Alexandrov N, Tai S S, Wang W S, Mansueto L, Palis K, Fuentes R R, Ulat
V J, Chebotarov D, Zhang G Y, Li Z K, Mauleon R, Hamilton R S, McNally K L.
2015. SNP-seek database of SNPs derived from 3,000 rice genomes. Nucleic Acids Research, 43, D1023–1027.
Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J
Z, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M. 2011. Artificial
selection for a green revolution gene during japonica rice
domestication. Proceedings of the National Academy of Sciences of the United States of America, 108, 11034–11039.
Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A,
Angeles E R, Qian Q, Kitano H, Matsuoka M. 2005. Cytokinin oxidase regulates
rice grain production. Science, 309, 741–745.
Biswas S, Tian J Q, Li R, Chen X F, Luo Z J, Chen M J, Zhao X X, Zhang D
B, Persson S, Yuan Z, Shi J X. 2020. Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant
molecular breeding. Journal of Genetics and Genomics, 47, 273–280.
Chang T T,
Loresto G C, Tagumpay O. 1972. Rice breeding. In: Agronomic and Growth Characteristics of Upland and Lowland Rice Varieties. International Rice Research Institute, Philippines. pp.
645–661.
Chang T T,
Vergara B S. 1975. Major research in upland rice. In: Varietal Diversity and Morpho-Agronomic Characteristics of Upland Rice. International Rice Research Institute, Philippines. pp. 72–90.
Fan C C,
Yu S B, Wang C R, Xing Y Z. 2009. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theoretical and Applied Genetics, 118, 465–472.
Ferrero-Serrano
A, Cantos C, Assmann S M. 2019. The role of dwarfing traits in historical and
modern agriculture with a focus on rice. Cold Spring Harbor Perspectives in Biology, 11, a034645
Hargrove T
R, Cabanilla V L. 1979. The impact of semidwarf varieties on asian
rice-breeding programs. BioScience, 29, 731–735.
Hedden P.
2003. The genes of the Green Revolution. Trends in Genetics, 19, 5–9.
Hu B, Wang
W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q,
Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L
G, Chu C C. 2015. Variation in NRT1.1B contributes to nitrate-use
divergence between rice subspecies. Nature Genetics, 47,
834–838.
Huang L Y,
Zhang R, Huang G F, Li Y X, Melaku G, Zhang S L, Chen H T, Zhao Y J, Zhang J,
Zhang Y S, Hu F Y. 2018. Developing superior alleles of yield genes in rice by
artificial mutagenesis using the CRISPR/Cas9 system. The Crop Journal, 6, 475–481.
Khush G S.
1999. Green revolution: Preparing for the 21st century. Genome, 42,
646–655.
Khush G S.
2001. Green Revolution: The way forward. Nature Reviews Genetics, 2, 815–822.
Krugman T,
Peleg Z, Quansah L, Chagué V, Korol A B, Nevo E, Saranga Y, Fait A, Chalhoub B,
Fahima T. 2011. Alteration in expression of hormone-related genes in wild emmer
wheat roots associated with drought adaptation mechanisms. Functional & Integrative Genomics, 11, 565–583.
Kuroha T, Nagai K, Gamuyao R, Wang D R, Furuta T, Nakamori M, Kitaoka T,
Adachi K, Minami A, Mori Y, Mashiguchi K, Seto Y, Yamaguchi S, Kojima M,
Sakakibara H, Wu J Z, Ebana K, Mitsuda N, Ohme-Takagi M, Yanagisawa S, et al. 2018. Ethylene-gibberellin signaling underlies adaptation of rice to periodic
flooding. Science, 361, 181–186.
Liu C, Zheng S, Gui J S, Fu C J, Yu H S, Song D L, Shen J H, Qin P, Liu
X M, Han B, Yang Y Z, Li L G. 2018. Shortened basal internodes encodes a
gibberellin 2-oxidase and contributes to lodging resistance in rice. Molecular Plant, 11, 288–299.
Liu Y Q, Wang H R, Jiang Z M, Wang W, Xu R N, Wang Q H, Zhang Z H, Li A
F, Liang Y, Ou S J, Liu X J, Cao S Y, Tong H N, Wang Y H, Zhou F, Liao H, Hu B,
Chu C C. 2021. Genomic basis of geographical adaptation to soil nitrogen in
rice. Nature, 590, 600–605.
Luo Z, Xia H, Bao Z G, Wang L, Feng Y, Zhang T, Xiong J, Chen L, Luo L
J. 2022. Integrated phenotypic, phylogenomic, and evolutionary analyses
indicate the earlier domestication of Geng upland rice in China. Molecular Plant, 15, 1506–1509.
Lyu J, Huang L Y, Zhang S L, Zhang Y S, He W M, Zeng P, Zeng Y, Huang G
F, Zhang J, Ning M, Bao Y C, Zhao S L, Fu Q, Wade L J, Chen H, Wang W, Hu F Y.
2020. Neo-functionalization of a Teosinte branched 1 homologue mediates adaptations of upland rice. Nature Communications, 11, 725.
Lyu J, Li B Y, He W M, Zhang S L, Gou Z H, Zhang J, Meng L Y, Li X, Tao
D Y, Huang W Q, Hu F Y, Wang W. 2014. A genomic perspective on the important
genetic mechanisms of upland adaptation of rice. BMC Plant Biology, 14, 160.
Mackill D J, Nguyen H T, Zhang J X. 1999. Use of molecular markers in
plant improvement programs for rainfed lowland rice. Field Crops Research, 64, 177–185.
Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M,
Kitano H, Ashikari M. 2010. OsSPL14 promotes panicle branching and
higher grain productivity in rice. Nature Genetics, 42,
545–549.
Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M,
Sato M, Nasu S, Minobe Y. 2002. Positional cloning of rice semidwarfing gene, sd-1:
Rice Green Revolution gene encodes a mutant enzyme involved in gibberellin
synthesis. DNA Research, 9, 11–17.
Murai M, Nagano H, Onishi K, Ogino A, Ichikawa N, Kc H B, Sano Y. 2011.
Differentiation in wild-type allele of the sd1 locus concerning culm
length between indica and japonica subspecies of Oryza sativa (rice). Hereditas, 148, 1–7.
Murai M, Takamure I, Sato S, Tokutome T, Sato Y. 2002. effects of the
dwarfing gene originating from ‘Dee-geo-woo-gen’ on yield and its related
traits in rice. Breeding Science, 52, 95–100.
Nagano H, Onishi K, Ogasawara M, Horiuchi Y, Sano Y. 2005. Genealogy of
the “Green Revolution” gene in rice. Genes & Genetic Systems, 80, 351–356.
Ogi Y, Kato H, Maruyama K, Kikuchi F. 1993. The effects on the culm
length and other agronomic characters caused by semidwarfing genes at the sd-1 locus in rice. Breeding Science, 43, 267–275.
Peng Y L, Hu Y G, Qian Q, Ren D Y. 2021. Progress and prospect of
breeding utilization of Green Revolution gene SD1 in rice. Agriculture-Basel, 11, 611.
Pingali P L. 2012. Green Revolution: Impacts, limits, and the path
ahead. Proceedings of the National Academy of Sciences of the United States of America, 109, 12302–12308.
Rana B R, Kamimukai M, Bhattarai M, Rana L, Matsumoto A, Nagano H, Oue
H, Murai M. 2021. Effects of tall alleles SD1-in and SD1-ja to the dwarfing allele sd1-d originating from ‘Dee-geo-woo-gen’ on yield
and related traits on the genetic background of indica IR36 in rice. Breeding Science, 71, 334–343.
Sha H J, Liu H L, Zhao G X, Han Z M, Chang H L, Wang J G, Zheng H L,
Zhang J F, Yu Y, Liu Y Q, Zou D T, Nie S J, Fang J. 2022. Elite sd1 alleles in japonica rice and their breeding applications in Northeast
China. The Crop Journal, 10, 224–233.
Spielmeyer W, Ellis M H, Chandler P M. 2002. Semidwarf (sd-1),
“Green Revolution” rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences of
the United States of America, 99, 9043–9048.
Song X J, Huang W, Shi M, Zhu M Z, Lin H X. 2007. A QTL for rice grain
width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 39, 623–630.
Su S, Hong J, Chen X F, Zhang C Q, Chen M J, Luo Z J, Chang S W, Bai S
X, Liang W Q, Liu Q Q, Zhang D B. 2021. Gibberellins orchestrate panicle
architecture mediated by DELLA-KNOX signalling in rice. Plant Biotechnology Journal, 19, 2304–2318.
Sun H Y,
Qian Q, Wu K, Luo J J, Wang S S, Zhang C W, Ma Y F, Liu Q, Huang X Z, Yuan Q B,
Han R X, Zhao M, Dong G J, Guo L B, Zhu X D, Gou Z H, Wang W, Wu Y J, Lin H X,
Fu X D. 2014. Heterotrimeric G proteins regulate nitrogen-use efficiency in
rice. Nature Genetics, 46, 652–656.
Sun X M, Xiong H Y, Jiang C H, Zhang D M, Yang Z L, Huang Y P, Zhu W B,
Ma S S, Duan J Z, Wang X, Liu W, Guo H F, Li G L, Qi J W, Liang C B, Zhang Z Y,
Li J J, Zhang H L, Han L J, Zhou Y H, Peng Y L, Li Z C. 2022. Natural variation
of DROT1 confers drought adaptation in upland rice. Nature Communications, 13, 4265.
Vikram P, Swamy B P M, Dixit S, Singh R, Singh B P, Miro B, Kohli A,
Henry A, Singh N K, Kumar A. 2015. Drought susceptibility of modern rice
varieties: An effect of linkage of drought tolerance with undesirable traits. Scientific Reports, 5, 14799.
Wang D, Pan Y J, Zhao X Q, Zhu L H, Fu B Y, Li Z K. 2011. Genome-wide
temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genomics, 12, 149.
Wang W S, Mauleon R, Hu Z Q, Chebotarov D, Tai S S, Wu Z C, Li M, Zheng
T Q, Fuentes R R, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis K C, Xu J
L, Sun C, Fu B Y, Zhang H L, Gao Y M, Zhao X Q, et al. 2018. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 557, 43–49.
Wang
X Y, Xu L, Li X X, Yang G D, Wang F, Peng S B. 2022. Grain yield and
lodging-related traits of ultrashort-duration varieties for direct-seeded and
double-season rice in Central China. Journal of Integrative Agriculture, 21, 2888–2899.
Wei C L, Cao B S, Hua S, Li B G. 2022. Quantitative analysis of the
effect of the PAY1 gene on rice canopy structure during different
reproductive stages. Journal of Integrative Agriculture, 21,
3488–3500.
Xia H, Luo Z, Xiong J, Ma X S, Lou Q J, Wei H B, Qiu J, Yang H, Liu G L,
Fan L J, Chen L, Luo L J. 2019. Bi-directional selection in upland rice leads
to its adaptive differentiation from lowland rice in drought resistance and
productivity. Molecular Plant, 12, 170–184.
Xia H, Zhang X X, Liu Y, Bi J G, Ma X S, Zhang A N, Liu H Y, Chen L,
Zhou S, Gao H, Xu K, Wei H B, Liu G L, Wang F M, Zhao H Y, Luo X X, Hou D P,
Lou Q J, Feng F J, Zhou L G, et al. 2022. Blue revolution for food security under carbon neutrality: A case from
the water-saving and drought-resistance rice. Molecular Plant, 15,
1401–1404.
Yu Y L, Hu X J, Zhu Y X, Mao D H. 2020. Re-evaluation of the rice ‘Green
Revolution’ gene: the weak allele SD1-EQ from japonica rice may
be beneficial for super indica rice breeding in the post-green
revolution era. Molecular Breeding, 40, 84.
Yuan L P. 2014. Development of hybrid rice to ensure food security. Rice Science, 21, 1–2.
Zhang F, Jiang Y Z, Yu S B, Ali J, Paterson A H, Khush G S, Xu J L, Gao
Y M, Fu B Y, Lafitte R, Li Z K. 2013. Three genetic systems controlling growth,
development and productivity of rice (Oryza sativa L.): A
reevaluation of the ‘Green Revolution’. Theoretical and Applied Genetics, 126, 1011–1024.
Zhang F, Wang C C, Li M, Cui Y R, Shi Y Y, Wu Z C, Hu Z Q, Wang W S, Xu
J L, Li Z K. 2021. The landscape of gene–CDS–haplotype diversity in rice:
Properties, population organization, footprints of domestication and breeding,
and implications for genetic improvement. Molecular Plant, 14,
787–804.
Zhang L Z, Huang J F, Wang Y Y, Xu R, Yang Z Y, Zhao Z G, Liu S J, Tian
Y L, Zheng X M, Li F, Wang J R, Song Y, Li J Q, Cui Y X, Zhang L F, Cheng Y L,
Lan J H, Qiao W H, Yang Q W. 2020. Identification and genetic analysis of qCL1.2,
a novel allele of the “Green Revolution” gene SD1 from wild rice (Oryza rufipogon) that enhances plant height. BMC Genetics, 21,
62.
Zhang Q F. 2007. Strategies for developing Green Super Rice. Proceedings of the National Academy of Sciences of
the United States of America, 104, 16402–16409.
Zhao W N, Zheng S S, Ling H Q. 2011. An efficient regeneration system
and Agrobacterium-mediated transformation of Chinese upland rice
cultivar Handao297. Plant Cell, Tissue and Organ Culture, 106, 475–483.
|