Abbas-Azimi R, Jalili A,
Bakhshi-Khaniki G, Sobhanian H, Sobhanian G. 2020. Effect of latitude and
longitude on quantitative changes of some anatomical and morphological features
of Alnus subcordata C. A. Mey. leaves in Hyrcanian forests. Iranian Journal of Botany, 26, 75–91.
Al-Babili S, Bouwmeester H J.
2015. Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology, 66, 161–186.
Flematti G R, Scaffidi A, Waters
M T, Smith S M. 2016. Stereospecificity in strigolactone biosynthesis and
perception. Planta, 243, 1361–1373.
Gao X P, Guo H H, Zhang Q, Guo H
X, Zhang L, Zhang C Y, Gou Z Y, Liu Y, Wei J M, Chen A Y, Chu Z H, Zeng F C.
2020. Arbuscular mycorrhizal fungi (AMF) enhanced the
growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Scientific Reports, 10, 2084.
Gokani S, Thaker V. 2002. Role of
gibberellic acid in cotton fiber development. Journal of Agricultural Science, 138, 255–260.
Haigler C H, Betancur L, Stiff M
R, Tuttle J R. 2012. Cotton fiber: A powerful single-cell model for cell wall
and cellulose research. Frontiers in Plant Science, 3, 104.
He P, Zhang H Z, Zhang L, Jiang
B, Xiao G H, Yu J N. 2022. The GhMAX2 gene regulates plant growth and
fiber development in cotton. Journal of Integrative Agriculture, 21, 1563–1575.
Hu J, Ji Y Y, Hu X T, Sun S Y,
Wang X L. 2019. BES1 functions as the co-regulator of D53-like SMXLs to inhibit
BRC1 expression in strigolactone-regulated shoot branching in Arabidopsis. Plant Communications, 3, 100014.
Huang G, Huang J Q, Chen X Y, Zhu
X Y. 2021. Recent advances and future perspectives in cotton research. Annual Review of Plant Biology, 72, 437–462.
Jan M, Liu Z X, Guo C X, Sun X W.
2022. Molecular regulation of cotton fiber development: A review. International Journal of Molecular Sciences, 23, 5004.
Kapulnik Y, Delaux P M, Resnick
N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier J P,
Bécard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H. 2011.
Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 233, 209–216.
Kobae Y, Kameoka H, Sugimura Y,
Saito K, Ohtomo R, Fujiwara T, Kyozuka J. 2018. Strigolactone biosynthesis
genes of rice are required for the punctual entry of arbuscular mycorrhizal
fungi into the roots. Plant Cell Physiology, 3,
544–553.
Lopez-Obando M, Ligerot Y,
Bonhomme S, Boyer F D, Rameau C. 2015. Strigolactone biosynthesis and signaling
in plant development. Development, 21, 3615–3619.
Marzec M, Daszkowska-Golec A,
Collin A, Melzer M, Eggert K, Szarejko I. 2020. Barley strigolactone
signalling mutant hvd14.d reveals the role of strigolactones in
abscisic acid-dependent response to drought. Plant Cell Environment, 9, 2239–2253.
Mashiguchi K, Seto Y, Onozuka Y,
Suzuki S, Takemoto K, Wang Y, Dong L, Asami K, Noda R, Kisugi T, Kitaoka N,
Akiyama K, Bouwmeester H, Yamaguchi S. 2022. A carlactonoic acid
methyltransferase that contributes to the inhibition of shoot branching in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 14, e2111565119.
Ruyter-Spira C, Kohlen W,
Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez
J A, Matusova R, Bours R, Verstappen F, Bouwmeester H. 2011. Physiological
effects of the synthetic strigolactone analog GR24 on root system architecture
in Arabidopsis: Another below ground role for strigolactones? Plant Physiology, 155, 721–734.
Shi Y H, Zhu S W, Mao X Z, Feng J
X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. 2006. Transcriptome
profiling, molecular biological, and physiological studies reveal a major role
for ethylene in cotton fiber cell elongation. The Plant Cell, 3, 651–664.
Tian Z L, Zhang Y Z, Zhu L P,
Jiang B, Wang H Q, Gao R X, Friml J R, Xiao G H. 2022. Strigolactones act
downstream of gibberellins to regulate fiber cell elongation and cell wall
thickness in cotton (Gossypium hirsutum). The Plant Cell, 12, 4816–4839.
Walker C H, Siu-Ting K, Taylor A,
O’Connell M J, Bennett T. 2019. Strigolactone synthesis is ancestral in land
plants, but canonical strigolactone signalling is a flowering plant innovation. BMC Biology, 17, 70.
Wang L, Wang B, Yu H, Guo H Y,
Tao L, Kou L Q, Wang A, Shao N, Ma H Y, Xiong G S, Yang J, Chu J F, Li J Y.
2020. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature, 583, 277–281.
Wani K I, Zehra A, Choudhary S,
Naeem M, Khan M, Khan R, Aftab T. 2022. Exogenous strigolactone (GR24)
positively regulates growth, photosynthesis, and improves glandular trichome
attributes for enhanced artemisinin production in Artemisia annua. Journal of Plant Growth Regulation, 8,
1–10.
Wen X P, Zhai Y F, Zhang L, Chen
Y J, Zhu Z Y, Chen G, Wang K, Zhu Y. 2022. Molecular studies of cellulose
synthase supercomplex from cotton fiber reveal its unique biochemical
properties. Science China Life Sciences, 9,
1776–1793.
Xiao Y H, Li D M, Yin M H, Li X
B, Zhang M, Wang Y J, Dong J, Zhao J, Luo M, Luo X Y, Hu L, Pei Y. 2010.
Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by
regulating gibberellin synthesis. Plant Physiology, 10,
829–837.
Xu E, Chai L, Zhang S, Yu R,
Zhang X, Xu C, Hu Y. 2021. Catabolism of strigolactones by a carboxylesterase. Nature Plants, 7, 1495–1504.
Yang Z R, Zhang C J, Yang X J,
Liu K, Wu Z X, Zhang X Y, Zheng W, Xun Q Q, Liu C L, Lu L L, Yang Z E, Qian Y
Y, Xu Z Z, Li C F, Li J, Li G F. 2014. PAG1, a cotton brassinosteroid
catabolism gene, modulates fiber elongation. New Phytologist, 2,
437–448.
Yao R, Ming Z H, Yan L, Li S H,
Wang F, Ma S, Yu C, Yang M, Chen L, Chen L H, Li Y C, Yan C, Miao D, Sun Z, Yan
J B, Sun Y N, Wang L, Chu J F, Fan S, He W, et al. 2016. DWARF14 is
a non-canonical hormone receptor for strigolactone. Nature, 7617,
469–473.
Yoo S D, Cho Y H, Sheen J. 2007. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression
analysis. Nature Protocols, 2, 1565–1572.
Zhang M, Zeng J Y, Long H, Xiao Y
H, Yan X Y, Pei Y. 2017. Auxin regulates cotton fiber initiation via GhPIN-mediated auxin transport. The Plant Cell Physiology, 58, 385–397.
Zhang M, Zheng X L, Song S Q,
Zeng Q W, Hou L, Li D M, Zhao J, Wei Y, Li X B, Luo M, Xiao Y H, Luo X Y, Zhang
J F, Xiang C B, Pei Y. 2011. Spatiotemporal manipulation of auxin biosynthesis
in cotton ovule epidermal cells enhances fiber yield and quality. Nature Biotechnology, 29, 453–458.
Zhou Y, Zhang Z T, Li M, Wei X Z,
Li X J, Li B Y, Li X B. 2015. Cotton (Gossypium hirsutum) 14–3–3
proteins participate in regulation of fiber initiation and elongation by
modulating brassinosteroid signaling. Plant Biotechnology, 13,
269–280.
Zhu L P, Jiang B, Zhu J J, Xiao G
H. 2022. Auxin promotes fiber elongation by enhancing gibberellic acid
biosynthesis in cotton. Plant Biotechnology, 20, 423–425.
|