fertilizer to major cereal crops: A case study from China. Journal of Cleaner Production237, 117650.

Zhang Y, Lavalleem J M, Robertson A D, Even R, Ogle S M, Paustian K, Cotrufo M F. 2021. Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model. Biogeosciences18, 3147–3171.

Zhang Y L, Li T T, Bei S K, Zhang J L, Li X L. 2018. Growth and distribution of maize roots in response to nitrogen accumulation in soil profiles after long-term fertilization management on a calcareous soil. Sustainability10, 4315.

Zhao H, Shar A G, Li S, Chen Y, Shi J, Zhang X Y, Tian X H. 2018. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize–wheat double cropping system. Soil and Tillage Research175, 178–186.

[1] CHANG Fang-di, WANG Xi-quan, SONG Jia-shen, ZHANG Hong-yuan, YU Ru, WANG Jing, LIU Jian, WANG Shang, JI Hong-jie, LI Yu-yi. Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1870-1882.
[2] ZHANG Wen-wen, WANG Chong, XUE Rui, WANG Li-jie. Effects of salinity on the soil microbial community and soil fertility[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1360-1368.
No Suggested Reading articles found!