Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (10): 2338-2350    DOI: 10.1016/S2095-3119(19)62731-0
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Mitochondrial DNA diversity and origin of indigenous pigs in South China and their contribution to western modern pig breeds
WANG Chen1, CHEN Yao-sheng1, HAN Jian-lin2, 3, MO De-lin1, LI Xiu-jin1, LIU Xiao-hong1 
1 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, P.R.China
2 CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
3 International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Indigenous pigs in South China are valuable genetic resources with many specific and unique characters, which have played an important role in the establishment of some western modern pig breeds.  However, the origin and genetic diversity of indigenous pigs in South China have not been fully understood.  In the present study, we sequenced 534 novel mitochondrial DNA (mtDNA) D-loop and assembled 54 complete mitogenome sequences for all 17 indigenous pig breeds from Fujian, Guangdong, Guangxi and Hainan in South China.  These data were analyzed together with previously published homologous sequences relevant to this study.  We found that all 13 coding genes of the mitogenomes were under purifying selection, but ND1 had the most variable sites and CYTB contained the most non-synonymous SNPs.  Phylogenetic analysis showed that all indigenous pigs in South China were clustered into the D haplogroup with D1a1, D1b, D1c and D1e sub-haplogroups found to be dominant.  Haplotype and nucleotide diversities of D-loop sequences ranged from 0.427 to 0.899 and from 0.00342 to 0.00695, respectively, among which all pigs in Guangdong had the lowest diversity.  The estimates of pairwise FST, gene flow (Nm) and genetic distance (Da) indicated that most of these indigenous pig breeds differentiated from each other significantly (P<0.05).  Among the western modern breeds, Berkshire and Yorkshire had significant Asian matrilineal footprints from indigenous pigs in South China, especially the Spotted pigs distributed in Guangdong and Guangxi.  The neutrality test (Fu’s FS) indicated that indigenous pigs from Fujian and Guangxi had gone through recent population expansion events (P<0.05).  It is concluded that indigenous pigs in South China were most likely derived from the Mekong region and the middle and downstream regions of Yangtze River through Guangxi and Fujian.  Our findings provide a complete and in-depth insight on the origin and distribution pattern of maternal genetic diversity of indigenous pigs in South China.
Keywords:  pig        South China        mitogenome        D-loop        genetic diversity  
Received: 09 May 2018   Accepted:
Fund: This work was supported by the Basic Work of Science and Technology Project, China (2014FY120800) and the Science and Technology Project of Guangdong Province, China (2014YT02H042, 2014B020202001).
Corresponding Authors:  Correspondence LIU Xiao-hong, Tel/Fax: +86-20-39332940, E-mail: liuxh8@mail.sysu.edu.cn   
About author:  WANG Chen, E-mail: wangchen_sysu@sina.com;

Cite this article: 

WANG Chen, CHEN Yao-sheng, HAN Jian-lin, MO De-lin, LI Xiu-jin, LIU Xiao-hong. 2019. Mitochondrial DNA diversity and origin of indigenous pigs in South China and their contribution to western modern pig breeds. Journal of Integrative Agriculture, 18(10): 2338-2350.

Ai H S, Fang X D, Yang B, Huang Z Y, Chen H, Mao L K, Zhang F, Zhang L, Cui L L, He W M, Yang J, Yao X M, Zhou L S, Han L J, Li J, Sun S L, Xie X H, Lai B X, Su Y, Lu Y, et?al. 2015. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Natutre Genetics, 47, 217–225.
Ardalan A, Kluetsch C F C, Zhang A B, Erdogan M, Uhlen M, Houshmand M, Tepeli C, Ashtiani S R M, Savolainen P. 2011. Comprehensive study of mtDNA among Southwest Asian dogs contradicts independent domestication of wolf, but implies dog-wolf hybridization. Ecology and Evolution, 1, 373–385.
Bandelt H J, Forster P, Sykes B C, Richards M B. 1995. Mitochondrial portraits of human populations using median networks. Genetics, 141, 743–753.
Bianco E, Soto H W, Vargas L, Perez-Enciso M. 2015. The chimerical genome of Isla del Coco feral pigs (Costa rica), an isolated population since 1793 but with remarkable levels of diversity. Molecular Ecology, 24, 2364–2378.
Bosse M, Megens H J, Frantz L A F, Madsen O, Larson G, Paudel Y, Duijvesteijn N, Harlizius B, Hagemeijer Y, Crooijmans R P M A, Groenen M A M. 2014. Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nature Communications, 5, 4392.
Bosse M, Megens H J, Madsen O, Crooijmans R P M A, Ryder O A, Austerlitz F, Groenen M A M, de Cara M A R. 2015. Using genome-wide measures of coancestry to maintain diversity and fitness in endangered and domestic pig populations. Genome Research, 25, 970–981.
Cann R L, Brown W M, Wilson A C. 1984. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics, 106, 479–499.
Excoffier L, Lischer H E. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecualr Ecology Resources, 10, 564–567.
Fang M Y, Andersson L. 2006. Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication. Proceedings of the Royal Society (B: Biological Sciences), 273, 1803–1810.
Fu Y X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925.
Giuffra E, Kijas J M H, Amarger V, Carlborg O, Jeon J T, Andersson L. 2000. The origin of the domestic pig: Independent domestication and subsequent introgression. Genetics, 154, 1785–1791.
Groenen M A M, Archibald A L, Uenishi H, Tuggle C K, Takeuchi Y, Rothschild M F, Rogel-Gaillard C, Park C, Milan D, Megens H J, Li S T, Larkin D M, Kim H, Frantz L A F, Caccamo M, Ahn H, Aken B L, Anselmo A, Anthon C, Auvil L, et?al. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 491, 393–398.
Hahn C, Bachmann L, Chevreux B. 2013. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads - a baiting and iterative mapping approach. Nucleic Acids Research, 41, e129.
Hou X D, Sheng G L, Yin S, Zhu M, Du M, Jin C Z, Lai X L. 2014. DNA analyses of wild boar remains from archaeological sites in Guangxi, China. Quaternary International, 354, 147–153.
Huo J H, Wei Q P, Wan M C, Liu L X, Hu L F, Zhou Q Y, Xiong L G, Yang Q, Wu Y P. 2016. Population phylogenomic analysis and origin of mitochondrial DNA in Chinese domestic pig. Mitochondrial DNA (Part A), 27, 892–895.
Ji Y Q, Wu D D, Wu G S, Wang G D, Zhang Y P. 2011. Multi-locus analysis reveals a different pattern of genetic diversity for mitochondrial and nuclear DNA between wild and domestic pigs in East Asia. PLoS ONE, 6, e26416.
Jin L, Zhang M W, Ma J D, Zhang J, Zhou C W, Liu Y K, Wang T, Jiang A A, Chen L, Wang J Y, Jiang Z R, Zhu L, Shuai S R, Li R Q, Li M Z, Li X W. 2012. Mitochondrial DNA evidence indicates the local origin of domestic pigs in the upstream region of the Yangtze river. PLoS ONE, 7, e51649.
Kim K I, Lee J H, Li K, Zhang Y P, Lee S S, Gongora J, Moran C. 2002. Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Animal Genetics, 33, 19–25.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.
Larson G, Dobney K, Albarella U, Fang M Y, Matisoo-Smith E, Robins J, Lowden S, Finlayson H, Brand T, Willerslev E, Rowley-Conwy P, Andersson L, Cooper A. 2005. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science, 307, 1618–1621.
Larson G, Liu R R, Zhao X B, Yuan J, Fuller D, Barton L, Dobney K, Fan Q P, Gu Z L, Liu X H, Luo Y B, Lv P, Andersson L, Li N. 2010. Patterns of East Asian pig domestication, migration, and turnover revealed by modern and ancient DNA. Proceedings of the National Academy of Sciences of the United States of America, 107, 7686–7691.
Lei C Z, Su R, Bower M A, Edwards C J, Wang X B, Weining S, Liu L, Xie W M, Li F, Liu R Y, Zhang Y S, Zhang C M, Chen H. 2009. Multiple maternal origins of native modern and ancient horse populations in China. Animal Genetics, 40, 933–944.
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/Map format and SAMtools. Bioinformatics, 25, 2078–2079.
Li M, Jin L, Ma J, Tian S, Li R, Li X. 2016. Detecting mitochondrial signatures of selection in wild Tibetan pigs and domesticated pigs. Mitochondrial DNA (Part A), 27, 747–752.
Li M Z, Chen L, Tian S L, Lin Y, Tang Q Z, Zhou X M, Li D Y, Yeung C K L, Che T D, Jin L, Fu Y H, Ma J D, Wang X, Jiang A A, Lan J, Pan Q, Liu Y K, Luo Z G, Guo Z Y, Liu H F. 2017. Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Research, 27, 865–874.
Li M Z, Tian S L, Yeung C K L, Meng X H, Tang Q Z, Niu L L, Wang X, Jin L, Ma J D, Long K R, Zhou C W, Cao Y C, Zhu L, Bai L, Tang G Q, Gu Y R, Jiang A A, Li X W, Li R Q. 2014. Whole-genome sequencing of Berkshire (European native pig) provides insights into its origin and domestication. Scientific Reports, 4, 4678.
Librado P, Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.
Liu Y P, Wu G S, Yao Y G, Miao Y W, Luikart G, Baig M, Beja-Pereira A, Ding Z L, Palanichamy M G, Zhang Y P. 2006. Multiple maternal origins of chickens: Out of the Asian jungles. Molecular Phylogenetics and Evolution, 38, 12–19.
Luikart G, Gielly L, Excoffier L, Vigne J D, Bouvet J, Taberlet P. 2001. Multiple maternal origins and weak phylogeographic structure in domestic goats. Proceedings of the National Academy of Sciences of the United States of America, 98, 5927–5932.
Lv F H, Peng W F, Yang J, Zhao Y X, Li W R, Liu M J, Ma Y H, Zhao Q J, Yang G L, Wang F, Li J Q, Liu Y G, Shen Z Q, Zhao S G, Hehua E, Gorkhali N A, Vahidi S M F, Muladno M, Naqvi A N, Tabell J, et?al. 2015. Mitogenomic meta-analysis identifies two phases of migration in the history of eastern eurasian sheep. Molecular Biology and Evolution, 32, 2515–2533.
Male P J G, Bardon L, Besnard G, Coissac E, Delsuc F, Engel J, Lhuillier E, Scotti-Saintagne C, Tinaut AChave J. 2014. Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family. Molecular Ecology Resources, 14, 966–975.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. 2010. The Genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297–1303.
Megens H J, Crooijmans R P, Cristobal M S, Hui X, Li N, Groenen M A. 2008. Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genetics Selection Evolution, 40, 103–128.
Ming L, Yi L, Sa R, Wang Z X, Wang Z, Ji R. 2017. Genetic diversity and phylogeographic structure of Bactrian camels shown by mitochondrial sequence variations. Animal Genetics, 48, 217–220.
Peng M S, Fan L, Shi N N, Ning T, Yao Y G, Murphy R W, Wang W Z, Zhang Y P. 2015. DomeTree: A canonical toolkit for mitochondrial DNA analyses in domesticated animals. Molecular Ecology Resources, 15, 1238–1242.
Posada D. 2003. Using MODELTEST and PAUP* to select a model of nucleotide substitution. In: Current Protocols in Bioinformatics. John Wiley & Sons, Inc., Malden, MA, United States. Chapter 6, 6.5.1–6.5.14.
Qu K X, Wu G S, Gou X, Yan D W, Lian L S, Mumtaz B, Zhang Y P. 2011. Genetic differentiations between randomly and selectively bred pig populations in Yunnan, China. Zoological Research, 32, 255–261.
Ronquist F H, Huelsenbeck J P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595.
Wang L Y, Wang A G, Wang L X, Li K, Yang G S, He R G, Qian L, Xu N Y, Huang R H, Peng Z Z, Zeng Y Q, Pan Y C. 2011. Animal Genetics Resources in China: Pigs. China Agricultural Press, Beijing. pp. 7–10. (in Chinese)
White S. 2011. From globalized pig breeds to capitalist pigs: A study in animal cultures and evolutionary history. Environmental History, 16, 94–120.
Wu G S, Yao Y G, Qu K X, Ding Z L, Li H, Palanichamy M G, Duan Z Y, Li N, Chen Y S, Zhang Y P. 2007. Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple domestication events in East Asia. Genome Biology, 8, R245.
Xiang H, Gao J Q, Cai D W, Luo Y B, Yu B Q, Liu L Q, Liu R R, Zhou H, Chen X Y, Dun W T, Wang X, Hofreiter M, Zhao X B. 2017. Origin and dispersal of early domestic pigs in northern China. Scientific Reports, 7, 5602.
Xu B, Yang Z. 2013. PAMLX: A graphical user interface for PAML. Molecular Biology and Evolution, 30, 2723–2724.
Yang B, Cui L L, Perez-Enciso M, Traspov A, Crooijmans R P M A, Zinovieva N, Schook L B, Archibald A, Gatphayak K, Knorr C, Triantafyllidis A, Alexandri P, Semiadi G, Hanotte O, Dias D, Dovc P, Uimari P, Iacolina L, Scandura M, Groenen M A M. 2017. Genome-wide SNP data unveils the globalization of domesticated pigs. Genetics Selection Evolution, 49, 71.
Yang S L, Zhang H, Mao H M, Yan D W, Lu S X, Lian L S, Zhao G Y, Yan Y L, Deng W D, Shi X W, Han S X, Li S, Wang X J, Gou X. 2011. The local origin of the Tibetan pig and additional insights into the origin of Asian pigs. PLoS ONE, 6, e28215.
Yu G H, Xiang H, Wang J K, Zhao X B. 2013. The phylogenetic status of typical Chinese native pigs: Analyzed by Asian and European pig mitochondrial genome sequences. Journal of Animal Science and Biotechnology, 4, 9.
Yuan J, Flad R K. 2002. Pig domestication in ancient China. Antiquity, 76, 724–732.
Yue X P, Liang Y S, Liang Y L, Li F D. 2016. Comprehensive investigation of nucleotide diverdity in yaks. Animal Genetics, 47, 752–755.
Zhang J X, Jiao T, Zhao S G. 2016. Genetic diversity in the mitochondrial DNA D-loop region of global swine (Sus scrofa) populations. Biochemical and Biophysical Research Communications, 473, 814–820.
Zhang Z G, Li B T, Chen X H, Wang L Y, Zhu H S, Du X K, Li B C, Chen R S, Chen B W, Zhang Z, Zhao S G, Duan C Z, Qian L, Xu S Q, Huang W Y, Xiong Y Z. 1986. Pig Breeds in China. Shanghai Scientific and Technical Publishers, Shanghai. pp. 18–22.
[1] XIE Lei, QIN Jiang-tao, RAO Lin, CUI Deng-shuai, TANG Xi, XIAO Shi-jun, ZHANG Zhi-yan, HUANG Lu-sheng. Effects of carcass weight, sex and breed composition on meat cuts and carcass trait in finishing pigs[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1489-1501.
[2] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[3] GUO Yi, GONG Ying, HE Yong-meng, YANG Bai-gao, ZHANG Wei-yi, CHEN Bo-er, HUANG Yong-fu, ZHAO Yong-ju, ZHANG Dan-ping, MA Yue-hui, CHU Ming-xing, E Guang-xin. Investigation of Mitochondrial DNA genetic diversity and phylogeny of goats worldwide[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1830-1837.
[4] XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long. Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of japonica (oryza sativa L.) in Northeast China[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1539-1550.
[5] LIU Na, CHENG Fang-yun, GUO Xin, ZHONG Yuan. Development and application of microsatellite markers within transcription factors in flare tree peony (Paeonia rockii) based on next-generation and single-molecule long-read RNA-seq[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1832-1848.
[6] May Oo kHINE, brozenká MICHAELA, LIU Yan, Jiban kumar kUNDU, WANG Xi-feng. Molecular diversity of barley yellow dwarf virus-PAV from China and the Czech Republic[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2736-2745.
[7] WU Huai-heng, WAN Peng, HUANG Min-song, LEI Chao-liang. Microsatellites reveal strong genetic structure in the common cutworm, Spodoptera litura[J]. >Journal of Integrative Agriculture, 2019, 18(3): 636-643.
[8] YANG Hai-long, DONG Le, WANG Hui, LIU Chang-lin, LIU Fang, XIE Chuan-xiao. A simple way to visualize detailed phylogenetic tree of huge genomewide SNP data constructed by SNPhylo[J]. >Journal of Integrative Agriculture, 2018, 17(09): 1972-1978.
[9] Engin Yol, Seymus Furat, Hari D Upadhyaya, Bulent Uzun. Characterization of groundnut (Arachis hypogaea L.) collection using quantitative and qualitative traits in the Mediterranean Basin[J]. >Journal of Integrative Agriculture, 2018, 17(01): 63-75.
[10] WANG Bao-hua, Daniel J. Ebbole, WANG Zong-hua. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2746-2760.
[11] WANG Jian, HOU Lu, WANG Ruo-yu, HE Miao-miao, LIU Qing-chang. Genetic diversity and population structure of 288 potato (Solanum tuberosum L.) germplasms revealed by SSR and AFLP markers[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2434-2443.
[12] SHENG Fang, CHEN Shu-ying, TIAN Jia, LI Peng, QIN Xue, WANG Lei, LUO Shu-ping, LI Jiang. Morphological and ISSR molecular markers reveal genetic diversity of wild hawthorns (Crataegus songorica K. Koch.) in Xinjiang, China[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2482-2498.
[13] ZHOU Yu, CHAO Gui-mei, LIU Jia-jia, ZHU Ming-qi, WANG Yang, FENG Bai-li. Genetic diversity of Ustilago hordei in Tibetan areas as revealed by RAPD and SSR[J]. >Journal of Integrative Agriculture, 2016, 15(10): 2299-2308.
[14] Alireza Tarang, Anahita Bakhshizadeh Gashti. The power of microsatellite markers and AFLPs in revealing the genetic diversity of Hashemi aromatic rice from Iran[J]. >Journal of Integrative Agriculture, 2016, 15(06): 1186-1197.
[15] YANG Li-ming, WANG Yi-hao, PENG Yu, MIN Jiang-tao, HANG Su-qin, ZHU Wei-yun. Genomic characterization and antimicrobial susceptibility of bovine intrauterine Escherichia coli and its relationship with postpartum uterine infections[J]. >Journal of Integrative Agriculture, 2016, 15(06): 1345-1354.
No Suggested Reading articles found!