Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (6): 1684-1694    DOI: 10.1016/j.jia.2022.10.003
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Enhancing boll protein synthesis and carbohydrate conversion by the application of exogenous amino acids at the peak flowering stage increased the boll Bt toxin concentration and lint yield in cotton

LIU Zhen-yu1, LI Yi-yang1, Leila. I. M. TAMBEL2, LIU Yu-ting1, DAI Yu-yang1, XU Ze1, LENG Xin-hua1, ZHANG Xiang1, CHEN De-hua1#, CHEN Yuan1#

1 Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P.R.China

2 Agricultural Research Cooperation, Biotechnology and Biosafety Research Center, Khartoum 13314, Sudan

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      



In Bacillus thuringenesis (Bt) transgenic cotton, the cotton boll has the lowest insecticidal protein content when compared to the other organs.  The present study investigated the effects of amino acid spray application at the peak flowering stage on the cotton boll Bt toxin concentration and yield formation.  Boll protein synthesis and carbohydrate conversion were also studied to reveal the fundamental mechanism.  Three treatments (i.e., CK, the untreated control; LA1, five amino acids; LA2, 21 amino acids) were applied to two Bt cultivars of Ghirsutum (i.e., the hybrid Sikang 3 and the conventional Sikang 1) in the cotton-growing seasons during 2017 and 2018.  Amino acid spray application at the peak flowering stage resulted in an increase of 5.2–16.4% in the boll Bt protein concentration and an increase of 5.5–11.3% in the seed cotton yield, but there was no difference between the two amino acid treatments.  In addition, amino acid applications led to increases in the amino acid content, soluble protein content, glutamate pyruvate transaminase (GPT) activity, glutamate oxaloacetate transaminase (GOT) activity, glucose content, fructose content and soluble acid invertase (SAI) activity.  This study also found that Bt protein content, enhanced boll number and the weight of opened bolls were closely related to carbon and nitrogen metabolism.  The Bt protein content had significant linear positive correlations with amino acid and soluble protein contents.  Enhanced boll number had significant linear positive correlations with the GPT and GOT activities from 15–25 days after flowering (DAF).  The weight of opened bolls from 55–65 DAF had a significant linear positive correlation with the SAI activity.  These results indicate that the enhancement of boll protein synthesis and carbohydrate conversion by amino acid application resulted in a simultaneous increase in the boll Bt protein concentration and cotton lint yield.

Keywords:  Bt cotton       boll insecticidal protein        protein synthesis        carbohydrate conversion  
Received: 08 April 2022   Online: 04 October 2022   Accepted: 01 September 2022

This work was supported by the National Natural Science Foundation of China (31901462 and 31671613), the Natural Science Foundation of Jiangsu Province, China (BK20191439), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (KYCX22_3508) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD).

About author:  LIU Zhen-yu, Tel: +86-514-87979357, E-mail:; #Correspondence CHEN De-hua, Tel: +86-514-87979357, E-mail:; CHEN Yuan, Tel: +86-514-87979357, E-mail:

Cite this article: 

LIU Zhen-yu, LI Yi-yang, Leila. I. M. TAMBEL, LIU Yu-ting, DAI Yu-yang, XU Ze, LENG Xin-hua, ZHANG Xiang, CHEN De-hua, CHEN Yuan. 2023. Enhancing boll protein synthesis and carbohydrate conversion by the application of exogenous amino acids at the peak flowering stage increased the boll Bt toxin concentration and lint yield in cotton. Journal of Integrative Agriculture, 22(6): 1684-1694.

Abidallha E, Li Y, Heng L, Chen Y, Tambel L, Hu D P, Chen Y, Zhang X, Chen D H. 2017. Amino acid composition and level affect Bt protein concentration in Bt cotton. Plant Growth Regulation82, 439–446.

Adamczyk J J, Meredith W R. 2004. Genetic basis for the variability of CryIAc expression among commercial transgenic Bacillus thuringiensis (Bt) cotton cultivars in the United States. Journal of Cotton Science8, 17–23.

Ali S, Hafeez A, Ma X L, Tung S A, Chattha M S, Shah A N, Luo D, Ahmad S, Liu J H, Yang G Z. 2019. Equal potassium-nitrogen ratio regulated the nitrogen metabolism and yield of high-density late-planted cotton (Gossypium hirsutum L.) in Yangtze River valley of China. Industrial Crops and Products129, 231–241.

Boquet D J, Breitenbeck G A. 2000. Nitrogen rate effect on partitioning of nitrogen and dry matter by cotton. Crop Science40, 1685–1693.

Chen D H, Ye G Y, Yang C Q, Chen Y, Wu Y K. 2005a. Effect of introducing Bacillus thuringiensis gene on nitrogen metabolism in cotton. Field Crops Research92, 1–9.

Chen D H, Ye G Y, Yang C Q, Chen Y, Wu Y K. 2005b. The effect of the high temperature on the insecticidal properties of Bt cotton. Environmental and Experimental Botany53, 333–342.

Chen S, Wu J Y, He X L, Huang J Q, Zhou B L, Zhang R X. 1997. Quantification using ELISA of Bacillus thuringiensis insecticidal protein expressed in the tissue of transgenic insect-resistant cotton. Jiangsu Journal of Agricultural Sciences3, 154–156. (in Chinese)

Chen Y, Chen Y, Wen Y J, Zhang X, Chen D H. 2012a. The effects of the relative humidity on the insecticidal expression level of Bt cotton during bolling period under high temperature. Field Crops Research137, 141–147.

Chen Y, Li Y B, Chen Y, Abidallha E, Hu D P, Li Y, Zhang X, Chen D H. 2017. Planting density and leaf-square regulation affected square size andnumber contributing to altered insecticidal protein content in Bt cotton. Field Crops Research205, 14–22.

Chen Y, Li Y B, Zhou M Y, Cai Z Z, Tambel L, Zhang X, Chen Y, Chen D H. 2019. Nitrogen deficit decreases seed Cry1Ac endotoxin expression in Bt transgenic cotton. Plant Physiology and Biochemistry141, 114–121.

Chen Y, Li Y B, Zhou M Y, Rui Q Z, Cai Z Z, Zhang X, Chen Y, Chen D H. 2018. Nitrogen (N) application gradually enhances boll development and decreases boll shell insecticidal protein content in N-deficient cotton. Frontiers in Plant Science9, 51.

Chen Y, Liu Z Y, Heng L, Tambel L, Chen D H. 2021a. High plant density increases seed Bt endotoxin content in Bt transgenic cotton. Journal of Integrative Agriculture20, 1796–1806.

Chen Y, Liu Z Y, Tambel L, Zhang X, Chen Y, Chen D H. 2021b. Reduced square Bacillus thuringiensis insecticidal protein content of transgenic cotton under N deficit. Journal of Integrative Agriculture20, 100–108.

Chen Y, Wen Y J, Chen Y, Cothren J T, Zhang X, Wang Y H, Payne W A, Chen D H. 2012b. Effects of extreme air temperature and humidity on the insecticidal expression level of Bt cotton. Journal of Integrative Agriculture11, 101–108.

Chen Y, Ye G Y, Zhang L, Wang Y H, Zhang X, Chen D H. 2007. Effect of trans-Bacillus thuringiensis gene on gibberellic acid and zeatin contents and boll development in cotton. Field Crops Research103, 5–10.

Dong H Z, Li W J. 2007. Variability of endotoxin expression in Bt transgenic cotton. Journal of Agronomy and Crop Science193, 21–29.

Gasser C S, Fraley R T. 1989. Genetically engineering plants for crop improvement. Science244, 1293–1299.

Glenn D S. 2011. Field versus farm warangal: Bt cotton, higher yields, and larger questions. World Development3, 387–398.

Kuai J, Liu Z W, Wang Y H, Meng Y L, Chen B L, Zhao W Q, Zhou Z G, Oosterhuis D M. 2014. Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight. Plant Science223, 79–98.

Li Y. 2019. Effects of increasing nitrogen fertilizer on Bt transgenic cotton insecticidal protein expression quantity an its nitrogen metabolism mechanisms. MSc thesis, Yangzhou University, China. (in Chinese)

Liu Z Y, Eltayib H, Wu H M, Zhou M Y, Zhang X, Chen Y, Chen D H. 2019. Bt insecticidal efficacy variation and agronomic regulation in Bt cotton. Journal of Cotton Research, 2, 219–224.

Liu Z Y, Wang L Y, Zhao Z X, Chen C, He R, Zhou M Y, Tian Q F, Dong Z D, Chen Y, Zhang X, Chen D H. 2022. Construction of ideal plant architecture characteristics for high yield and centralized boll-setting in cotton sown directly after barley harvest. International Journal of Plant Production16, 251–260.

Lu Y H, Wyckhuys K A G, Yang L, Liu B, Zeng J, Jiang Y Y, Desneux N, Zhang W, Wu K M. 2022. Bt cotton area contraction drives regional pest resurgence, crop loss, and pesticide use. Plant Biotechnology Journal20, 390–398.

Ma L J, Kong F X, Wang Z, Luo Y, Lv X B, Zhou Z G, Meng Y L. 2019. Growth and yield of cotton as affected by different straw returning modes with an equivalent carbon input. Field Crops Research243, 107616.

Pettigrew W T, Adamczyk J J. 2006. Nitrogen fertility and planting date effects on lint yield and Cry1ac (Bt) endotoxin production. Agronomy Journal98, 691–697.

Shen P, Lin K J, Zhang Y J, Wu K M, Guo Y Y. 2010. Seasonal expression of Bacillius thuingiensis insecticidal protein and control to cotton bollworm in different varieties of transgenic cotton. Cotton Science22, 393–397. (in Chinese)

Stitt M. 1989. Control analysis of photosynthetic sucrose synthesis: assignment of elasticity coefficients and flux-control coefficients to the cytosolic fructose 1,6-bisphosphatase and sucrose phosphate synthase. Philosophical Transactions of the Royal Society (B: Biological Science), 323, 327–338.

Sun G Q, Zhang D L, Zhang R, Wang Y, Meng Z G, Zhou T, Liang C Z, Zhu T, Guo S D. 2016. Bt protein expression in the transgenic insect-resistant cotton in China. Science Bulletin61, 1555–1557.

Tambel L, Zhou M Y, Chen Y, Zhang X, Chen Y, Chen D H. 2019. Amino acids application enhances flowers insecticidal protein content in Bt cotton. Journal of Cotton Research2, 38–43.

Thomas H. 1975. Regulation of alanine aminotransferase in leaves of Lolium temulentum during senescence. Ztschrift Für Pflanzenphysiologie74, 208–218.

Wang S H, Mao L L, Shi J L, Nie J J, Song X L, Sun X Z. 2021. Effects of plant density and nitrogen rate on cotton yield and nitrogen use in cotton stubble retaining fields. Journal of Integrative Agriculture20, 2090–2099.

Wang Y H, Ye G Y, Luan N, Xiao J, Chen Y, Chen D H. 2009. Boll size affects the insecticidal protein content in Bacillius thuringiensis (Bt) cotton. Field Crops Research110, 106–110.

Weiler E W, Jourdan P S, Conrad W. 1981. Levels of indole-3-acetic acid and intact decapitated coleoptiples as determined by a specific and highly sensitive solid-phase enzyme immuno-assay. Planta, 15, 561–571.

Wiedenfeld B, Wallace B W, Hons F. 2009. Indicators of cotton nitrogen status. Journal of Plant Nutrition32, 1353–1370.

Xia L Q, Xu Q F, Guo S W. 2005. Bt insecticidal gene and its temporal expression in transgenic cotton plants. Acta Agronomica Sinica31, 197–202. (in Chinese)

Xu N Y, Fok M, Bai L X, Zhou Z G. 2008. Effectiveness and chemical pest control of Bt-cotton in the Yangtze River Valley, China. Crop Protection27, 1269–1276.

Zahoor R, Dong H R, Abid M, Zhao W Q, Wang Y H, Zhou Z G. 2017. Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environmental & Experimental Botany137, 73–83.

Zhang D D, Xiao Y T, Chen W B, Lu Y H, Wu K M. 2019. Field monitoring of Helicoverpa armigera (Lepidoptera: Noctuidae) Cry1Ac insecticidal protein resistance in China (2005–2017). Pest Management Science75, 753–759.

Zhang X, Wang J, Peng S, Li Y, Tian Q F, Wang G C, Zhang Z N, Dong Z D, Chen Y, Chen D H. 2017. Effect of soil water deficit on insecticidal protein expression in boll shells of transgenic Bt cotton and the mechanism. Frontiers in Plant Science8, 2107.

Zhang X, Zhang L, Ye G Y, Wang Y H, Chen Y, Chen D H. 2007. The impact of introducing the Bacillus thuringiensis gene into cotton on boll nitrogen metabolism. Environmental & Experimental Botany61, 175–180.

Zhang X, Zhou M Y, Li Y B, Liu Z Y, Chen Y, Chen D H. 2021. Nitrogen spraying affects seed Bt toxin concentration and yield in Bt cotton. Journal of Integrative Agriculture20, 1229–1238.

Zhang Z, Chattha M S, Ahmed S, Liu J H, Liu A D, Yang L R, Lv N, Ma X F, Li X E, Hao F R, Yang G Z. 2021. Nitrogen reduction in high plant density cotton is feasible due to quicker biomass accumulation. Industrial Crops and Products172, 114070.

Zhou M Y. 2021. Insecticidal protein regulation and physiological mechanism of reproductive organ in Bt cotton. Ph D thesis, Yangzhou University. (in Chinese)

Zhou M Y, Chen C, Tambel L, Chen Y, Chen D H. 2021a. Increasing plant density increases Bt toxin concentration of boll wall in cotton by decreasing boll setting speed. Journal of Cotton Research4, 104–113.

Zhou M Y, Liu Z Y, Li L N. Chen Y, Zhang X, Chen D H. 2021b. Effect of urea spray on boll shell insecticidal protein content in Bt cotton. Frontiers in Plant Science12, 623504.

[1] CHEN Yuan, LIU Zhen-yu, HENG Li, Leila I. M. TAMBEL, CHEN De-hua. High plant density increases seed Bt endotoxin content in Bt transgenic cotton[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1796-1806.
[2] ZHANG Xiang, ZHOU Ming-yuan, LI Ya-bing, LIU Zhen-yu, CHEN Yuan, CHEN De-hua. Nitrogen spraying affects seed Bt toxin concentration and yield in Bt cotton[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1229-1238.
[3] CHEN Yuan, LIU Zhen-yu, Leila I. M. TAMBEL, ZHANG Xiang, CHEN Yuan, CHEN De-hua . Reduced square Bacillus thuringiensis insecticidal protein content of transgenic cotton under N deficit[J]. >Journal of Integrative Agriculture, 2021, 20(1): 100-108.
[4] NIE Jun-jun, YUAN Yan-chao, QIN Du-lin, LIU Yan-hui, WANG Shuang-lei, LI Jin-pu, ZHANG Mei-ling, ZHAO Na, GUO Wen-jun, QI Jie, MAO Li-li, SONG Xian-liang, SUN Xue-zhen . Spatial distribution of bolls affects yield formation in different genotypes of Bt cotton varieties[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2492-2504.
[5] ZHANG Xiang, RUI Qiu-zhi, LIANG Pan-pan, WEI Chen-hua, DENG Guo-qiang, CHEN Yuan, CHEN Yuan, DONG Zhao-di, CHEN De-hua. Dynamics of Bt cotton Cry1Ac protein content under an alternating high temperature regime and effects on nitrogen metabolism[J]. >Journal of Integrative Agriculture, 2018, 17(09): 1991-1998.
[6] QIAO Fang-bin, HUANG Ji-kun, WANG Shu-kun, LI Qiang. The impact of Bt cotton adoption on the stability of pesticide use[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2346-2356.
[7] LUO Jun-yu, ZHANG Shuai, ZHU Xiang-zhen, LU Li-min, WANG Chun-yi, LI Chun-hua, CUI Jin-jie, ZHOU Zhi-guo . Effects of soil salinity on rhizosphere soil microbes in transgenic Bt cotton fields[J]. >Journal of Integrative Agriculture, 2017, 16(07): 1624-1633.
[8] WANG Jun, CHEN Yuan, YAO Meng-hao, LI Yuan, WEN Yu-jin, CHEN Yuan, ZHANG Xiang, CHEN De-hua. The effects of high temperature level on square Bt protein concentration of Bt cotton[J]. >Journal of Integrative Agriculture, 2015, 14(10): 1971-1979.
[9] ZHANG Xiang, Lü Chun-hua, CHEN Yuan, WANG Gui-xia, CHEN Yuan , CHEN De-hua. Relationship Between Leaf C/N Ratio and Insecticidal Protein Expression in Bt Cotton as Affected by High Temperature and N Rate[J]. >Journal of Integrative Agriculture, 2014, 13(1): 82-88.
[10] LI Mao-ying, LI Fang-jun, YUE Yue-sen, TIAN Xiao-li, LI Zhao-hu , DUAN Liu-sheng. NaCl-Induced Changes of Ion Fluxes in Roots of Transgenic Bacillus thuringiensis (Bt) Cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2013, 12(3): 436-444.
[11] CHEN Yuan, WEN Yu-jin, CHENYuan , John Tom Cothren, ZHANG Xiang, WANG Yong-hui, William A. Effects of Extreme Air Temperature and Humidity on the Insecticidal Expression Level of Bt Cotton[J]. >Journal of Integrative Agriculture, 2012, 12(11): 1836-1844.
No Suggested Reading articles found!