Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (7): 2015-2024    DOI: 10.1016/j.jia.2022.09.022
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
The HD-Zip transcription factor GhHB12 represses plant height by regulating the auxin signaling in cotton
LIU Yan1*, WANG Wei-ping1*, ZHANG Lin2, ZHU Long-fu2, ZHANG Xian-long2, HE Xin1#
1 College of Agronomy, Hunan Agricultural University, Changsha 410128, P.R.China 

2 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

陆地棉是世界上最重要的纤维作物。株高作为植物株型的重要组成部分,影响着作物的种植模式、产量和经济系数。前期研究中,我们分离并鉴定了一个棉花HD-ZIP基因(GhHB12),该基因调控棉花的非生物和生物胁迫应答反应和生长发育过程。在本研究中,我们证明GhHB12基因受生长素诱导表达,过表达GhHB12基因能激活HY5、ATH1和HAT4基因的表达,抑制生长素的时空分布、极性运输和信号传导,并改变细胞壁扩张相关基因的表达,最终抑制棉花株高。这些结果表明,GhHB12可以通过影响生长素的信号传导和细胞壁的扩展来调节棉花株高。



Abstract  Upland cotton (Gossypium hirsutum L.) is the most important natural textile fiber crop worldwide. Plant height (PH) is a significant component of plant architecture, strongly influencing crop cultivation patterns, overall yield, and economic coefficient. However, cotton genes regulating plant height have not been fully identified. Previously, an HD-Zip gene (GhHB12) was isolated and characterized in cotton, which regulates the abiotic and biotic stress responses and the growth and development processes. In this study, we showed that GhHB12 was induced by auxin. Moreover, overexpression of GhHB12 induces the expression of HY5, ATH1, and HAT4, represses the spatial-temporal distribution, polar transport, and signaling of auxin, alters the expression of genes involved in cell wall expansion, and restrains the plant height in cotton. These results suggest a role of GhHB12 in regulating cotton plant height, which could be achieved by affecting the auxin signaling and cell wall expansion.
Keywords:  cotton       GhHB12       plant height       auxin       cell wall       HD-Zip  
Received: 25 July 2022   Accepted: 26 August 2022
Fund: This work was supported by the Science and Technology Innovation Program of Hunan Province , China (2020RC2057).
About author:  #Correspondence HE Xin, E-mail: hexinzhsh@126.com * These authors contributed equally to this study.

Cite this article: 

LIU Yan, WANG Wei-ping, ZHANG Lin, ZHU Long-fu, ZHANG Xian-long, HE Xin. 2023. The HD-Zip transcription factor GhHB12 represses plant height by regulating the auxin signaling in cotton. Journal of Integrative Agriculture, 22(7): 2015-2024.

Ang L H, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng X W. 1998. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of arabidopsis development. Molecular Cell1, 213–222.

Brewer P B, Koltai H, Beveridge C A. 2013. Diverse roles of strigolactones in plant development. Molecular Plant6, 18–28.

Castorina G Consonni G. 2020. The role of brassinosteroids in controlling plant height in poaceae: A genetic perspective. International Journal of Molecular Sciences21, 1191.

Chae K, Isaacs C G, Reeves P H, Maloney G S, Muday G K, Nagpal P, Reed J W. 2012. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. The Plant Journal71, 684–697.

Chattopadhyay S, Ang L H, Puente P, Deng X W, Wei N. 1998. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. The Plant Cell10, 673–683.

Chen Y, Fan X, Song W, Zhang Y, Xu G. 2012. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnology Journal10, 139–149.

Dai Z, Wang J, Yang X, Lu H, Miao X, Shi Z. 2018. Modulation of plant architecture by the miR156f-OsSPL7-OsGH3.8 pathway in rice. Journal of Experimental Botany69, 5117–5130.

Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann J S, Jürgens G, Estelle M. 2005. Plant development is regulated by a family of auxin receptor F box proteins. Developmental Cell, 9, 109–119.

Feng L, Chi B J, Dong H Z. 2022. Cotton cultivation technology with Chinese characteristics has driven the 70-year development of cotton production in China. Journal of Integrative Agriculture21, 597–609.

Fu C, Sunkar R, Zhou C, Shen H, Zhang J Y, Matts J, Wolf J, Mann D G, Stewart Jr C N, Tang Y, Wang Z Y. 2012. Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnology Journal10, 443–452.

Fu Y Y, Win P, Zhang H J, Li C F, Shen Y, He F, Luo K M. 2019. PtrARF2.1 is involved in regulation of leaf development and lignin biosynthesis in poplar trees. International Journal of Molecular Sciences20, 4141.

Fukui K, Hayashi K I 2018. Manipulation and sensing of auxin metabolism, transport and signaling. Plant & Cell Physiology59, 1500–1510.

Gallavotti A. 2013. The role of auxin in shaping shoot architecture. Journal of Experimental Botany64, 2593–2608.

Gomez-Mena C, Sablowski R. 2008. ARABIDOPSIS THALIANA HOMEOBOX GENE1 establishes the basal boundaries of shoot organs and controls stem growth. The Plant Cell20, 2059–2072.

Guilfoyle T J, Hagen G. 2007. Auxin response factors. Current Opinion in Plant Biology10, 453–460.

Guo F, Huang Y Z, Qi P P, Lian G W, Hu X M, Han N, Wang J H, Zhu M Y, Qian Q, Bian H W. 2021. Functional analysis of auxin receptor OsTIR1/OsAFB family members in rice grain yield, tillering, plant height, root system, germination, and auxinic herbicide resistance. The New Phytologist229, 2676–2692.

He G, Liu P, Zhao H, Sun J. 2020. The HD-ZIP II transcription factors regulate plant architecture through the auxin pathway. International Journal of Molecular Sciences21, 3250.

He P, Zhang H Z, Zhang L, Jiang B, Xiao G HYu J N. 2022. The GhMAX2 gene regulates plant growth and fiber development in cotton. Journal of Integrative Agriculture21, 1563–1575.

He X, Luo X Y, Wang T Y, Liu S M, Zhang X L, Zhu L F. 2020. GhHB12 negatively regulates abiotic stress tolerance in Arabidopsis and cotton. Environmental and Experimental Botany176, 104087.

He X, Wang T Y, Xu Z, Liu N, Wang L C, Hu Q, Luo X Y, Zhang X L, Zhu L F. 2018a. The cotton HD-Zip transcription factor GhHB12 regulates flowering time and plant architecture via the GhmiR157-GhSPL pathway. Communications Biology1, 229.

He X, Wang T Y, Zhu W, Wang Y J, Zhu L F. 2018b. GhHB12, a HD-ZIP i transcription factor, negatively regulates the cotton resistance to Verticillium dahliaeInternational Journal of Molecular Sciences19, 3997.

Ji G, Liang C, Cai Y, Pan Z, Meng Z, Li Y, Jia Y, Miao Y, Pei X, Gong W, Wang X, Gao Q, Peng Z, Wang L, Sun J, Geng X, Wang P, Chen B, Wang P, Zhu T, et al. 2021. A copy number variant at the HPDA-D12 locus confers compact plant architecture in cotton. The New Phytologist229, 2091–2103.

Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics42, 541–544.

Kim J I, Bae D, Park H C, Chun H J, Oh D H, Lee M. K, Cha J Y, Kim W Y, Kim M C, Chung W S, Bohnert H J, Lee S Y, Bressan R A, Lee S W, Yun D J. 2013. Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit. Molecular Plant6, 337–349.

Li F, Yan D, Gao L F, Liu P, Zhao G Y, Jia J Z, Ren Z L. 2022. TaIAA15 genes regulate plant architecture in wheat. Journal of Integrative Agriculture21, 1243–1252.

Li H, Li J, Song J, Zhao B, Guo C, Wang B, Zhang Q, Wang J, King G J, Liu K. 2019. An auxin signaling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. The New Phytologist222, 837–851.

Liu H, Li X, Xiao J, Wang S. 2012. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: Application in study of rice–bacterium interaction. Plant Methods8, 2.

Liu J, Cheng X, Liu P, Sun J. 2017. miR156-targeted SBP-box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiology174, 1931–1948.

Liu N, Tu L, Wang L, Hu H, Xu J, Zhang X. 2017. MicroRNA 157-targeted SPL genes regulate floral organ size and ovule production in cotton. BMC Plant Biology17, 7.

Lu G, Coneva V, Casaretto J A, Ying S, Mahmood K, Liu F, Nambara E, Bi Y M, Rothstein S J. 2015. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. The Plant Journal83, 913–925.

Ma J J, Pei W F, Ma Q F, Geng Y H, Liu G Y, Liu J, Cui Y P, Zhang X, Wu M, Li X.L, Li D, Zang X S, Song J K, Tang S R, Zhang J F, Yu S X, Yu J W. 2019. QTL analysis and candidate gene identification for plant height in cotton based on an interspecific backcross inbred line population of Gossypium hirsutum×Gossypium barbadenseTheoretical and Applied Genetics13, 2663–2676.

Ma Q, Grones P, Robert S. 2018. Auxin signaling: A big question to be addressed by small molecules. Journal of Experimental Botany69, 313–328.

Majda M, Robert S. 2018. The role of auxin in cell wall expansion. International Journal of Molecular Sciences19, 951.

Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics42, 545–549.

Nagpal P, Walker L M, Young J C, Sonawala A, Timpte C, Estelle M, Reed J W. 2000. AXR2 encodes a member of the Aux/IAA protein family. Plant Physiology123, 563–574.

Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. 1999. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature400, 256–261.

Perrot-Rechenmann C. 2010. Cellular responses to auxin: Division versus expansion. Cold Spring Harbor Perspectives in Biology2, a001446.

Piao R, Chu S H, Jiang W, Yu Y, Jin Y, Woo M O, Lee J, Kim S, Koh H J. 2014. Isolation and characterization of a dominant dwarf gene, d-h, in rice. PLoS ONE9, e86210.

Qanmber G, Lu L, Liu Z, Yu D, Zhou K, Huo P, Li F, Yang Z. 2019. Genome-wide identification of GhAAI genes reveals that GhAAI66 triggers a phase transition to induce early flowering. Journal of Experimental Botany70, 4721–4736.

Quaedvlieg N, Dockx J, Rook F, Weisbeek P, Smeekens S. 1995. The homeobox gene ATH1 of Arabidopsis is derepressed in the photomorphogenic mutants cop1 and det1The Plant Cell7, 117–129.

Sannemann W, Lisker A, Maurer A, Leon J, Kazman E, Coster H, Holzapfel J, Kempf H, Korzun V, Ebmeyer E, Pillen K. 2018. Adaptive selection of founder segments and epistatic control of plant height in the MAGIC winter wheat population WM-800. BMC Genomics19, 559.

Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. 2002. Green revolution: A mutant gibberellin-synthesis gene in rice. Nature416, 701–702.

Sauer M, Robert S, Kleine-Vehn J. 2013. Auxin: simply complicated. Journal of Experimental Botany64, 2565–2577.

Shang L G, Liu F, Wang Y M, Abduweli A, Cai S H, Wang K B, Hua J P. 2015. Dynamic QTL mapping for plant height in Upland cotton (Gossypium hirsutum). Plant Breeding134, 703–712.

Silverstone A L, Sun T. 2000. Gibberellins and the green revolution. Trends in Plant Science5, 1–2.

Song X L, Zhang T Z. 2009. Quantitative trait loci controlling plant architectural traits in cotton. Plant Science177, 317–323.

Sun Z, Su C, Yun J, Jiang Q, Wang L, Wang Y, Cao D, Zhao F, Zhao Q, Zhang M, Zhou B, Zhang L, Kong F, Liu B, Tong Y, Li X. 2019. Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b. Plant Biotechnology Journal17, 50–62.

Udvardi M K, Scheible W R. 2005. Plant science. GRAS genes and the symbiotic green revolution. Science308, 1749–1750.

Wang B, Smith S M, Li J. 2018. Genetic regulation of shoot architecture. Annual Review of Plant Biology69, 437–468.

Wang J W, Czech B, Weigel D. 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thalianaCell138, 738–749.

Wang L, Sun S, Jin J, Fu D, Yang X, Weng X, Xu C, Li X, Xiao J, Zhang Q. 2015. Coordinated regulation of vegetative and reproductive branching in rice. Proceedings of the National Academy of Sciences of the United States of America112, 15504–15509.

Xu Y X, Xiao M Z, Liu Y, Fu J L, He Y, Jiang D A. 2017. The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice. Plant Molecular Biology94, 97–107.

Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T. 2007. Auxin biosynthesis by the YUCCA genes in rice. Plant physiology143, 1362–1371.

Yan W, Du M W, Zhao W C, Li F, Wang X R, Eneji A E, Yang F Q, Huang J, Meng L, Qi H K, Xue G J, Xu D Y, Tian X L, Li Z H. 2019. Relationships between plant architecture traits and cotton yield within the plant height range of 80–120 cm desired for mechanical harvesting in the yellow river valley of China. Agronomy-Basel9, 587.

Yang Z, Zhang C, Yang X, Liu K, Wu Z, Zhang X, Zheng W, Xun Q, Liu C, Lu L, Yang Z, Qian Y, Xu Z, Li C, Li J, Li F. 2014. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. The New Phytologist203, 437–448.

Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, et al. 2015. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology33, 531–537.

Zhu L F, He X, Yuan D J, Xu L A, Xu L, Tu L L, Shen G X, Zhang H, Zhang X L. 2011. Genome-wide identification of genes responsive to ABA and cold/salt stresses in Gossypium hirsutum by data-mining and expression pattern analysis. Agricultural Sciences in China10, 499–508.

[1] Shengzhong Zhang, Xiaohui Hu, Feifei Wang, Huarong Miao, Chu Ye, Weiqiang Yang, Wen Zhong, Jing Chen. Identification of QTLs for plant height and branching-related traits in cultivated peanut[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2511-2524.
[2] Fangman Li, Junshen Lin, John Kojo Ahiakpa, Wenxian Gai, Jinbao Tao, Pingfei Ge, Xingyu Zhang, Yizhuo Mu, Jie Ye, Yuyang Zhang. ZF protein C2H2-71 regulates the soluble solids content in tomato by inhibiting LIN5[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2190-2202.
[3] Teame Gereziher Mehari, Marijana Skorić, Hui Fang, Kai Wang, Fang Liu, Tesfay Araya, Branislav Šiler, Dengbing Yao, Baohua Wang. Insights into the role of GhCYP and GhTPS in the gossypol biosynthesis pathway via a multiomics and functional-based approach in cotton[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1671-1687.
[4] Jianmin Zhou, Yu Fu, Uchechukwu Edna Obianwuna, Jing Wang, Haijun Zhang, Xiubo Li, Guanghai Qi, Shugeng Wu. Supplementation of serine in low-gossypol cottonseed meal-based diet improved egg white gelling and rheological properties by regulating ovomucin synthesis and magnum physiological function in laying hens[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1152-1166.
[5] Yongshui Hao, Xueying Liu, Qianqian Wang, Shuxin Wang, Qingqing Li, Yaqing Wang, Zhongni Guo, Tiantian Wu, Qing Yang, Yuting Bai, Yuru Cui, Peng Yang, Wenwen Wang, Zhonghua Teng, Dexin Liu, Kai Guo, Dajun Liu, Jian Zhang, Zhengsheng Zhang. Mapping QTLs for fiber- and seed-related traits in Gossypium tomentosum CSSLs with a G. hirsutum background [J]. >Journal of Integrative Agriculture, 2025, 24(2): 467-479.
[6] Hong Hu, Tiangu Liu, Xinyun Xie, Fuyan Li, Caiyun Liu, Jintao Jiang, Zhigang Li, Xiaolin Chen. Glycosylphosphatidylinositol (GPI) anchoring controls cell wall integrity, immune evasion and surface localization of ChFEM1 for infection of Cochlibolus heterostrophus[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4310-4323.
[7] Qiushuang Yao, Huihan Wang, Ze Zhang, Shizhe Qin, Lulu Ma, Xiangyu Chen, Hongyu Wang, Lu Wang, Xin Lü. Estimation model of potassium content in cotton leaves based on hyperspectral information of multi-leaf position[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4225-4241.
[8] Zhijun Xu, Jiashi Peng, Yanlei Fu, Jing Zhao, Yan Peng, Bohan Liu, Xujun Hu, Yuchuan Liu, Meijuan Duan, Nenghui Ye, Zhenxie Yi, Shuan Meng. Abscisic acid reduces Cd accumulation by regulating Cd transport and cell wall sequestration in rice[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3703-3718.
[9] Shan Sun, Wenjun Li, Yanfen Fang, Qianqian Huang, Zhibo Huang, Chengjing Wang, Jia Zhao, Yongqi He, Zhoufei Wang. Small auxin-up RNA gene OsSAUR33 promotes seed aging tolerance in rice[J]. >Journal of Integrative Agriculture, 2025, 24(1): 61-71.
[10] Qianwei Liu, Shuo Xu, Lu Jin, Xi Yu, Chao Yang, Xiaomin Liu, Zhijun Zhang, Yusong Liu, Chao Li, Fengwang Ma. Silencing of early auxin responsive genes MdGH3-2/12 reduces the resistance to Fusarium solani in apple[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3012-3024.
[11] Congcong Guo, Hongchun Sun, Xiaoyuan Bao, Lingxiao Zhu, Yongjiang Zhang, Ke Zhang, Anchang Li, Zhiying Bai, Liantao Liu, Cundong Li. Increasing root-lower characteristics improves drought tolerance in cotton cultivars at the seedling stage[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2242-2254.
[12] Yuting Liu, Hanjia Li, Yuan Chen, Tambel Leila. I. M., Zhenyu Liu, Shujuan Wu, Siqi Sun, Xiang Zhang, Dehua Chen.

Inhibition of protein degradation increases the Bt protein concentration in Bt cotton [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1897-1909.

[13] Yunze Wen, Peng He, Xiaohan Bai, Huizhi Zhang, Yunfeng Zhang, Jianing Yu.

Strigolactones modulate cotton fiber elongation and secondary cell wall thickening [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1850-1863.

[14] Shuliang Jiao, Qinyan Li, Fan Zhang, Yonghong Tao, Yingzhen Yu, Fan Yao, Qingmao Li, Fengyi Hu, Liyu Huang.

Artificial selection of the Green Revolution gene Semidwarf 1 is implicated in upland rice breeding [J]. >Journal of Integrative Agriculture, 2024, 23(3): 769-780.

[15] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

No Suggested Reading articles found!