Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (3): 769-780    DOI: 10.1016/j.jia.2023.05.010
Special Issue: 水稻遗传育种合辑Rice Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |

Artificial selection of the Green Revolution gene Semidwarf 1 is implicated in upland rice breeding

Shuliang Jiao1*, Qinyan Li1*, Fan Zhang2*, Yonghong Tao3, Yingzhen Yu1, Fan Yao1, Qingmao Li1, Fengyi Hu1#, Liyu Huang1#

1 Key Laboratory of Biology and Germplasm Innovation of Perennial Rice, Ministry of Agriculture and Rural Affairs/School of Agriculture, Yunnan University, Kunming 650091, China

2 State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3 Wenshan Academy of Agricultural Sciences, Wenshan 663000, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

半矮化育种大大促进了作物产量,被称为第一次绿色革命。第一次绿色革命基因Semidwarf 1 (SD1)通过调节赤霉素的合成来发挥调控水稻株高的作用,该基因的突变能导致水稻株高降低从而促进抗倒伏和耐肥性,因此大大提高了水稻籽粒产量。株高有利于特定环境下的籽粒产量,但是SD1能否促进陆稻的适应性和产量还不清楚。本文对比分析了水田和旱地两种环境条件下水、陆稻种质资源株高和产量的关系。结果显示,植株通过降低高度来应对旱地的水分胁迫,并且两种条件下陆稻群体比水稻群体均具有更高的株高,适当地降低株高可以促进对旱地环境的适应性和维持籽粒产量。另外,陆稻本身具有较粗的茎杆和抗倒伏能力,而敲除陆稻品种IRAT104降低了株高和产量,表明通过SD1调节株高可以维持陆稻旱地条件下的籽粒产量。遗传多样性分析证明SD1单倍型变异可以引起株高的表型差异;从农家种到现代水稻品种育种历史进程中,SD1等位变异被选择利用,通过降低株高进而提高了水稻产量。对5SD1已知等位突变在农家种和现代育成种的分布情况进行分析,证明了陆稻更需要有功能的SD1以维持相当的籽粒产量。上述结果表明,SD1可能在陆稻群体中受到正向的人工选择,并进一步提出了陆稻育种需要较高株高的新观点。



Abstract  

Semidwarf breeding has boosted crop production and is a well-known outcome from the first Green Revolution.  The Green Revolution gene Semidwarf 1 (SD1), which modulates gibberellic acid (GA) biosynthesis, plays a principal role in determining rice plant height.  Mutations in SD1 reduce rice plant height and promote lodging resistance and fertilizer tolerance to increase grain production.  The plant height mediated by SD1 also favors grain yield under certain conditions.  However, it is not yet known whether the function of SD1 in upland rice promotes adaptation and grain production.  In this study, the plant height and grain yield of irrigated and upland rice were comparatively analyzed under paddy and dryland conditions.  In response to dryland environments, rice requires a reduction in plant height to cope with water deficits.  Upland rice accessions had greater plant heights than their irrigated counterparts under both paddy and dryland conditions, and appropriately reducing plant height could improve adaptability to dryland environments and maintain high grain yield formation.  Moreover, upland rice cultivars with thicker stem diameters had stronger lodging resistance, which addresses the lodging problem.  Knockout of SD1 in the upland rice cultivar IRAT104 reduced the plant height and grain yield, demonstrating that the adjustment of plant height mediated by SD1 could increase grain production in dryland fields.  In addition, an SD1 genetic diversity analysis verified that haplotype variation causes phenotypic variation in plant height.  During the breeding history of rice, SD1 allelic mutations were selected from landraces to improve the grain yield of irrigated rice cultivars, and this selection was accompanied by a reduction in plant height.  Thus, five known mutant alleles were analyzed to verify that functional SD1 is required for upland rice production.  All these results suggest that SD1 might have undergone artificial positive selection in upland rice, which provides further insights concerning greater plant height in upland rice breeding.

Keywords:  Green Revolution        Semidwarf 1        high-yield breeding        upland rice        plant height
  
Received: 12 February 2023   Accepted: 23 March 2023
Fund: 

This work was supported by grants from the National Natural Science Foundation of China (32272079 and 32060474) and the Yunnan Provincial Science and Technology Department, China (202101AS070001 and 202201BF070001-011).

About author:  #Correspondence Liyu Huang, Tel: +86-871-65031539, E-mail: lyhuang@ynu.edu.cn; Fengyi Hu, E-mail: hfengyi@ynu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Shuliang Jiao, Qinyan Li, Fan Zhang, Yonghong Tao, Yingzhen Yu, Fan Yao, Qingmao Li, Fengyi Hu, Liyu Huang. 2024.

Artificial selection of the Green Revolution gene Semidwarf 1 is implicated in upland rice breeding . Journal of Integrative Agriculture, 23(3): 769-780.

Alexandrov N, Tai S S, Wang W S, Mansueto L, Palis K, Fuentes R R, Ulat V J, Chebotarov D, Zhang G Y, Li Z K, Mauleon R, Hamilton R S, McNally K L. 2015. SNP-seek database of SNPs derived from 3,000 rice genomes. Nucleic Acids Research, 43, D1023–1027.

Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J Z, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M. 2011. Artificial selection for a green revolution gene during japonica rice domestication. Proceedings of the National Academy of Sciences of the United States of America, 108, 11034–11039.

Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. 2005. Cytokinin oxidase regulates rice grain production. Science, 309, 741–745.

Biswas S, Tian J Q, Li R, Chen X F, Luo Z J, Chen M J, Zhao X X, Zhang D B, Persson S, Yuan Z, Shi J X. 2020. Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding. Journal of Genetics and Genomics, 47, 273–280.

Chang T T, Loresto G C, Tagumpay O. 1972. Rice breeding. In: Agronomic and Growth Characteristics of Upland and Lowland Rice Varieties. International Rice Research Institute, Philippines. pp. 645–661.

Chang T T, Vergara B S. 1975. Major research in upland rice. In: Varietal Diversity and Morpho-Agronomic Characteristics of Upland Rice. International Rice Research Institute, Philippines. pp. 72–90.

Fan C C, Yu S B, Wang C R, Xing Y Z. 2009. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theoretical and Applied Genetics, 118, 465–472.

Ferrero-Serrano A, Cantos C, Assmann S M. 2019. The role of dwarfing traits in historical and modern agriculture with a focus on rice. Cold Spring Harbor Perspectives in Biology, 11, a034645

Hargrove T R, Cabanilla V L. 1979. The impact of semidwarf varieties on asian rice-breeding programs. BioScience, 29, 731–735.

Hedden P. 2003. The genes of the Green Revolution. Trends in Genetics, 19, 5–9.

Hu B, Wang W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L G, Chu C C. 2015. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, 47, 834–838.

Huang L Y, Zhang R, Huang G F, Li Y X, Melaku G, Zhang S L, Chen H T, Zhao Y J, Zhang J, Zhang Y S, Hu F Y. 2018. Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system. The Crop Journal, 6, 475–481.

Khush G S. 1999. Green revolution: Preparing for the 21st century. Genome, 42, 646–655.

Khush G S. 2001. Green Revolution: The way forward. Nature Reviews Genetics, 2, 815–822.

Krugman T, Peleg Z, Quansah L, Chagué V, Korol A B, Nevo E, Saranga Y, Fait A, Chalhoub B, Fahima T. 2011. Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms. Functional & Integrative Genomics, 11, 565–583.

Kuroha T, Nagai K, Gamuyao R, Wang D R, Furuta T, Nakamori M, Kitaoka T, Adachi K, Minami A, Mori Y, Mashiguchi K, Seto Y, Yamaguchi S, Kojima M, Sakakibara H, Wu J Z, Ebana K, Mitsuda N, Ohme-Takagi M, Yanagisawa S, et al. 2018. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science, 361, 181–186.

Liu C, Zheng S, Gui J S, Fu C J, Yu H S, Song D L, Shen J H, Qin P, Liu X M, Han B, Yang Y Z, Li L G. 2018. Shortened basal internodes encodes a gibberellin 2-oxidase and contributes to lodging resistance in rice. Molecular Plant, 11, 288–299.

Liu Y Q, Wang H R, Jiang Z M, Wang W, Xu R N, Wang Q H, Zhang Z H, Li A F, Liang Y, Ou S J, Liu X J, Cao S Y, Tong H N, Wang Y H, Zhou F, Liao H, Hu B, Chu C C. 2021. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 590, 600–605.

Luo Z, Xia H, Bao Z G, Wang L, Feng Y, Zhang T, Xiong J, Chen L, Luo L J. 2022. Integrated phenotypic, phylogenomic, and evolutionary analyses indicate the earlier domestication of Geng upland rice in China. Molecular Plant, 15, 1506–1509.

Lyu J, Huang L Y, Zhang S L, Zhang Y S, He W M, Zeng P, Zeng Y, Huang G F, Zhang J, Ning M, Bao Y C, Zhao S L, Fu Q, Wade L J, Chen H, Wang W, Hu F Y. 2020. Neo-functionalization of a Teosinte branched 1 homologue mediates adaptations of upland rice. Nature Communications, 11, 725.

Lyu J, Li B Y, He W M, Zhang S L, Gou Z H, Zhang J, Meng L Y, Li X, Tao D Y, Huang W Q, Hu F Y, Wang W. 2014. A genomic perspective on the important genetic mechanisms of upland adaptation of rice. BMC Plant Biology, 14, 160.

Mackill D J, Nguyen H T, Zhang J X. 1999. Use of molecular markers in plant improvement programs for rainfed lowland rice. Field Crops Research, 64, 177–185.

Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics, 42, 545–549.

Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. 2002. Positional cloning of rice semidwarfing gene, sd-1: Rice Green Revolution gene encodes a mutant enzyme involved in gibberellin synthesis. DNA Research, 9, 11–17.

Murai M, Nagano H, Onishi K, Ogino A, Ichikawa N, Kc H B, Sano Y. 2011. Differentiation in wild-type allele of the sd1 locus concerning culm length between indica and japonica subspecies of Oryza sativa (rice). Hereditas, 148, 1–7.

Murai M, Takamure I, Sato S, Tokutome T, Sato Y. 2002. effects of the dwarfing gene originating from ‘Dee-geo-woo-gen’ on yield and its related traits in rice. Breeding Science, 52, 95–100.

Nagano H, Onishi K, Ogasawara M, Horiuchi Y, Sano Y. 2005. Genealogy of the “Green Revolution” gene in rice. Genes & Genetic Systems, 80, 351–356.

Ogi Y, Kato H, Maruyama K, Kikuchi F. 1993. The effects on the culm length and other agronomic characters caused by semidwarfing genes at the sd-1 locus in rice. Breeding Science, 43, 267–275.

Peng Y L, Hu Y G, Qian Q, Ren D Y. 2021. Progress and prospect of breeding utilization of Green Revolution gene SD1 in rice. Agriculture-Basel, 11, 611.

Pingali P L. 2012. Green Revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences of the United States of America, 109, 12302–12308.

Rana B R, Kamimukai M, Bhattarai M, Rana L, Matsumoto A, Nagano H, Oue H, Murai M. 2021. Effects of tall alleles SD1-in and SD1-ja to the dwarfing allele sd1-d originating from ‘Dee-geo-woo-gen’ on yield and related traits on the genetic background of indica IR36 in rice. Breeding Science, 71, 334–343.

Sha H J, Liu H L, Zhao G X, Han Z M, Chang H L, Wang J G, Zheng H L, Zhang J F, Yu Y, Liu Y Q, Zou D T, Nie S J, Fang J. 2022. Elite sd1 alleles in japonica rice and their breeding applications in Northeast China. The Crop Journal, 10, 224–233.

Spielmeyer W, Ellis M H, Chandler P M. 2002. Semidwarf (sd-1), “Green Revolution” rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences of the United States of America, 99, 9043–9048.

Song X J, Huang W, Shi M, Zhu M Z, Lin H X. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 39, 623–630.

Su S, Hong J, Chen X F, Zhang C Q, Chen M J, Luo Z J, Chang S W, Bai S X, Liang W Q, Liu Q Q, Zhang D B. 2021. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice. Plant Biotechnology Journal, 19, 2304–2318.

Sun H Y, Qian Q, Wu K, Luo J J, Wang S S, Zhang C W, Ma Y F, Liu Q, Huang X Z, Yuan Q B, Han R X, Zhao M, Dong G J, Guo L B, Zhu X D, Gou Z H, Wang W, Wu Y J, Lin H X, Fu X D. 2014. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nature Genetics, 46, 652–656.

Sun X M, Xiong H Y, Jiang C H, Zhang D M, Yang Z L, Huang Y P, Zhu W B, Ma S S, Duan J Z, Wang X, Liu W, Guo H F, Li G L, Qi J W, Liang C B, Zhang Z Y, Li J J, Zhang H L, Han L J, Zhou Y H, Peng Y L, Li Z C. 2022. Natural variation of DROT1 confers drought adaptation in upland rice. Nature Communications, 13, 4265.

Vikram P, Swamy B P M, Dixit S, Singh R, Singh B P, Miro B, Kohli A, Henry A, Singh N K, Kumar A. 2015. Drought susceptibility of modern rice varieties: An effect of linkage of drought tolerance with undesirable traits. Scientific Reports, 5, 14799.

Wang D, Pan Y J, Zhao X Q, Zhu L H, Fu B Y, Li Z K. 2011. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genomics, 12, 149.

Wang W S, Mauleon R, Hu Z Q, Chebotarov D, Tai S S, Wu Z C, Li M, Zheng T Q, Fuentes R R, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis K C, Xu J L, Sun C, Fu B Y, Zhang H L, Gao Y M, Zhao X Q, et al. 2018. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 557, 43–49.

Wang X Y, Xu L, Li X X, Yang G D, Wang F, Peng S B. 2022. Grain yield and lodging-related traits of ultrashort-duration varieties for direct-seeded and double-season rice in Central China. Journal of Integrative Agriculture, 21, 2888–2899.

Wei C L, Cao B S, Hua S, Li B G. 2022. Quantitative analysis of the effect of the PAY1 gene on rice canopy structure during different reproductive stages. Journal of Integrative Agriculture, 21, 3488–3500.

Xia H, Luo Z, Xiong J, Ma X S, Lou Q J, Wei H B, Qiu J, Yang H, Liu G L, Fan L J, Chen L, Luo L J. 2019. Bi-directional selection in upland rice leads to its adaptive differentiation from lowland rice in drought resistance and productivity. Molecular Plant, 12, 170–184.

Xia H, Zhang X X, Liu Y, Bi J G, Ma X S, Zhang A N, Liu H Y, Chen L, Zhou S, Gao H, Xu K, Wei H B, Liu G L, Wang F M, Zhao H Y, Luo X X, Hou D P, Lou Q J, Feng F J, Zhou L G, et al. 2022. Blue revolution for food security under carbon neutrality: A case from the water-saving and drought-resistance rice. Molecular Plant, 15, 1401–1404.

Yu Y L, Hu X J, Zhu Y X, Mao D H. 2020. Re-evaluation of the rice ‘Green Revolution’ gene: the weak allele SD1-EQ from japonica rice may be beneficial for super indica rice breeding in the post-green revolution era. Molecular Breeding, 40, 84.

Yuan L P. 2014. Development of hybrid rice to ensure food security. Rice Science, 21, 1–2.

Zhang F, Jiang Y Z, Yu S B, Ali J, Paterson A H, Khush G S, Xu J L, Gao Y M, Fu B Y, Lafitte R, Li Z K. 2013. Three genetic systems controlling growth, development and productivity of rice (Oryza sativa L.): A reevaluation of the ‘Green Revolution’. Theoretical and Applied Genetics, 126, 1011–1024.

Zhang F, Wang C C, Li M, Cui Y R, Shi Y Y, Wu Z C, Hu Z Q, Wang W S, Xu J L, Li Z K. 2021. The landscape of gene–CDS–haplotype diversity in rice: Properties, population organization, footprints of domestication and breeding, and implications for genetic improvement. Molecular Plant, 14, 787–804.

Zhang L Z, Huang J F, Wang Y Y, Xu R, Yang Z Y, Zhao Z G, Liu S J, Tian Y L, Zheng X M, Li F, Wang J R, Song Y, Li J Q, Cui Y X, Zhang L F, Cheng Y L, Lan J H, Qiao W H, Yang Q W. 2020. Identification and genetic analysis of qCL1.2, a novel allele of the “Green Revolution” gene SD1 from wild rice (Oryza rufipogon) that enhances plant height. BMC Genetics, 21, 62.

Zhang Q F. 2007. Strategies for developing Green Super Rice. Proceedings of the National Academy of Sciences of the United States of America, 104, 16402–16409.

Zhao W N, Zheng S S, Ling H Q. 2011. An efficient regeneration system and Agrobacterium-mediated transformation of Chinese upland rice cultivar Handao297. Plant Cell, Tissue and Organ Culture, 106, 475–483.

No related articles found!
No Suggested Reading articles found!