Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (8): 2275-2290    DOI: 10.1016/S2095-3119(21)63885-6
Special Issue: 园艺-分子生物合辑Horticulture — Genetics · Breeding
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits
ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao
Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

本研究利用分布频率、变异系数、Shannon-weaver多样性指数、方差分析及聚类分析对“国家果树种质兴城梨、苹果圃”内保存的梨11个种456份梨资源和种间杂交品种114份共570份材料的39个果实表型性状进行多样性和性状差异的分析,通过相关性、主成分以及回归分析对梨种质资源进行综合评价指标筛选。主要结果如下: 梨种质果实28个字符型性状中检测到132种变异类型,多样性丰富;果实形状、萼片姿态、果肉类型、萼片状态、果锈位置、萼洼状态、风味和果实底色的多样性指数较高,分别为1.949、1.908、1.700、1.681、1.658、1.644、1.610和1.592。梨种质果实11个数值型性状中可滴定酸含量变异系数最高达128.43%,更能体现梨种质间的差异。梨5个栽培种(白梨、砂梨、秋子梨、新疆梨和西洋梨)种群间表型分化系数Vst(66.4%)高于种群内表型分化系数Vst(33.6%),种群间的变异是梨果实性状主要变异来源。系统聚类分析将包括川梨的6个栽培种389份资源分为6大类,组内具有一定的特征,组间存在差异,但并未完全按地域聚类,日韩砂梨和原产中国的砂梨聚在一起;白梨多数与砂梨聚在一起,少数与秋子梨聚在一起;秋子梨和西洋梨分别单独聚类;新疆梨和川梨均未单独聚类。采用主成分分析法和逐步回归分析法从39个性状中筛选出17个性状,决定总变异的99.3%,其中描述单果质量和可食率的性状3个(果实横径、果实纵径和果心大小)、形态特征和外观品质性状5个(果面盖色、果锈数量、果点明显程度、果实形状和果梗长度)和内在品质性状9个(果肉颜色、汁液、香气、风味、果肉质地、果肉类型、可溶性固形物含量、可滴定酸含量和内质综合评价),可作为梨种质资源综合评价指标


Germplasm resources are an important basis for genetic breeding and analysis of complex traits, and research on genetic diversity is conducive to the exploration and creation of new types of germplasm.  In this study, the distribution frequency, coefficient of variation, Shannon–Wiener index, and variance and cluster analyses were used to analyze the diversity and trait differences of 39 fruit phenotypic traits from 570 pear accessions, which included 456 pear accessions from 11 species and 114 interspecific hybrid cultivars that had been stored in the National Germplasm Repository of Apple and Pear (Xingcheng, China).  The comprehensive evaluation indices were screened by correlation, principal component and regression analyses.  A total of 132 variant types were detected in 28 categorical traits of pear germplasm fruit, which indicate a rich diversity.  The diversity indices in decreasing order were: fruit shape (1.949), attitude of calyx (1.908), flesh texture type (1.700), persistency of calyx (1.681), russet location (1.658), relief of area around eye basin (1.644), flavor (1.610) and ground color (1.592).  The coefficient of variation of titratable acidity in the 11 numerical traits of pear germplasm fruit was as high as 128.43%, which could more effectively reflect the differences between pear accessions.  The phenotypic differentiation coefficient Vst (66.4%) among the five cultivated pear species, including Pyrus bretschneideri (White Pear), Ppyrifolia (Sand Pear), Pussuriensis (Ussurian Pear), Psinkiangensis (Xinjiang Pear), and Pcommunis (European Pear), was higher than the within population phenotypic differentiation coefficient Vst (33.6%).  The variation among populations was the main source of variation in pear fruit traits.  A hierarchical cluster analysis divided the 389 accessions of six cultivated pear species, including Ppashia (Himalayan Pear), into six categories.  There were certain characteristics within the populations, and the differences between populations were not completely clustered by region.  For example, Sand Pear cultivars from Japan and the Korean Peninsula clustered together with those from China.  Most of the White Pear cultivars clustered with the Sand Pear, and a few clustered with the Ussurian Pear cultivars.  The Ussurian Pear and European Pear cultivars clustered separately.  The Xinjiang Pear and Himalayan Pear did not cluster together, and neither did the cultivars.  Seventeen traits, three describing fruit weight and edible rate (fruit diameter, fruit length and fruit core size), five describing outer quality and morphological characteristics (over color, amount of russeting, dot obviousness, fruit shape, and stalk length), and nine describing inner quality (flesh color, juiciness of flesh, aroma, flavor, flesh texture, flesh texture type, soluble solid contents, titratable acidity, and eating quality) were selected from the 39 traits by principal component and stepwise regression analyses.  These 17 traits could reflect 99.3% of the total variation and can be used as a comprehensive evaluation index for pear germplasm resources.

Keywords:  pear        fruit phenotypic traits        genetic diversity        comprehensive evaluation  
Received: 08 July 2021   Accepted: 27 December 2021
Fund: This work was supported by the China Agriculture Research System of MOF and MARA (CARS-29-01) and the Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2016-RIP-01).
About author:  ZHANG Ying, E-mail:; Correspondence CAO Yu-fen, Tel: +86-429-3598125, E-mail:

Cite this article: 

ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. 2022. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits. Journal of Integrative Agriculture, 21(8): 2275-2290.

Bao L, Chen K S, Zhang D, Cao Y F, Yamamoto T, Teng Y W. 2007. Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genetic Resources & Crop Evolution, 54, 959–971.
Bao L, Chen K S, Zhang D, LI X G, Teng Y W. 2008. An assessment of genetic variability and relationships within asian pears based on AFLP (amplified fragment length polymorphism) markers. Scientia Horticulturae, 116, 374–380.
Bashiri H, Cheghamirza K, Arji I, Mahmodi N. 2017. Assessing genetic diversity of Pyrus spp. in the central Zagros mountains based on morphological characters. Genetic Resources & Crop Evolution, 64, 1–14.
Bell R, Quamme H, Layne R, Skirvin R. 1996. Pears. In: Janick J, Moore J N, eds., Fruit Breeding, Vol 1.  Tree and Tropical Fruits. Wiley, New York. pp. 441–514.
Brahem M, Renard C M G C, Eder S, Loonis M, Ouni R, Mars M, Le Bourvellec C. 2017. Characterization and quantification of fruits phenolic compounds of European and Tunisian pear cultivars. Food Research International, 95, 125–133.
Bu H D, Zhang B B, Song H W, Liang Y H, Liu Y J, Cheng X M, Gu G J, Liu A. 2012. Construction core collections of pear germplasms in cold region by SSR and phenotypic traits. Acta Horticulturae Sinica, 39, 2113–2123. (in Chinese)
Cao K, Zhou Z K, Wang Q, Guo J, Zhao P, Zhu G R, Fang W C, Chen C W, Wang X W, Wang X L, Tian Z X, Wang L R. 2016. Genome-wide association study of 12 agronomic traits in peach. Nature Communications, 7, 13246.
Cao Y F. 2014. Pear Varieties in China. China Agriculture Press, Beijing. p. 5. (in Chinese)
Cao Y F, Liu F Z, Gao Y, Jiang L J, Wang K, Ma Z Y, Zhang K C. 2007. SSR analysis of genetic diversity of pear cultivars. Acta Horticulturae Sinica, 34, 305–310. (in Chinese)
Cao Y F, Liu F Z, Hu H J, Zhang B B. 2006. Descriptors and data standard for pear (Pyrus spp.). China Agriculture Press, Beijing. (in Chinese)
Cao Y F, Tian L M, Gao Y, Liu F Z. 2012. Genetic diversity of cultivated and wild Ussurian Pear (Pyrus ussuriensis Maxim.) in China evaluated with M13-tailed SSR markers. Genetic Resources & Crop Evolution, 59, 9–17.
Cao Y F, Zhang S l. 2020. Pear Genetic Resource in China. China Agriculture Press, Beijing. p. 7. (in Chinese)
Chang Y J, Cao Y F, Zhang J M, Tian L M, Dong X G, Zhang Y, QI D, Zhang X S. 2017. Study on chloroplast DNA diversity of cultivated and wild pears (Pyrus L.) in Northern China. Tree Genetics & Genomes, 13, 44.
Esquinas-Alcazar J. 2005. Science and society, Protecting crop genetic diversity for food security, political, ethical and technical challenges. Nature Reviews Genetics, 6, 946–953.
Gao Y, Yu Z F. 2020. Quality evaluation of celery based on principal component analysis. Science and Technology of Food Industry, 41, 308–314, 320. (in Chinese)
Ge S, Wang M X, Chen Y W. 1988. An analysis of population genetic structure of masson pine by isozyme technique. Scientia Silvae Sinicae, 24, 399–409. (in Chinese)
Hamrick J L, Godt M J W, Sherman-Broyles S L. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests, 6, 95–124.
Heidari P, Rezaei M, Sahebi M, Khadivi A. 2019. Phenotypic variability of Pyrus boissieriana Buhse, implications for conservation and breeding. Scientia Horticulturae, 247, 1–8.
Hu F C, Chen Z, Zhao J T, Feng X J, Wu F Z, Fan H Y, Wang X H, Hu G B. 2020. Identification and comprehensive evaluation of dwarfing-related morphological indicators in litchi germplasm resources. Journal of Plant Genetic Resources, 21, 775–784. (in Chinese)
Huang X H, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z. 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 42, 961–976.
Jiang S, Zheng X Y, Yu P Y, Yue X Y, Ahmed M, Cai D Y, Teng Y W. 2016. Primitive genepools of Asian pears and their complex hybrid origins inferred from fluorescent sequence-specific amplification polymorphism (SSAP) markers based on LTR retrotransposons. PLoS ONE, 11, e0149192.
Khadivi A, Mirheidari F, Moradi Y, Paryan S. 2020. Morphological and pomological characterizations of Pyrus syriaca Boiss. germplasm. Scientia Horticulturae, 271, 109424.
Khoury C, Laliberté B, Guarino L. 2010. Trends in ex situ conservation of plant genetic resources: a review of global crop and regional conservation strategies. Genetic Resources & Crop Evolution, 57, 625–639.
Kimura T, Shi Y, Shoda M, Kotobuki K, Matsuta N, Hayashi T, Ban Y, Yamamoto T. 2002. Identification of Asian pear varieties by SSR analysis. Breeding Science, 52, 115121
Li T, Li X Y, Tan D M, Jiang Z Y, Wei Y, Li J C, Du G D, Wang A. 2014. Distinct expression profiles of ripening related genes in the ‘Nanguo’ pear (Pyrus ussuriensis) fruits. Scientia Horticulturae, 171, 78–82.
Li X, Singh J, Qin M, Li S, Zhang X, Zhang M, Khan A, Zhang S, Wu J. 2019. Development of an integrated 200K SNP genotyping array and application for genetic mapping, genome assembly improvement and genome wide association studies in pear (Pyrus). Plant Biotechnology Journal, 17, 1582–1594.
Lin B N, Shen D X. 1983. Studies on the germplasmic characteristics of Pyrus by use of isozymic patterns. Journal of Zhejiang A&F University, 9, 235–242. (in Chinese)
Lin S G, Fang C Q, Song W Q, Zhang F. 2002. AFLP molecular markers of species of Pyrus in China. Acta Horticulturae, 587, 233–236. 
Liu Q, Song Y, Liu L, Zhang M, Sun J, Zhang S, Wu J. 2015. Genetic diversity and population structure of pear (Pyrus spp.) collections revealed by a set of core genome-wide SSR markers. Tree Genetics & Genomes, 11, 1–22.
Ma Y, Wang X C, MU Y J, Yang F F, Gao J L, Chu Q Q, Huang X J. 2019. Principal component analysis of quality indexes of different varieties of kiwifruit. Science and Technology of Food Industry, 40, 233–238. (in Chinese) 
Mariette S, Wong J T F, Roch G, Barre A, Chague A, Decroocq S, Groppi A, Laizet Y, Lambert P, Tricon D. 2016. Genome-wide association links candidate genes to resistance to Plum Pox Virus in apricot (Prunus armeniaca). The New Phytologist, 209, 773–784.
Mu J H, Chen Y Z, Feng H, Li W J, Zhou L B. 2016. A new revolution in crop breeding, the era of high-throughput phenomics. Plant Science Journal, 34, 962–971. (in Chinese)
Mirheidari F, Khadivi A, Moradi Y, Paryan S. 2020. Phenotypic characterization of Prunus haussknechtii bornm., P. elaeagnifolia spach, and P.orientalis mill. Scientia Horticulturae, 265, 109273.
Pan C X, Xu Y, Ji H B, Li Y M, Chen N L. 2015. Phenotypic diversity and clustering analysis of watermelon germplasm. Journal of Plant Genetic Resources, 16, 59–63. (in Chinese) 
Pan Y H. 2015. Analysis of concepts and categories of plant phenome and phenomics. Acta Agronomica Sinica, 41, 175–186. (in Chinese)
Petruccelli R, Ganino T, Ciaccheri L, Maselli F, Mariotti P. 2013. Phenotypic diversity of traditional cherry accessions present in the Tuscan region. Scientia Horticulturae, 150, 334–347.
Pu F, Wang Y. 1963. Pomology of China: Pears. Vol 3. Shanghai Science and Technology Press, Shanghai. (in Chinese)
Rotach P, Baume M. 2004. Die Wildbirne (Pyrus pyraster (L.) Burgsd). in der Schweiz: morphologische charakterisierung, Abgrenzung von der Kulturbirne und Artreinheit ihrer Vorkomen. Schweizerische Zeitschrift Fur Forstwesen, 155, 367–377.  (in German)
Rubtsov G A. 1944. Geographical distribution of the genus Pyrus and trends and factors in its evolution. The American Naturalist, 73, 58–366.
Rui W J, Wang X M, Zhang Q N, Hu Xueyi, Hu X H, Fu J J, Gao Y M, Li J S. 2018. Genetic diversity analysis of 353 tomato germplasm resources by phenotypic traits. Acta Horticulturae Sinica, 45, 561–570. (in Chinese)
Ruiz D, Egea J. 2008. Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica, 163, 143–158.
Said A A, Ahmed O, Fatima G, Marie H S, Cherkaoui E M. 2013. Phenotypic biodiversity of an endemic wild pear, Pyrus mamorensis Trab., in North-Western Morocco using morphological descriptors. Genetic Resources & Crop Evolution, 60, 927–938.
Song Y, Fan L, Chen H, Zhang M, Ma Q, Zhang S, Wu J. 2014. Identifying genetic diversity and a preliminary core collection of Pyrus pyrifolia cultivars by a genome-wide set of SSR markers. Scientia Horticulturae, 167, 5–16.
Sun Y W, Qian M J, Wu R Y, Niu Q F, Teng Y W, Zhang D. 2014. Postharvest pigmentation in red Chinese sand pears (Pyrus pyrifolia Nakai) in response to optimum light and temperature. Postharvest Biology & Technology, 91, 64–71.
Sun Z Z, Li Q Y, Wang X K, Zhao W T, Xue Y, Feng J Y, Liu X F, Liu M Y, Jiang D. 2017. Comprehensive evaluation and phenotypic diversity analysis of germplasm resources in Mandarin. Scientia Agricultura Sinica, 50, 4362–4383. (in Chinese)
Teng Y W, Tanabe K J, Tamura F M, Itai A. 2002. Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers. Journal of the American Society for Horticultural, 127, 262–270.
Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D. 2001. Dwarf 8 polymorphisms associate with variation in flowering time. Nature Genetics, 28, 286–289. 
Urrestarazu J, Kgi C, A. Bühlmann, Gassmann J, Miranda C. 2019. Integration of expert knowledge in the definition of Swiss pear core collection. Scientific Reports, 9, 8934.
Vavilov N I. 1951. The origin, variation, immunity and breeding of cultivated plants. Soil Science, 72, 482.
Voltas J, Peman J, Fuste F. 2007. Phenotypic diversity and delimitation between wild and cultivated forms of the genus Pyrus in North-eastern Spain based on morphometric analyses. Genetic Resources and Crop Evolution, 54, 1473–1487.
Wang L R, Zhu G R, Fang W C. 2005. The evaluating criteria of some botanical quantitative characters of peach genetic resources. Scientia Agricultura Sinica, 38, 770–776. (in Chinese)
Wei S W, Yang H, Zhang Q R, Chen H R, Luo L J, Long P. 2016. The diversity of lettuce resource based on the analysis of phenotypic traits. Journal of Plant Genetic Resources, 17, 871–876. (in Chinese) 
Xue H B, Zhang P J, Shi T, Yang J, Wang L, Wang S K, Su Y L, Zhang H R, Qiao Y S, Li X G. 2018. Genome-wide characterization of simple sequence repeats in Pyrus bretschneideri and their application in an analysis of genetic diversity in pear. BMC Genomics, 19, 473.
Xue L, Liu Q W, Hu H J, Song Y, Fan J, Bai B, Zhang W Y, Wang R Z, Qin M F, Li, Wu J. 2018. The southwestern origin and eastward dispersal of pear (Pyrus pyrifolia) in East Asia revealed by comprehensive genetic structure analysis with SSR markers. Tree Genetics & Genomes, 14, 1–12.
Yano K, Yamamoto E, Aya K, Takeuchi H, Lo P C, Hu L, Yamasaki M, Yoshida S, Kitano H, Hirano K. 2016. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genetics, 48, 927–934.
Yu D. 1979. Taxonomy of the Fruit Tree in China. Agriculture Press, Beijing. (in Chinese)
Yu P Y, Jiang S, Wang X X, Bai S L, Teng Y W. 2016. Retrotransposon-based sequence-specific amplification polymorphism markers reveal that cultivated Pyrus ussuriensis originated from an interspecific hybridization. European Journal of Horticultural Science, 81, 264–272. 
Yue X Y, Zheng X Y, Yu Z , Jiang S, Hu C Y, Yu P Y, Liu G Q, Cao Y F, Hu H J, Teng Y W. 2018. Combined analyses of chloroplast DNA haplotypes and microsatellite markers reveal new insights into the origin and dissemination route of cultivated pears native to East Asia. Frontiers in Plant Science, 9, 591.
Zarei A, Erfani-Moghadam J, Jalilian H. 2019. Assessment of variability within and among four Pyrus species using multivariate analysis. Flora, 250, 27–36. 
Zeng S M, Chen X M, Huang X Z. 2019. Fruit character diversity analysis and numerical classification of local pear germplasm resources in Fujian. Acta Horticulturae Sinica, 46, 237–251. (in Chinese)
Zhang B B, Song H W, Liu H T, Liang Y H, Li Y B. 2009. Study on the diversity of phenotypic characteristics of pear germplasm resources in the cold region. Journal of Fruit Science, 26, 287–293. (in Chinese)
Zhang Y, Cao Y F, Huo H L, Tian L M, Dong X G, Qi D, Zhang X S. 2016. Research on diversity of pear germplasm resources based on flowers phenotype traits. Acta Horticulturae Sinica, 43, 1245–1256. (in Chinese)
Zhang Y, Cao Y F, Huo H L, Xu J Y, Tian L M, Dong X G, Qi D, Zhang X S, Liu C, Wang L D. 2018. Diversity of pear germplasm resources based on twig and leaf phenotypic traits. Scientia Agricultura Sinica, 51, 3353–3369. (in Chinese)

No related articles found!
No Suggested Reading articles found!