Please wait a minute...
Journal of Integrative Agriculture  2015, Vol. 14 Issue (5): 811-822    DOI: 10.1016/S2095-3119(14)60898-4
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic diversity and elite gene introgression reveal the japonica rice breeding in northern China
 LIU Dan, WANG Jia-yu, WANG Xiao-xue, YANG Xian-li, SUN Jian, CHEN Wen-fu
1、Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture/Key Laboratory of Northern japonica Super Rice Genetics and Breeding, Ministry of Education/Rice Research Institute, Shenyang Agricultural University, Shenyang 110866,
P.R.China
2、Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157041, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Abundant genetic diversity and rational population structure of germplasm benefit crop breeding greatly. To investigate genetic variation among geographically diverse set of japonica germplasm, we analyzed 233 japonica rice cultivars collected from Liaoning, Jilin and Heilongjiang provinces of China, which were released from 1970 to 2011 by using 62 simple sequence repeat (SSR) markers and 8 functional gene tags related to yield. A total of 195 alleles (Na) were detected with an average of 3.61 per locus, indicating a low level of genetic diversity level among all individuals. The genetic diversity of the cultivars from Jilin Province was the highest among the three geographic distribution zones. Moreover, the genetic diversity was increased slightly with the released period of cultivars from 1970 to 2011. The analysis of molecular variance (AMOVA) revealed that genetic differentiation was more diverse within the populations than that among the populations. The neighbor-joining (NJ) tree indicated that cultivar clusters based on geographic distribution represented three independent groups, among which the cluster of cultivars from Heilongjiang is distinctly different to the cluster of cultivars from Liaoning. For the examined functional genes, two or three allelic variations for each were detected, except for IPA1 and GW2, and most of elite genes had been introgressed in modern japonica rice varieties. These results provide a valuable evaluation for genetic backgrounds of current japonica rice and will be used directly for japonica rice breeding in future.

Abstract  Abundant genetic diversity and rational population structure of germplasm benefit crop breeding greatly. To investigate genetic variation among geographically diverse set of japonica germplasm, we analyzed 233 japonica rice cultivars collected from Liaoning, Jilin and Heilongjiang provinces of China, which were released from 1970 to 2011 by using 62 simple sequence repeat (SSR) markers and 8 functional gene tags related to yield. A total of 195 alleles (Na) were detected with an average of 3.61 per locus, indicating a low level of genetic diversity level among all individuals. The genetic diversity of the cultivars from Jilin Province was the highest among the three geographic distribution zones. Moreover, the genetic diversity was increased slightly with the released period of cultivars from 1970 to 2011. The analysis of molecular variance (AMOVA) revealed that genetic differentiation was more diverse within the populations than that among the populations. The neighbor-joining (NJ) tree indicated that cultivar clusters based on geographic distribution represented three independent groups, among which the cluster of cultivars from Heilongjiang is distinctly different to the cluster of cultivars from Liaoning. For the examined functional genes, two or three allelic variations for each were detected, except for IPA1 and GW2, and most of elite genes had been introgressed in modern japonica rice varieties. These results provide a valuable evaluation for genetic backgrounds of current japonica rice and will be used directly for japonica rice breeding in future.
Keywords:  japonica rice cultivars       genetic diversity       elite gene introgression       simple sequence repeat       functional gene tags  
Received: 09 May 2014   Accepted:
Fund: 

This work was supported by the National Natural Science Foundation of China (31371586) and the Program for Liaoning Excellent Talents in University (LNET), China (LJQ2013075).

Corresponding Authors:  CHEN Wen-fu,Tel/Fax: +86-24-88487186, E-mail: wfchen5512@126.com     E-mail:  wfchen5512@126.com
About author:  LIU Dan, E-mail: danliu86@hotmail.com; WANG Jia-yu,E-mail: ricewjy@126.com;

Cite this article: 

LIU Dan, WANG Jia-yu, WANG Xiao-xue, YANG Xian-li, SUN Jian, CHEN Wen-fu. 2015. Genetic diversity and elite gene introgression reveal the japonica rice breeding in northern China. Journal of Integrative Agriculture, 14(5): 811-822.

Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T,Nishimura A, Angeles E R, Qian Q, Kitano H, MatsuokaM. 2005. Cytokinin oxidase regulates rice grain production.Science, 309, 741-745

Bao J S, Corke H, Sun M. 2006. Analysis of genetic diversityand relationship in waxy rice (Oryza sativa L.) using AFLPand ISSR marker. Genetic Resource and Crop Evolution,53, 323-330

Budak H, Shearman R C, Parmaksiz I, Dweikat I. 2004.Comparative analysis of seeded and vegetative biotypebuffalograsses based on phylogenetic relationship usingISSRs, SSRs, RAPDs, and SRAPs. Theoretical and AppliedGenetics, 109, 280-288

Carlos J S, Emmanuel D N, Andrew F G. 1994. Rapid silverstaining and recovery of PCR products separated onpolyacrylamide gels. Biotechniques, 17, 914-921

Chen G, Zhong M, Xu Z J, Zhang L, Liu S X, Li M. 2006. Animproved rapid DNA extraction from single rice seedlingand PAGE sliver staining method. Letters in Biotechnolog, 17, 213-215

Chen W F. 2010. The production technical FAQ in the northernrice. China Agriculture Press, Beijing, China. pp. 1-2 (inChinese)

Chen W F, Xu Z J, Zhang W Z, Zhang L B, Yang S R. 2001.Creation of new plant type and breeding rice for super highyield. Acta Agronomic Sinica, 27, 665-672 (in Chinese)

Choudhary G, Ranjitkumar N, Surapaneni M, Deborah D A,Vipparla A, Anuradha G, Siddiq E A, Vemireddy L R. 2013.Molecular genetic diversity of major Indian rice cultivars overdecadal periods. PLOS ONE, 8, e66197.

Christiansen M J, Andersen S B, Ortiz R. 2002. Diversitychanges in an intensively bred wheat germplasm duringthe 20th century. Molecular Breeding, 9, 1-11

Das B, Sengupta S, Parida S K, Roy B, Ghosh M, Prasad M,Ghose T K. 2013. Genetic diversity and population structureof rice landraces from Eastern and North Eastern States ofIndia. BMC Genetics, 14, 71.

Doyle J J, Doyle J L.1987. A rapid DNA isolation procedurefor small quantities of fresh leaf tissue. Phytochem Bull,19, 11-15

Du Q Z, Wang B, Wei Z Z, Zhang D Q, Li B L. 2012. Geneticdiversity and population structure of Chinese White poplar(Populus tomentosa) revealed by SSR markers. Journal ofHeredity, 103, 853-862

Evanno G, Regnaut S, Goudet J. 2005. Detecting the numberof clusters of individuals using the software STRUCTURE:a simulation study. Molecular Ecology, 14, 2611-2620

Excoffier L, Laval G, Schneider S. 2005. Arlequin (version 3.0):an integrated software package for population geneticsdata analysis. Evolutionary Bioinfromatics Online, 1, 47-50

Ferriol M, Picó B, Nuez F. 2003. Genetic diversity of agermplasm collection of Cucurbita pepo using SRAP andAFLP markers. Theoretical and Applied Genetics, 107,271-282

Fu Y B, Peterson G W, Scoles G, Rossnagel B, Schoen DJ, Richards K W. 2003. Allelic diversity changes in 96Canadian oat cultivars released from 1886 to 2001. CropScience, 43, 1989-1995

Gao L Z, Zhang C H, Chang L P, Jia J Z, Qiu Z E, DongY S. 2005. Microsatellite diversity within Oryza sativawith emphasis on indica-japonica divergence. GeneticsResearch, 85, 1-14

Garris A J, Tai T H, Coburn J, Kresovich S, Mccouch S. 2005.Genetic structure and diversity in Oryza sativa L. Genetics,169, 1631-1638

Giarrocco L E, Marassi M A, Salerno G L. 2007. Assessmentof the genetic diversity in Argentine rice cultivars with SSRmarkers. Crop Science, 47, 853-860

Glaubitz J C. 2004. convert: A user-friendly program to reformatdiploid genotypic data for commonly used populationgenetic software packages. Molecular Ecology Notes, 4,309-310

Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia GM, Chu C C, Li J Y, Fu X D. 2009. Natural variation at theDEP1 locus enhances grain yield in rice. Nature Genetics,41, 494-497

Jiao Y Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F,Dong G J, Zeng D L, Lu Z F, Zhu X D, Qian Q, Li J Y. 2010.Regulation of OsSPL14 by OsmiR156 defines ideal plantarchitecture in rice. Nature Genetics, 42, 541-544

Le Clerc V, Bazante F, Baril C, Guiard J, Zhang D. 2005.Assessing temporal changes in genetic diversity of maizevarieties using microsatellite markers. Theoretical andApplied Genetics, 110, 294-302

Lestari P, Lee G, Ham T H, Reflinur, Woo M O, Piao R, JiangW, Chu S H, Lee J, Koh H J. 2011. Single nucleotidepolymorphisms and haplotype diversity in rice sucrosesynthase 3. Journal of Heredity, 102, 735-746

Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D,Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. 2011. Naturalvariation in GS5 plays an important role in regulating grainsize and yield in rice. Nature Genetics, 43, 1266-1269

Liu K J, Muse S V. 2005. PowerMarker: An integrated analysisenvironment for genetic marker analysis. Bioinformatics,21, 2128-2129

Mantegazza R, Biloni M, Grassi F, Basso B, Lu B R, Cai X X,Sala F, Spada A. 2008. Temporal trends of variation inItalian rice germplasm over the past two centuries revealedby AFLP and SSR markers. Crop Science, 48, 1832-1840

McCouch S R, Teytelman L, Xu Y, Lobos K B, Clare K, WaltonM, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, YanoM, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S,Ware D, Stein L. 2002. Development and mapping of 2240new SSR markers for rice (Oryza sativa L.). DNA Research,9, 199-207

Nei M. 1978. Estimation of average heterozygosity and geneticdistance from a small number of individuals. Genetics, 89,583-590.

Oka H I. 1988. Origin of Cultivated Rice. Japanese ScientificSociety Press/Elsevier, Tokyo, Amsterdam.

Olufowore J O, Xu Y, Chen X, Park W D, Beachell H M,McCouch S R. 1997. Comparative evaluation of withincultivar variation of rice (Oryza sativa L.) using microsatelliteand RFLP markers. Genome, 40, 370-378

Parsons B J, Newbury H J, Jackson M T, Ford-lloyd B V. 1999.The genetic structure and conservation of aus, aman andboro rices from Bangladesh. Genetic Research and CropEvolution, 46, 587-598

Pritchard J K, Stephens M, Donnelly P. 2000. Inference ofpopulation structure using multilocus genotype data.Genetics, 155, 945-959

Qi Y W, Zhang D L, Zhang H L, Wang M X, Sun J L, Liao D Q,Wei X H, Qiu Z G, Tang S X, Cao Y S, Wang X K, Li Z C.2006. Genetic diversity of rice cultivars Oryza sativa L. inChina and the temporal trends in recent fifty years. ChineseScience Bulletin, 51, 681-688

Roussel V, Koenig J, Beckert M, Balfourier F. 2004. Moleculardiversity in French bread wheat accessions related totemporal trends and breeding programmes. Theoreticaland Applied Genetics, 108, 920-930

Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F. 2005. SSR allelic diversity changes in 480 European breadwheat varieties released from 1840 to 2000. Theoretical andApplied Genetics, 111, 162-170

Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, KonishiS, Yano M. 2008. Deletion in a gene associated with grainsize increased yields during rice domestication. NatureGenetics, 40, 1023-1028

Song X J, Huang W, Shi M, Zhu M Z, Lin H X. 2007. A QTLfor rice grain width and weight encodes a previouslyunknown RING-type E3 ubiquitin ligase. Nature Genetics,39, 623-630

Sow M, Ndjiondjop M N, Sido A, Mariac C, Laing M, BezançonG. 2013. Genetic diversity, population structure anddifferentiation of rice species from Niger and their potentialfor rice genetic resources conservation and enhancement.Genetic Resource and Crop Evolution, 61, 199-213

Sun C Q, Wang X K, Li Z C, Yoshimura A, Iwata N. 2001.Comparison of the genetic diversity of common wild rice(Oryza rufipogan Griff.) and cultivated rice (Oryza sativaL.) using RFLP markers. Theoretical and Applied Genetics,102, 152-162

Sun J, Liu D, Wang J Y, Ma D R, Tang L, Gao H, Xu Z J, ChenW F. 2012. The contribution of intersubspecific hybridizationto the breeding of super-high-yielding japonica rice innortheast China. Theoretical and Applied Genetics, 125,1149-1157

Takano-Kai N, Doi K, Yoshimura A. 2011. GS3 participates instigma exsertion as well as seed length in rice. BreedingScience, 61, 244-250

Takano-Kai N, Jiang H, Kubo T, Sweeney M, MatsumotoT, Kanamori H, Padhukasahasram B, Bustamante C,Yoshimura A, Doi K, McCouch S. 2009. Evolutionary historyof GS3, a gene conferring grain length in rice. Genetics,182, 1323-1334

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecularevolutionary genetics analysis (MEGA) software version 4.0.Molecular Biology and Evolution, 24, 1596-1599

Taguchi-Shiobara F, Kawagoe Y, Kato H, Onodera H, TagiriA, Hara N, Miyao A, Hirochik H, Kitano H, Yano M, Toki S.2011. A loss-of-function mutation of rice DENSE PANICLE 1causes semi-dwarfness and slightly increased number ofspikelets. Breeding Science, 61, 17-25.

Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S,McCouch S. 2001. Computational and experimental analysisof microsatellites in rice (Oryza sativa L.): frequency, lengthvariation, transposon associations, and genetic markerpotential. Genome Research, 11, 1441-1452

Upadhyay P, Neeraja C N, Kole C, Singh V K. 2013. Populationstructure and genetic diversity in popular rice varietiesof India as evidenced from SSR analysis. BiochemicalGenetics, 50, 770-783

Wang C R, Chen S, Yu S B. 2011. Functional markersdeveloped from multiple loci in GS3 for fine marker-assistedselection of grain length in rice. Theoretical and AppliedGenetics, 122, 905-913

Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng RZ, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. 2012.Control of grain size, shape and quality by OsSPL16 in rice.Nature Genetics, 44, 950-954

Wei X H, Yuan X P, Yu H Y, Wang Y P, Xu Q, Tang S X. 2009.Temporal changes in SSR allelic diversity of major ricecultivars in China. Journal of Genetics and Genomics, 36,363-370

Xu Q, Chen H, Wang C H, Yu H Y, Yuan X P, Wang Y P, FengY, Tang S X, Wei X H. 2012. Genetic diversity and structureof new inbred rice cultivars in China. Journal of IntegrativeAgriculture, 11, 1567-1573

Xuan Y S, Jiang W Z, Liu X H, Cheng Z H, Hee J K, YuanD L. 2010. Comparative analysis of genetic diversity ofcommercial rice cultivars in northeastern China. Journal ofPlant Genetic Resources, 11, 206-212

Yamasaki M, Ideta O. 2013. Population structure in Japaneserice population. Breeding Science, 63, 49-57

Yan C J, Yan S, Yang Y C, Zeng X H, Fang Y W, Zeng S Y,Tian C Y, Sun Y W, Tang S Z, Gu M H. 2009. Developmentof gene-tagged markers for quantitative trait loci underlyingrice yield component. Euphytica, 169, 215-226

Yan C J, Zhou J H, Yan S, Chen F, Yeboah M, Tang S Z, LiangG H, Gu M H. 2007. Identification and characterization ofa major QTL responsible for erect panicle trait in japonicarice (Oryza sativa L.). Theoretical and Applied Genetics,115, 1093-1100

Yang S R. 1987. The new tendency of super high yield ricebreeding programs. Journal of Shenyang AgriculturalUniversity, 18, 1-5 (in Chinese)

Yeh F. 1997. Population genetic analysis of codominant anddominant markers and quantitative traits. Belgian Journalof Botany, 129, 157.Zhang D L, Zhang H L, Qi Y W, Wang M X, Sun J L, DingL, Li Z C. 2013. Genetic structure and eco-geographicaldifferentiation of cultivated Hsien rice (Oryza sativa L.subsp. indica) in China revealed by microsatellites. ChineseScience Bulletin, 58, 344-352

Zhang L N, Cao G L, Han L Z. 2012. Analysis of genetic diversityof japonica rice landrace in China with microsatellite marker.Scientia Agricultura Sinica, 45, 405-413 (in Chinese)

Zhang P, Li J, Li X, Liu X, Zhao X, Lu Y. 2011. Populationstructure and genetic diversity in a rice core collection(Oryza sativa L.) investigated with SSR markers. PLoSONE, 6, e27565.

Zhang Y Y, Su A P, Zhang L N, Cao G L, Han L Z. 2011.Analysis of genetic structure for indica rice landraces fromdifferent provinces in China. Acta Agronomica Sinica, 37,2173-2178 (in Chinese)

Zhao W G, Chuang J W, Ma K, Kim T, Kim S, Shin D, Kim C,Hanmo K, Park Y J. 2009. Analysis of genetic diversity andpopulation structure of rice cultivars from Korea, Chinaand Japan using SSR markers. Genes and Genomics,31, 283-292
[1] WANG Meng-qi, ZHANG Hong-rui, XI Yu-qiang, WANG Gao-ping, ZHAO Man, ZHANG Li-juan, GUO Xian-ru. Population genetic variation and historical dynamics of the natural enemy insect Propylea japonica (Coleoptera: Coccinellidae) in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2456-2469.
[2] WANG Jie, LEI Qiu-xia, CAO Ding-guo, ZHOU Yan, HAN Hai-xia, LIU Wei, LI Da-peng, LI Fu-wei, LIU Jie. Whole genome SNPs among 8 chicken breeds enable identification of genetic signatures that underlie breed features[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2200-2212.
[3] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[4] XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long. Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of japonica (oryza sativa L.) in Northeast China[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1539-1550.
[5] GUO Yi, GONG Ying, HE Yong-meng, YANG Bai-gao, ZHANG Wei-yi, CHEN Bo-er, HUANG Yong-fu, ZHAO Yong-ju, ZHANG Dan-ping, MA Yue-hui, CHU Ming-xing, E Guang-xin. Investigation of Mitochondrial DNA genetic diversity and phylogeny of goats worldwide[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1830-1837.
[6] WANG Fu-qiang, FAN Xiu-cai, ZHANG Ying, SUN Lei, LIU Chong-huai, JIANG Jian-fu. Establishment and application of an SNP molecular identification system for grape cultivars[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1044-1057.
[7] LIU Na, CHENG Fang-yun, GUO Xin, ZHONG Yuan. Development and application of microsatellite markers within transcription factors in flare tree peony (Paeonia rockii) based on next-generation and single-molecule long-read RNA-seq[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1832-1848.
[8] GAO Yuan, WANG Da-jiang, WANG Kun, CONG Pei-hua, LI Lian-wen, PIAO Ji-cheng. Analysis of genetic diversity and structure across a wide range of germplasm reveals genetic relationships among seventeen species of Malus Mill. native to China [J]. >Journal of Integrative Agriculture, 2021, 20(12): 3186-3198.
[9] May Oo kHINE, brozenká MICHAELA, LIU Yan, Jiban kumar kUNDU, WANG Xi-feng. Molecular diversity of barley yellow dwarf virus-PAV from China and the Czech Republic[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2736-2745.
[10] GU Xiao-zhen, CAO Ya-cong, ZHANG Zheng-hai, ZHANG Bao-xi, ZHAO Hong, ZHANG Xiao-min, WANG Hai-ping, LI Xi-xiang, WANG Li-hao. Genetic diversity and population structure analysis of Capsicum germplasm accessions[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1312-1320.
[11] WU Huai-heng, WAN Peng, HUANG Min-song, LEI Chao-liang. Microsatellites reveal strong genetic structure in the common cutworm, Spodoptera litura[J]. >Journal of Integrative Agriculture, 2019, 18(3): 636-643.
[12] WANG Chen, CHEN Yao-sheng, HAN Jian-lin, MO De-lin, LI Xiu-jin, LIU Xiao-hong. Mitochondrial DNA diversity and origin of indigenous pigs in South China and their contribution to western modern pig breeds[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2338-2350.
[13] YANG Hai-long, DONG Le, WANG Hui, LIU Chang-lin, LIU Fang, XIE Chuan-xiao. A simple way to visualize detailed phylogenetic tree of huge genomewide SNP data constructed by SNPhylo[J]. >Journal of Integrative Agriculture, 2018, 17(09): 1972-1978.
[14] Engin Yol, Seymus Furat, Hari D Upadhyaya, Bulent Uzun. Characterization of groundnut (Arachis hypogaea L.) collection using quantitative and qualitative traits in the Mediterranean Basin[J]. >Journal of Integrative Agriculture, 2018, 17(01): 63-75.
[15] WANG Bao-hua, Daniel J. Ebbole, WANG Zong-hua. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2746-2760.
No Suggested Reading articles found!