Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (7): 2015-2024    DOI: 10.1016/j.jia.2022.09.022
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
The HD-Zip transcription factor GhHB12 represses plant height by regulating the auxin signaling in cotton
LIU Yan1*, WANG Wei-ping1*, ZHANG Lin2, ZHU Long-fu2, ZHANG Xian-long2, HE Xin1#
1 College of Agronomy, Hunan Agricultural University, Changsha 410128, P.R.China 

2 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

陆地棉是世界上最重要的纤维作物。株高作为植物株型的重要组成部分,影响着作物的种植模式、产量和经济系数。前期研究中,我们分离并鉴定了一个棉花HD-ZIP基因(GhHB12),该基因调控棉花的非生物和生物胁迫应答反应和生长发育过程。在本研究中,我们证明GhHB12基因受生长素诱导表达,过表达GhHB12基因能激活HY5、ATH1和HAT4基因的表达,抑制生长素的时空分布、极性运输和信号传导,并改变细胞壁扩张相关基因的表达,最终抑制棉花株高。这些结果表明,GhHB12可以通过影响生长素的信号传导和细胞壁的扩展来调节棉花株高。



Abstract  Upland cotton (Gossypium hirsutum L.) is the most important natural textile fiber crop worldwide. Plant height (PH) is a significant component of plant architecture, strongly influencing crop cultivation patterns, overall yield, and economic coefficient. However, cotton genes regulating plant height have not been fully identified. Previously, an HD-Zip gene (GhHB12) was isolated and characterized in cotton, which regulates the abiotic and biotic stress responses and the growth and development processes. In this study, we showed that GhHB12 was induced by auxin. Moreover, overexpression of GhHB12 induces the expression of HY5, ATH1, and HAT4, represses the spatial-temporal distribution, polar transport, and signaling of auxin, alters the expression of genes involved in cell wall expansion, and restrains the plant height in cotton. These results suggest a role of GhHB12 in regulating cotton plant height, which could be achieved by affecting the auxin signaling and cell wall expansion.
Keywords:  cotton       GhHB12       plant height       auxin       cell wall       HD-Zip  
Received: 25 July 2022   Accepted: 26 August 2022
Fund: This work was supported by the Science and Technology Innovation Program of Hunan Province , China (2020RC2057).
About author:  #Correspondence HE Xin, E-mail: hexinzhsh@126.com * These authors contributed equally to this study.

Cite this article: 

LIU Yan, WANG Wei-ping, ZHANG Lin, ZHU Long-fu, ZHANG Xian-long, HE Xin. 2023. The HD-Zip transcription factor GhHB12 represses plant height by regulating the auxin signaling in cotton. Journal of Integrative Agriculture, 22(7): 2015-2024.

Ang L H, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng X W. 1998. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of arabidopsis development. Molecular Cell1, 213–222.

Brewer P B, Koltai H, Beveridge C A. 2013. Diverse roles of strigolactones in plant development. Molecular Plant6, 18–28.

Castorina G Consonni G. 2020. The role of brassinosteroids in controlling plant height in poaceae: A genetic perspective. International Journal of Molecular Sciences21, 1191.

Chae K, Isaacs C G, Reeves P H, Maloney G S, Muday G K, Nagpal P, Reed J W. 2012. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. The Plant Journal71, 684–697.

Chattopadhyay S, Ang L H, Puente P, Deng X W, Wei N. 1998. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. The Plant Cell10, 673–683.

Chen Y, Fan X, Song W, Zhang Y, Xu G. 2012. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnology Journal10, 139–149.

Dai Z, Wang J, Yang X, Lu H, Miao X, Shi Z. 2018. Modulation of plant architecture by the miR156f-OsSPL7-OsGH3.8 pathway in rice. Journal of Experimental Botany69, 5117–5130.

Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann J S, Jürgens G, Estelle M. 2005. Plant development is regulated by a family of auxin receptor F box proteins. Developmental Cell, 9, 109–119.

Feng L, Chi B J, Dong H Z. 2022. Cotton cultivation technology with Chinese characteristics has driven the 70-year development of cotton production in China. Journal of Integrative Agriculture21, 597–609.

Fu C, Sunkar R, Zhou C, Shen H, Zhang J Y, Matts J, Wolf J, Mann D G, Stewart Jr C N, Tang Y, Wang Z Y. 2012. Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnology Journal10, 443–452.

Fu Y Y, Win P, Zhang H J, Li C F, Shen Y, He F, Luo K M. 2019. PtrARF2.1 is involved in regulation of leaf development and lignin biosynthesis in poplar trees. International Journal of Molecular Sciences20, 4141.

Fukui K, Hayashi K I 2018. Manipulation and sensing of auxin metabolism, transport and signaling. Plant & Cell Physiology59, 1500–1510.

Gallavotti A. 2013. The role of auxin in shaping shoot architecture. Journal of Experimental Botany64, 2593–2608.

Gomez-Mena C, Sablowski R. 2008. ARABIDOPSIS THALIANA HOMEOBOX GENE1 establishes the basal boundaries of shoot organs and controls stem growth. The Plant Cell20, 2059–2072.

Guilfoyle T J, Hagen G. 2007. Auxin response factors. Current Opinion in Plant Biology10, 453–460.

Guo F, Huang Y Z, Qi P P, Lian G W, Hu X M, Han N, Wang J H, Zhu M Y, Qian Q, Bian H W. 2021. Functional analysis of auxin receptor OsTIR1/OsAFB family members in rice grain yield, tillering, plant height, root system, germination, and auxinic herbicide resistance. The New Phytologist229, 2676–2692.

He G, Liu P, Zhao H, Sun J. 2020. The HD-ZIP II transcription factors regulate plant architecture through the auxin pathway. International Journal of Molecular Sciences21, 3250.

He P, Zhang H Z, Zhang L, Jiang B, Xiao G HYu J N. 2022. The GhMAX2 gene regulates plant growth and fiber development in cotton. Journal of Integrative Agriculture21, 1563–1575.

He X, Luo X Y, Wang T Y, Liu S M, Zhang X L, Zhu L F. 2020. GhHB12 negatively regulates abiotic stress tolerance in Arabidopsis and cotton. Environmental and Experimental Botany176, 104087.

He X, Wang T Y, Xu Z, Liu N, Wang L C, Hu Q, Luo X Y, Zhang X L, Zhu L F. 2018a. The cotton HD-Zip transcription factor GhHB12 regulates flowering time and plant architecture via the GhmiR157-GhSPL pathway. Communications Biology1, 229.

He X, Wang T Y, Zhu W, Wang Y J, Zhu L F. 2018b. GhHB12, a HD-ZIP i transcription factor, negatively regulates the cotton resistance to Verticillium dahliaeInternational Journal of Molecular Sciences19, 3997.

Ji G, Liang C, Cai Y, Pan Z, Meng Z, Li Y, Jia Y, Miao Y, Pei X, Gong W, Wang X, Gao Q, Peng Z, Wang L, Sun J, Geng X, Wang P, Chen B, Wang P, Zhu T, et al. 2021. A copy number variant at the HPDA-D12 locus confers compact plant architecture in cotton. The New Phytologist229, 2091–2103.

Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics42, 541–544.

Kim J I, Bae D, Park H C, Chun H J, Oh D H, Lee M. K, Cha J Y, Kim W Y, Kim M C, Chung W S, Bohnert H J, Lee S Y, Bressan R A, Lee S W, Yun D J. 2013. Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit. Molecular Plant6, 337–349.

Li F, Yan D, Gao L F, Liu P, Zhao G Y, Jia J Z, Ren Z L. 2022. TaIAA15 genes regulate plant architecture in wheat. Journal of Integrative Agriculture21, 1243–1252.

Li H, Li J, Song J, Zhao B, Guo C, Wang B, Zhang Q, Wang J, King G J, Liu K. 2019. An auxin signaling gene BnaA3.IAA7 contributes to improved plant architecture and yield heterosis in rapeseed. The New Phytologist222, 837–851.

Liu H, Li X, Xiao J, Wang S. 2012. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: Application in study of rice–bacterium interaction. Plant Methods8, 2.

Liu J, Cheng X, Liu P, Sun J. 2017. miR156-targeted SBP-box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiology174, 1931–1948.

Liu N, Tu L, Wang L, Hu H, Xu J, Zhang X. 2017. MicroRNA 157-targeted SPL genes regulate floral organ size and ovule production in cotton. BMC Plant Biology17, 7.

Lu G, Coneva V, Casaretto J A, Ying S, Mahmood K, Liu F, Nambara E, Bi Y M, Rothstein S J. 2015. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. The Plant Journal83, 913–925.

Ma J J, Pei W F, Ma Q F, Geng Y H, Liu G Y, Liu J, Cui Y P, Zhang X, Wu M, Li X.L, Li D, Zang X S, Song J K, Tang S R, Zhang J F, Yu S X, Yu J W. 2019. QTL analysis and candidate gene identification for plant height in cotton based on an interspecific backcross inbred line population of Gossypium hirsutum×Gossypium barbadenseTheoretical and Applied Genetics13, 2663–2676.

Ma Q, Grones P, Robert S. 2018. Auxin signaling: A big question to be addressed by small molecules. Journal of Experimental Botany69, 313–328.

Majda M, Robert S. 2018. The role of auxin in cell wall expansion. International Journal of Molecular Sciences19, 951.

Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics42, 545–549.

Nagpal P, Walker L M, Young J C, Sonawala A, Timpte C, Estelle M, Reed J W. 2000. AXR2 encodes a member of the Aux/IAA protein family. Plant Physiology123, 563–574.

Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. 1999. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature400, 256–261.

Perrot-Rechenmann C. 2010. Cellular responses to auxin: Division versus expansion. Cold Spring Harbor Perspectives in Biology2, a001446.

Piao R, Chu S H, Jiang W, Yu Y, Jin Y, Woo M O, Lee J, Kim S, Koh H J. 2014. Isolation and characterization of a dominant dwarf gene, d-h, in rice. PLoS ONE9, e86210.

Qanmber G, Lu L, Liu Z, Yu D, Zhou K, Huo P, Li F, Yang Z. 2019. Genome-wide identification of GhAAI genes reveals that GhAAI66 triggers a phase transition to induce early flowering. Journal of Experimental Botany70, 4721–4736.

Quaedvlieg N, Dockx J, Rook F, Weisbeek P, Smeekens S. 1995. The homeobox gene ATH1 of Arabidopsis is derepressed in the photomorphogenic mutants cop1 and det1The Plant Cell7, 117–129.

Sannemann W, Lisker A, Maurer A, Leon J, Kazman E, Coster H, Holzapfel J, Kempf H, Korzun V, Ebmeyer E, Pillen K. 2018. Adaptive selection of founder segments and epistatic control of plant height in the MAGIC winter wheat population WM-800. BMC Genomics19, 559.

Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. 2002. Green revolution: A mutant gibberellin-synthesis gene in rice. Nature416, 701–702.

Sauer M, Robert S, Kleine-Vehn J. 2013. Auxin: simply complicated. Journal of Experimental Botany64, 2565–2577.

Shang L G, Liu F, Wang Y M, Abduweli A, Cai S H, Wang K B, Hua J P. 2015. Dynamic QTL mapping for plant height in Upland cotton (Gossypium hirsutum). Plant Breeding134, 703–712.

Silverstone A L, Sun T. 2000. Gibberellins and the green revolution. Trends in Plant Science5, 1–2.

Song X L, Zhang T Z. 2009. Quantitative trait loci controlling plant architectural traits in cotton. Plant Science177, 317–323.

Sun Z, Su C, Yun J, Jiang Q, Wang L, Wang Y, Cao D, Zhao F, Zhao Q, Zhang M, Zhou B, Zhang L, Kong F, Liu B, Tong Y, Li X. 2019. Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b. Plant Biotechnology Journal17, 50–62.

Udvardi M K, Scheible W R. 2005. Plant science. GRAS genes and the symbiotic green revolution. Science308, 1749–1750.

Wang B, Smith S M, Li J. 2018. Genetic regulation of shoot architecture. Annual Review of Plant Biology69, 437–468.

Wang J W, Czech B, Weigel D. 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thalianaCell138, 738–749.

Wang L, Sun S, Jin J, Fu D, Yang X, Weng X, Xu C, Li X, Xiao J, Zhang Q. 2015. Coordinated regulation of vegetative and reproductive branching in rice. Proceedings of the National Academy of Sciences of the United States of America112, 15504–15509.

Xu Y X, Xiao M Z, Liu Y, Fu J L, He Y, Jiang D A. 2017. The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice. Plant Molecular Biology94, 97–107.

Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T. 2007. Auxin biosynthesis by the YUCCA genes in rice. Plant physiology143, 1362–1371.

Yan W, Du M W, Zhao W C, Li F, Wang X R, Eneji A E, Yang F Q, Huang J, Meng L, Qi H K, Xue G J, Xu D Y, Tian X L, Li Z H. 2019. Relationships between plant architecture traits and cotton yield within the plant height range of 80–120 cm desired for mechanical harvesting in the yellow river valley of China. Agronomy-Basel9, 587.

Yang Z, Zhang C, Yang X, Liu K, Wu Z, Zhang X, Zheng W, Xun Q, Liu C, Lu L, Yang Z, Qian Y, Xu Z, Li C, Li J, Li F. 2014. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. The New Phytologist203, 437–448.

Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, et al. 2015. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology33, 531–537.

Zhu L F, He X, Yuan D J, Xu L A, Xu L, Tu L L, Shen G X, Zhang H, Zhang X L. 2011. Genome-wide identification of genes responsive to ABA and cold/salt stresses in Gossypium hirsutum by data-mining and expression pattern analysis. Agricultural Sciences in China10, 499–508.

[1] GUO Kai, GAO Wei, ZHANG Tao-rui, WANG Zu-ying, SUN Xiao-ting, YANG Peng, LONG Lu, LIU Xue-ying, WANG Wen-wen, TENG Zhong-hua, LIU Da-jun, LIU De-xin, TU Li-li, ZHANG Zheng-sheng. Comparative transcriptome and lipidome reveal that a low K+ signal effectively alleviates the effect induced by Ca2+ deficiency in cotton fibers[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2306-2322.
[2] PEI Sheng-zhao, ZENG Hua-liang, DAI Yu-long, BAI Wen-qiang, FAN Jun-liang. Nitrogen nutrition diagnosis for cotton under mulched drip irrigation using unmanned aerial vehicle multispectral images[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2536-2552.
[3] WANG Xue-feng, SHAO Dong-nan, LIANG Qian, FENG Xiao-kang, ZHU Qian-hao, YANG Yong-lin, LIU Feng, ZHANG Xin-yu, LI Yan-jun, SUN Jie, XUE Fei. A 2-bp frameshift deletion at GhDR, which encodes a B-BOX protein that co-segregates with the dwarf-red phenotype in Gossypium hirsutum L.[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2000-2014.
[4] LIU Zhen-yu, LI Yi-yang, Leila. I. M. TAMBEL, LIU Yu-ting, DAI Yu-yang, XU Ze, LENG Xin-hua, ZHANG Xiang, CHEN De-hua, CHEN Yuan. Enhancing boll protein synthesis and carbohydrate conversion by the application of exogenous amino acids at the peak flowering stage increased the boll Bt toxin concentration and lint yield in cotton[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1684-1694.
[5] HOU Qian-dong, HONG Yi, WEN Zhuang, SHANG Chun-qiong, LI Zheng-chun, CAI Xiao-wei, QIAO Guang, WEN Xiao-peng. Molecular characterization of the SAUR gene family in sweet cherry and functional analysis of PavSAUR55 in the process of abscission[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1720-1739.
[6] TIAN Xiao-min, HAN Peng, WANG Jing, SHAO Pan-xia, AN Qiu-shuang, Nurimanguli AINI, YANG Qing-yong, YOU Chun-yuan, LIN Hai-rong, ZHU Long-fu, PAN Zhen-yuan, NIE Xin-hui. Association mapping of lignin response to Verticillium wilt through an eight-way MAGIC population in Upland cotton[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1324-1337.
[7] WANG Xin-xin, ZHANG Min, SHENG Jian-dong, FENG Gu, Thomas W. KUYPER. Breeding against mycorrhizal symbiosis: Modern cotton (Gossypium hirsutum L.) varieties perform more poorly than older varieties except at very high phosphorus supply levels[J]. >Journal of Integrative Agriculture, 2023, 22(3): 701-715.
[8] CHEN Hong-yan, ZHU Zhu, WANG Xiao-wen, LI Yang-yang, HU Dan-ling, ZHANG Xue-fei, JIA Lu-qi, CUI Zhi-bo, SANG Xian-chun. Less hairy leaf 1, an RNaseH-like protein, regulates trichome formation in rice through auxin[J]. >Journal of Integrative Agriculture, 2023, 22(1): 31-40.
[9] QI Hai-kun, DU Ming-wei, MENG Lu, XIE Liu-wei, A. Egrinya ENEJI, XU Dong-yong, TIAN Xiao-li, LI Zhao-hu. Cotton maturity and responses to harvest aids following chemical topping with mepiquat chloride during bloom period[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2577-2587.
[10] WANG Le, LIU Yang, WEN Ming, LI Ming-hua, DONG Zhi-qiang, CUI Jing, MA Fu-yu. Growth and yield responses to simulated hail damage in drip-irrigated cotton[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2241-2252.
[11] LIU Chen, TIAN Yu, LIU Zhang-xiong, GU Yong-zhe, ZHANG Bo, LI Ying-hui, NA Jie, QIU Li-juan. Identification and characterization of long-InDels through whole genome resequencing to facilitate fine-mapping of a QTL for plant height in soybean (Glycine max L. Merr.)[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1903-1912.
[12] HE Peng, ZHANG Hui-zhi, ZHANG Li, JIANG Bin, XIAO Guang-hui, YU Jia-ning. The GhMAX2 gene regulates plant growth and fiber development in cotton[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1563-1575.
[13] LI Fu, YAN Dong, GAO Li-feng, LIU Pan, ZHAO Guang-yao, JIA Ji-zeng, REN Zheng-long. TaIAA15 genes regulate plant architecture in wheat[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1243-1252.
[14] TIAN Yu, YANG Lei, LU Hong-feng, ZHANG Bo, LI Yan-fei, LIU Chen, GE Tian-li, LIU Yu-lin, HAN Jia-nan, LI Ying-hui, QIU Li-juan. QTL analysis for plant height and fine mapping of two environmentally stable QTLs with major effects in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(4): 933-946.
[15] FENG Lu, CHI Bao-jie, DONG He-zhong. Cotton cultivation technology with Chinese characteristics has driven the 70-year development of cotton production in China[J]. >Journal of Integrative Agriculture, 2022, 21(3): 597-609.
No Suggested Reading articles found!