Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (3): 636-643    DOI: 10.1016/S2095-3119(18)61989-6
Special Issue: 昆虫生防和生态合辑Insect Biocontrol and Ecology
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Microsatellites reveal strong genetic structure in the common cutworm, Spodoptera litura
WU Huai-heng1, 2, WAN Peng2, HUANG Min-song2, LEI Chao-liang1 
1 Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, P.R.China
2 Key Laboratory of Integrated Pest Management on Crops in Central China, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R.China
Download:  PDF (285KB) ( )  
Export:  BibTeX | EndNote (RIS)      
The common cutworm, Spodoptera litura (Lepidoptera: Noctuidae), is a voracious agricultural pest.  To increase understanding of the migration patterns and genetic diversity of different geographic populations of this species, we analyzed genetic variation in nine microsatellite loci among 576 individuals collected from 17 locations in China and one in Myanmar during 2011–2012.  We successfully identified 162 alleles, with an average of 18 alleles per locus and a range of 5 to 34.  The mean observed heterozygosity of the 18 populations ranged from 0.18 to 0.98, and the expected heterozygosity ranged from 0.19 to 0.89.  For the nine microsatellite markers studied, polymorphism information content ranged from 0.18 to 0.88 (mean=0.64).  We found low genetic differentiation among the 18 populations (mean F-statistics (FST)=0.05) and high genetic diversity among individuals.  Principle coordinates analysis indicated no significant correlation between geographic and genetic distance (r=0.04).  The value of  Nm (Nm>4)  estimated using coalescent-based methods suggests strong gene flow with migration.  The nine microsatellite markers identified in this study will be beneficial for further investigation of migration patterns and genetic diversity in S. litura.
Keywords:  Spodoptera litura        microsatellite        genetic diversity  
Received: 21 December 2017   Accepted:
Fund: The work was funded by the Youth Foundation of Hubei Academy of Agricultural Sciences, China (2016NKYJJ11).
Corresponding Authors:  Correspondence LEI Chao-liang, E-mail:   

Cite this article: 

WU Huai-heng, WAN Peng, HUANG Min-song, LEI Chao-liang. 2019. Microsatellites reveal strong genetic structure in the common cutworm, Spodoptera litura. Journal of Integrative Agriculture, 18(3): 636-643.

Behura S K. 2006. Molecular marker systems in insects: Current trends and future avenues. Molecular Ecology, 15, 3087–3113.
Botstein D, White R L, Skolnick M, Davis R W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 314–331.
Dhir B C, Mohapatra H K, Senapati B. 1992. Assessment of crop loss in groundnut due to tobacco caterpillar, Spodoptera litura (F.). Indian Journal of Plant Protection, 20, 215–217.
Ellis S E. 2004. New pest response guidelines: Spodoptera.  [2012-08-01].
Excoffier L, Laval G, Schneider S. 2005. Arlequin version 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.
Excoffier L, Smouse P E, Quattro J M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.
Feingold S, Lloyd J, Norero N, Bonierbale M, Lorenzen J. 2005. Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.). Theoretical and Applied Genetics, 111, 456–466.
Felsenstein J. 1993. PHYLIP (Phylogeny Inference Package). Version 3.5.  University of Washington, Seattle.
Fisher R A. 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford.
Guo S W, Thompson E A. 1992. Performing the exact test of Hardy-Weinberg proposition for multiple alleles. Biometrics, 48, 361–372.
Hinomoto N, Takafuji A. 1995. Genetic changes in the population structure of the two-spotted mite, Tetranychus urticae Koch (Acari: Tetranychidae), on vinyl-house strawberries. Applied Entomology and Zoology, 30, 521–528.
Hoshizaki S. 1997. Allozyme polymorphism and geographic variation in the small brown planthopper, Laodelphax striatellus (Homoptera: Delphacidae). Biochemical  Genetics, 35, 383–393.
Li M, Qi X H. 2006. Genomic progress on microsatellites of eukaryotes. Journal of Tianjin Agriculture University, 13, 47–51. (in Chinese)
Lian C L, Abdul W M, Geng Q, Shimatani K, Hogetsu T. 2006. An improved technique for isolating codominant compound microsatellite markers. Journal of Plant Research, 119, 415–417.
Marth G T, Korf I, Yandell M D, Yeh R T, Gu Z, Zakeri H, Stitziel N O, Hillier L, Kwork P Y, Gish W R. 1999. A general approach to single-nucleotide polymorphism discovery. Nature Genetics, 23, 452–456.
Mateescu R G, Zhang Z, Tsai K, Phavaphutanon J, Burton-Wurster N I, Lust G, Quaas R, Murphy K, Acland G M, Todhunter R J. 2005. Analysis of allele fidelity, polymorphic information content, and density of microsatellites in a genome-wide screening for hip dysplasia in a crossbreed pedigree. Journal of Heredity, 96, 847–853.
Murata M, Etoh T, Itoyama K, Tojo S. 1998. Sudden occurrence of the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae) in southern Japan during the typhoon season. Applied Entomology and Zoology, 33, 419–427.
Navajas M, Perrot-Minnot J, Lagnel J, Migeon A, Bourse T, Cornuet J M. 2002. Genetic structure of a greenhouse population of the spider mite Tetranychus urticae: spatio-temporal analysis with microsatellite markers. Insect Molecular Biology, 11, 157–165.
Van Oosterhout C, Hutchinson W F, Wills D P M, Shipley P. 2004. Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4, 535–538.
Page R D M. 1996. TreeView: An application to display phylogenetic trees on personal computers. Bioinformatics, 12, 357–358.
Pérez F, Ortiz J, Zhinaula M, Gonzabay C, Calderón J, Volckaert F. 2005. Development of EST-SSR markers by data mining in three species of shrimp: Litopenaeus vannamei, Litopenaeus stylirostris, and Trachypenaeus birdy. Marine Biotechnology, 7, 554–569.
Powell W, Machray G C, Provan J. 1996. Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1, 215–222.
Rice W R. 1989. Analyzing table of statistical tests. Evolution, 43, 223–225.
Shete S, Tiwari H, Elston R C. 2000. On estimating the heterozygosity and polymorphism information content value. Theoretical Population Biology, 57, 265–271.
Tautz D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Research, 17, 6463.
Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. 2001. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Research, 11, 1441–1452.
Weir B S, Cockerham C C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.
Weng Y, Azhaguvel P, Michels Jr G J, Rudd J C. 2007. Cross-species transferability of microsatellite markers from six aphid (Hemiptera: Aphididae) species and their use for evaluating biotypic diversity in two cereal aphids. Insect Molecular Biology, 16, 613–622.
Zane L, Bargelloni L, Patarnello T. 2002. Strategies for microsatellite isolation: A review. Molecular Ecology, 11, 1–16.
[1] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[2] GUO Yi, GONG Ying, HE Yong-meng, YANG Bai-gao, ZHANG Wei-yi, CHEN Bo-er, HUANG Yong-fu, ZHAO Yong-ju, ZHANG Dan-ping, MA Yue-hui, CHU Ming-xing, E Guang-xin. Investigation of Mitochondrial DNA genetic diversity and phylogeny of goats worldwide[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1830-1837.
[3] XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long. Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of japonica (oryza sativa L.) in Northeast China[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1539-1550.
[4] LIU Na, CHENG Fang-yun, GUO Xin, ZHONG Yuan. Development and application of microsatellite markers within transcription factors in flare tree peony (Paeonia rockii) based on next-generation and single-molecule long-read RNA-seq[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1832-1848.
[5] May Oo kHINE, brozenká MICHAELA, LIU Yan, Jiban kumar kUNDU, WANG Xi-feng. Molecular diversity of barley yellow dwarf virus-PAV from China and the Czech Republic[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2736-2745.
[6] WANG Chen, CHEN Yao-sheng, HAN Jian-lin, MO De-lin, LI Xiu-jin, LIU Xiao-hong. Mitochondrial DNA diversity and origin of indigenous pigs in South China and their contribution to western modern pig breeds[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2338-2350.
[7] YANG Hai-long, DONG Le, WANG Hui, LIU Chang-lin, LIU Fang, XIE Chuan-xiao. A simple way to visualize detailed phylogenetic tree of huge genomewide SNP data constructed by SNPhylo[J]. >Journal of Integrative Agriculture, 2018, 17(09): 1972-1978.
[8] Engin Yol, Seymus Furat, Hari D Upadhyaya, Bulent Uzun. Characterization of groundnut (Arachis hypogaea L.) collection using quantitative and qualitative traits in the Mediterranean Basin[J]. >Journal of Integrative Agriculture, 2018, 17(01): 63-75.
[9] WANG Bao-hua, Daniel J. Ebbole, WANG Zong-hua. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2746-2760.
[10] WANG Jian, HOU Lu, WANG Ruo-yu, HE Miao-miao, LIU Qing-chang. Genetic diversity and population structure of 288 potato (Solanum tuberosum L.) germplasms revealed by SSR and AFLP markers[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2434-2443.
[11] SHENG Fang, CHEN Shu-ying, TIAN Jia, LI Peng, QIN Xue, WANG Lei, LUO Shu-ping, LI Jiang. Morphological and ISSR molecular markers reveal genetic diversity of wild hawthorns (Crataegus songorica K. Koch.) in Xinjiang, China[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2482-2498.
[12] ZHOU Yu, CHAO Gui-mei, LIU Jia-jia, ZHU Ming-qi, WANG Yang, FENG Bai-li. Genetic diversity of Ustilago hordei in Tibetan areas as revealed by RAPD and SSR[J]. >Journal of Integrative Agriculture, 2016, 15(10): 2299-2308.
[13] Alireza Tarang, Anahita Bakhshizadeh Gashti. The power of microsatellite markers and AFLPs in revealing the genetic diversity of Hashemi aromatic rice from Iran[J]. >Journal of Integrative Agriculture, 2016, 15(06): 1186-1197.
[14] YANG Li-ming, WANG Yi-hao, PENG Yu, MIN Jiang-tao, HANG Su-qin, ZHU Wei-yun. Genomic characterization and antimicrobial susceptibility of bovine intrauterine Escherichia coli and its relationship with postpartum uterine infections[J]. >Journal of Integrative Agriculture, 2016, 15(06): 1345-1354.
No Suggested Reading articles found!