Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (6): 1850-1863    DOI: 10.1016/j.jia.2023.07.009
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |

Strigolactones modulate cotton fiber elongation and secondary cell wall thickening

Yunze Wen*, Peng He*#, Xiaohan Bai, Huizhi Zhang, Yunfeng Zhang, Jianing Yu#

College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  棉花是全球重要的经济作物之一,也是纺织工业的主要纤维来源。独脚金内酯(SLs)是一类胡萝卜素衍生型植物激素,参与植物生长发育的许多过程,但是SLs在棉花纤维发育中的功能尚不清楚。本研究发现内源性SLs在开花后20天的棉花纤维组织中显著积累。添加外源性的SLs,可促进离体胚珠的纤维伸长和细胞壁增厚。本研究克隆了三个关键的SLs生物合成基因,即GhD27GhMAX3GhMAX4,RT-qPCR显示它们在纤维中高表达,表达蛋白定位于叶绿体。拟南芥中独脚金内酯合成缺陷突变体会出现多分枝的表型,将三个棉花的SLs生物合成基因转入相应的拟南芥独脚金内酯合成缺陷突变体,可以挽救突变体的多分枝表型。利用VIGS技术分别干涉棉花中GhD27GhMAX3GhMAX4的表达,干涉植株的腋芽和叶片数量增加,纤维长度变短,纤维细胞壁厚度显著降低。这些结果表明SLs参与棉花植株的生长、纤维的伸长和次生壁的形成。上述研究结果将为改良棉花纤维品质提供新的遗传资源。

Abstract  

Cotton is one of the most important economic crops in the world, and it is a major source of fiber in the textile industry.  Strigolactones (SLs) are a class of carotenoid-derived plant hormones involved in many processes of plant growth and development, although the functions of SL in fiber development remain largely unknown.  Here, we found that the endogenous SLs were significantly higher in fibers at 20 days post-anthesis (DPA).  Exogenous SLs significantly increased fiber length and cell wall thickness.  Furthermore, we cloned three key SL biosynthetic genes, namely GhD27, GhMAX3, and GhMAX4, which were highly expressed in fibers, and subcellular localization analyses revealed that GhD27, GhMAX3, and GhMAX4 were localized in the chloroplast.  The exogenous expression of GhD27, GhMAX3, and GhMAX4 complemented the physiological phenotypes of d27, max3, and max4 mutations in Arabidopsis, respectively.  Knockdown of GhD27, GhMAX3, and GhMAX4 in cotton resulted in increased numbers of axillary buds and leaves, reduced fiber length, and significantly reduced fiber thickness.  These findings revealed that SLs participate in plant growth, fiber elongation, and secondary cell wall formation in cotton.  These results provide new and effective genetic resources for improving cotton fiber yield and plant architecture.

Keywords:  strigolactones        fiber elongation        secondary cell wall thickening        cotton   
Received: 27 February 2023   Accepted: 14 June 2023
Fund: This work was supported by the National Natural Science Foundation of China (32170367 and 32000146), the Fundamental Research Funds for the Central Universities, China (2021TS066 and GK202103063), and the Excellent Graduate Training Program of Shaanxi Normal University, China (LHRCCX23181).
About author:  #Correspondence Peng He, E-mail: phe@snnu.edu.cn; Jianing Yu, E-mail: jnyu@snnu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Yunze Wen, Peng He, Xiaohan Bai, Huizhi Zhang, Yunfeng Zhang, Jianing Yu. 2024.

Strigolactones modulate cotton fiber elongation and secondary cell wall thickening . Journal of Integrative Agriculture, 23(6): 1850-1863.

Abbas-Azimi R, Jalili A, Bakhshi-Khaniki G, Sobhanian H, Sobhanian G. 2020. Effect of latitude and longitude on quantitative changes of some anatomical and morphological features of Alnus subcordata C. A. Mey. leaves in Hyrcanian forests. Iranian Journal of Botany, 26, 75–91.

Al-Babili S, Bouwmeester H J. 2015. Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology, 66, 161–186.

Flematti G R, Scaffidi A, Waters M T, Smith S M. 2016. Stereospecificity in strigolactone biosynthesis and perception. Planta, 243, 1361–1373.

Gao X P, Guo H H, Zhang Q, Guo H X, Zhang L, Zhang C Y, Gou Z Y, Liu Y, Wei J M, Chen A Y, Chu Z H, Zeng F C. 2020. Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Scientific Reports, 10, 2084.

Gokani S, Thaker V. 2002. Role of gibberellic acid in cotton fiber development. Journal of Agricultural Science, 138, 255–260.

Haigler C H, Betancur L, Stiff M R, Tuttle J R. 2012. Cotton fiber: A powerful single-cell model for cell wall and cellulose research. Frontiers in Plant Science, 3, 104.

He P, Zhang H Z, Zhang L, Jiang B, Xiao G H, Yu J N. 2022. The GhMAX2 gene regulates plant growth and fiber development in cotton. Journal of Integrative Agriculture, 21, 1563–1575.

Hu J, Ji Y Y, Hu X T, Sun S Y, Wang X L. 2019. BES1 functions as the co-regulator of D53-like SMXLs to inhibit BRC1 expression in strigolactone-regulated shoot branching in Arabidopsis. Plant Communications, 3, 100014.

Huang G, Huang J Q, Chen X Y, Zhu X Y. 2021. Recent advances and future perspectives in cotton research. Annual Review of Plant Biology, 72, 437–462.

Jan M, Liu Z X, Guo C X, Sun X W. 2022. Molecular regulation of cotton fiber development: A review. International Journal of Molecular Sciences, 23, 5004.

Kapulnik Y, Delaux P M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier J P, Bécard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H. 2011. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 233, 209–216.

Kobae Y, Kameoka H, Sugimura Y, Saito K, Ohtomo R, Fujiwara T, Kyozuka J. 2018. Strigolactone biosynthesis genes of rice are required for the punctual entry of arbuscular mycorrhizal fungi into the roots. Plant Cell Physiology, 3, 544–553.

Lopez-Obando M, Ligerot Y, Bonhomme S, Boyer F D, Rameau C. 2015. Strigolactone biosynthesis and signaling in plant development. Development, 21, 3615–3619.

Marzec M, Daszkowska-Golec A, Collin A, Melzer M, Eggert K, Szarejko I. 2020. Barley strigolactone signalling mutant hvd14.d reveals the role of strigolactones in abscisic acid-dependent response to drought. Plant Cell Environment, 9, 2239–2253.

Mashiguchi K, Seto Y, Onozuka Y, Suzuki S, Takemoto K, Wang Y, Dong L, Asami K, Noda R, Kisugi T, Kitaoka N, Akiyama K, Bouwmeester H, Yamaguchi S. 2022. A carlactonoic acid methyltransferase that contributes to the inhibition of shoot branching in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 14, e2111565119.

Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez J A, Matusova R, Bours R, Verstappen F, Bouwmeester H. 2011. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: Another below ground role for strigolactones? Plant Physiology, 155, 721–734.

Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. 2006. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. The Plant Cell, 3, 651–664.

Tian Z L, Zhang Y Z, Zhu L P, Jiang B, Wang H Q, Gao R X, Friml J R, Xiao G H. 2022. Strigolactones act downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton (Gossypium hirsutum). The Plant Cell, 12, 4816–4839.

Walker C H, Siu-Ting K, Taylor A, O’Connell M J, Bennett T. 2019. Strigolactone synthesis is ancestral in land plants, but canonical strigolactone signalling is a flowering plant innovation. BMC Biology, 17, 70.

Wang L, Wang B, Yu H, Guo H Y, Tao L, Kou L Q, Wang A, Shao N, Ma H Y, Xiong G S, Yang J, Chu J F, Li J Y. 2020. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature, 583, 277–281.

Wani K I, Zehra A, Choudhary S, Naeem M, Khan M, Khan R, Aftab T. 2022. Exogenous strigolactone (GR24) positively regulates growth, photosynthesis, and improves glandular trichome attributes for enhanced artemisinin production in Artemisia annua. Journal of Plant Growth Regulation, 8, 1–10.

Wen X P, Zhai Y F, Zhang L, Chen Y J, Zhu Z Y, Chen G, Wang K, Zhu Y. 2022. Molecular studies of cellulose synthase supercomplex from cotton fiber reveal its unique biochemical properties. Science China Life Sciences, 9, 1776–1793.

Xiao Y H, Li D M, Yin M H, Li X B, Zhang M, Wang Y J, Dong J, Zhao J, Luo M, Luo X Y, Hu L, Pei Y. 2010. Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. Plant Physiology, 10, 829–837.

Xu E, Chai L, Zhang S, Yu R, Zhang X, Xu C, Hu Y. 2021. Catabolism of strigolactones by a carboxylesterase. Nature Plants, 7, 1495–1504.

Yang Z R, Zhang C J, Yang X J, Liu K, Wu Z X, Zhang X Y, Zheng W, Xun Q Q, Liu C L, Lu L L, Yang Z E, Qian Y Y, Xu Z Z, Li C F, Li J, Li G F. 2014. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytologist, 2, 437–448.

Yao R, Ming Z H, Yan L, Li S H, Wang F, Ma S, Yu C, Yang M, Chen L, Chen L H, Li Y C, Yan C, Miao D, Sun Z, Yan J B, Sun Y N, Wang L, Chu J F, Fan S, He W, et al. 2016. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature, 7617, 469–473.

Yoo S D, Cho Y H, Sheen J. 2007. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565–1572.

Zhang M, Zeng J Y, Long H, Xiao Y H, Yan X Y, Pei Y. 2017. Auxin regulates cotton fiber initiation via GhPIN-mediated auxin transport. The Plant Cell Physiology, 58, 385–397.

Zhang M, Zheng X L, Song S Q, Zeng Q W, Hou L, Li D M, Zhao J, Wei Y, Li X B, Luo M, Xiao Y H, Luo X Y, Zhang J F, Xiang C B, Pei Y. 2011. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nature Biotechnology, 29, 453–458.

Zhou Y, Zhang Z T, Li M, Wei X Z, Li X J, Li B Y, Li X B. 2015. Cotton (Gossypium hirsutum) 14–3–3 proteins participate in regulation of fiber initiation and elongation by modulating brassinosteroid signaling. Plant Biotechnology, 13, 269–280.

Zhu L P, Jiang B, Zhu J J, Xiao G H. 2022. Auxin promotes fiber elongation by enhancing gibberellic acid biosynthesis in cotton. Plant Biotechnology, 20, 423–425.

[1] HE Peng, ZHANG Hui-zhi, ZHANG Li, JIANG Bin, XIAO Guang-hui, YU Jia-ning. The GhMAX2 gene regulates plant growth and fiber development in cotton[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1563-1575.
[2] LUO Hong-hai, WANG Qiang, ZHANG Jie-kun, WANG Lei-shan, LI Ya-bing, YANG Guo-zheng.
One-time fertilization at first flowering improves lint yield and dry matter partitioning in late planted short-season cotton
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 509-517.
[3] Maryam KOLAHI, Elham FAGHANI, Andrea GOLDSON-BARNABY, Borhan SOHRAB. Physiological traits and anatomic structures of the seed for two short cotton season genotypes (Gossypium hirsutum L.) under water stress[J]. >Journal of Integrative Agriculture, 2020, 19(1): 89-98.
[4] GUO Hui-hui, WU Jian-fei, CHEN Cui-xia, WANG Hong-mei, ZHAO Yun-lei, ZHANG Chao-jun, JIA Yin-hua, LIU Fang, NING Tang-yuan, CHU Zhao-hui, ZENG Fan-chang. Identification and characterization of cell cultures with various embryogenic/regenerative potential in cotton based on morphological, cytochemical, and cytogenetical assessment[J]. >Journal of Integrative Agriculture, 2019, 18(1): 1-8.
[5] ZHANG Shuai, LUO Jun-yu, WANG Li, WANG Chun-yi, Lü Li-min, ZHANG Li-juan, ZHU Xiang-zhen, CUI Jin-jie. The biotypes and host shifts of cotton-melon aphids Aphis gossypii in northern China[J]. >Journal of Integrative Agriculture, 2018, 17(09): 2066-2073.
[6] ZHANG Jian-hua, KONG Fan-tao, WU Jian-zhai, HAN Shu-qing, ZHAI Zhi-fen. Automatic image segmentation method for cotton leaves with disease under natural environment[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1800-1814.
[7] FAN Yin-jun, LI Fen, Abd Allah A. H. Mohammed, YI Xiao-qin, ZHANG Min, Nicolas Desneux, GAO Xi-wu. The damage risk evaluation of Aphis gossypii on wheat by host shift and fitness comparison in wheat and cotton[J]. >Journal of Integrative Agriculture, 2018, 17(03): 631-639.
[8] MA Guang-min, SHI Xue-yan, KANG Zhi-jiao, GAO Xi-wu. The influence of Tetranychus cinnabarinus-induced plant defense responses on Aphis gossypii development[J]. >Journal of Integrative Agriculture, 2018, 17(01): 164-172.
[9] ZHANG Xiao-bing, TANG Qiao-ling, WANG Xu-jing, WANG Zhi-xing. Development of glyphosate-tolerant transgenic cotton plants harboring the G2-aroA gene[J]. >Journal of Integrative Agriculture, 2017, 16(03): 551-558.
[10] MIN Wei, GUO Hui-juan, ZHANG Wen, ZHOU Guang-wei, MA Li-juan, YE Jun, HOU Zhen-an. Irrigation water salinity and N fertilization: Effects on ammonia oxidizer abundance, enzyme activity and cotton growth in a drip irrigated cotton fild[J]. >Journal of Integrative Agriculture, 2016, 15(05): 1121-1131.
No Suggested Reading articles found!