Microsatellites reveal strong genetic structure in the common cutworm, Spodoptera litura
WU Huai-heng1, 2, WAN Peng2, HUANG Min-song2, LEI Chao-liang1
1 Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, P.R.China 2 Key Laboratory of Integrated Pest Management on Crops in Central China, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R.China
The common cutworm, Spodoptera litura (Lepidoptera: Noctuidae), is a voracious agricultural pest. To increase understanding of the migration patterns and genetic diversity of different geographic populations of this species, we analyzed genetic variation in nine microsatellite loci among 576 individuals collected from 17 locations in China and one in Myanmar during 2011–2012. We successfully identified 162 alleles, with an average of 18 alleles per locus and a range of 5 to 34. The mean observed heterozygosity of the 18 populations ranged from 0.18 to 0.98, and the expected heterozygosity ranged from 0.19 to 0.89. For the nine microsatellite markers studied, polymorphism information content ranged from 0.18 to 0.88 (mean=0.64). We found low genetic differentiation among the 18 populations (mean F-statistics (FST)=0.05) and high genetic diversity among individuals. Principle coordinates analysis indicated no significant correlation between geographic and genetic distance (r=0.04). The value of Nm (Nm>4) estimated using coalescent-based methods suggests strong gene flow with migration. The nine microsatellite markers identified in this study will be beneficial for further investigation of migration patterns and genetic diversity in S. litura.
WU Huai-heng, WAN Peng, HUANG Min-song, LEI Chao-liang.
2019.
Microsatellites reveal strong genetic structure in the common cutworm, Spodoptera litura. Journal of Integrative Agriculture, 18(3): 636-643.
Behura S K. 2006. Molecular marker systems in insects: Current trends and future avenues. Molecular Ecology, 15, 3087–3113.
Botstein D, White R L, Skolnick M, Davis R W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 314–331.
Dhir B C, Mohapatra H K, Senapati B. 1992. Assessment of crop loss in groundnut due to tobacco caterpillar, Spodoptera litura (F.). Indian Journal of Plant Protection, 20, 215–217.
Ellis S E. 2004. New pest response guidelines: Spodoptera. [2012-08-01]. http://www.aphis.usda.gov/import_export/plants/manuals/emergency/downloads/nprg-spodoptera.pdf
Excoffier L, Laval G, Schneider S. 2005. Arlequin version 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.
Excoffier L, Smouse P E, Quattro J M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.
Feingold S, Lloyd J, Norero N, Bonierbale M, Lorenzen J. 2005. Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.). Theoretical and Applied Genetics, 111, 456–466.
Felsenstein J. 1993. PHYLIP (Phylogeny Inference Package). Version 3.5. University of Washington, Seattle.
Fisher R A. 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford.
Guo S W, Thompson E A. 1992. Performing the exact test of Hardy-Weinberg proposition for multiple alleles. Biometrics, 48, 361–372.
Hinomoto N, Takafuji A. 1995. Genetic changes in the population structure of the two-spotted mite, Tetranychus urticae Koch (Acari: Tetranychidae), on vinyl-house strawberries. Applied Entomology and Zoology, 30, 521–528.
Hoshizaki S. 1997. Allozyme polymorphism and geographic variation in the small brown planthopper, Laodelphax striatellus (Homoptera: Delphacidae). Biochemical Genetics, 35, 383–393.
Li M, Qi X H. 2006. Genomic progress on microsatellites of eukaryotes. Journal of Tianjin Agriculture University, 13, 47–51. (in Chinese)
Lian C L, Abdul W M, Geng Q, Shimatani K, Hogetsu T. 2006. An improved technique for isolating codominant compound microsatellite markers. Journal of Plant Research, 119, 415–417.
Marth G T, Korf I, Yandell M D, Yeh R T, Gu Z, Zakeri H, Stitziel N O, Hillier L, Kwork P Y, Gish W R. 1999. A general approach to single-nucleotide polymorphism discovery. Nature Genetics, 23, 452–456.
Mateescu R G, Zhang Z, Tsai K, Phavaphutanon J, Burton-Wurster N I, Lust G, Quaas R, Murphy K, Acland G M, Todhunter R J. 2005. Analysis of allele fidelity, polymorphic information content, and density of microsatellites in a genome-wide screening for hip dysplasia in a crossbreed pedigree. Journal of Heredity, 96, 847–853.
Murata M, Etoh T, Itoyama K, Tojo S. 1998. Sudden occurrence of the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae) in southern Japan during the typhoon season. Applied Entomology and Zoology, 33, 419–427.
Navajas M, Perrot-Minnot J, Lagnel J, Migeon A, Bourse T, Cornuet J M. 2002. Genetic structure of a greenhouse population of the spider mite Tetranychus urticae: spatio-temporal analysis with microsatellite markers. Insect Molecular Biology, 11, 157–165.
Van Oosterhout C, Hutchinson W F, Wills D P M, Shipley P. 2004. Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4, 535–538.
Page R D M. 1996. TreeView: An application to display phylogenetic trees on personal computers. Bioinformatics, 12, 357–358.
Pérez F, Ortiz J, Zhinaula M, Gonzabay C, Calderón J, Volckaert F. 2005. Development of EST-SSR markers by data mining in three species of shrimp: Litopenaeus vannamei, Litopenaeus stylirostris, and Trachypenaeus birdy. Marine Biotechnology, 7, 554–569.
Powell W, Machray G C, Provan J. 1996. Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1, 215–222.
Rice W R. 1989. Analyzing table of statistical tests. Evolution, 43, 223–225.
Shete S, Tiwari H, Elston R C. 2000. On estimating the heterozygosity and polymorphism information content value. Theoretical Population Biology, 57, 265–271.
Tautz D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 17, 6463.
Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. 2001. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Research, 11, 1441–1452.
Weir B S, Cockerham C C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.
Weng Y, Azhaguvel P, Michels Jr G J, Rudd J C. 2007. Cross-species transferability of microsatellite markers from six aphid (Hemiptera: Aphididae) species and their use for evaluating biotypic diversity in two cereal aphids. Insect Molecular Biology, 16, 613–622.
Zane L, Bargelloni L, Patarnello T. 2002. Strategies for microsatellite isolation: A review. Molecular Ecology, 11, 1–16.