Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (6): 1830-1837    DOI: 10.1016/S2095-3119(21)63882-0
Special Issue: 动物科学合辑Animal Science
Short Communication Advanced Online Publication | Current Issue | Archive | Adv Search |
Investigation of Mitochondrial DNA genetic diversity and phylogeny of goats worldwide

GUO Yi1*, GONG Ying1*, HE Yong-meng1, YANG Bai-gao1, ZHANG Wei-yi1, CHEN Bo-er2, HUANG Yong-fu1, ZHAO Yong-ju1ZHANG Dan-ping3, MA Yue-hui4, CHU Ming-xing4, E Guang-xin1

1 College of Animal Science and Technology, Southwest University, Chongqing 400715, P.R.China
2 Chongqing Agriculture and Rural Affairs Committee of Tongnan, Chongqing 402660, P.R.China
3 Dazhou Animal Husbandry Technology Extension Station, Dazhou 635299, P.R.China
4 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China


Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本研究利用已公布的4165个来自于全世界196个品种的山羊线粒体D_Loop序列,进行核苷酸多样性、单倍型构建、单倍型多样性、群体系统发育学研究、中性检验及群体遗传距离等一系列遗传参数进行评估。在全部个体的401 bp片段长度的D_Loop区域内共鉴定得到301个多态位点,总体核苷酸多样性为0.03471;构建获得并构建2409个D_Loop单倍型,单倍型平均多样性为0.9983。系统发育分析表明,98.92%的单倍型被聚类为已知的6个山羊线粒体D_loop单倍型簇,其中单倍型A所占比例最大(86%),D_Loop单倍型B簇在中国山羊中出现频率最高。中国西南地区山羊群体中发现了两个未知的D_Loop单倍型簇(Unknown I和Unknown II)。分子方差分析(AMOVA)和群体间成对差异(PiXY)研究结果表明,不同品种家养山羊间群体变异较小,群体遗传分化与地理分布不完全一致,表明群体间广泛存在遗传物质交流。中性检验(Tajima‘D和Fu’Fs检验)和错配分布研究结果表明,单倍型簇B、C和G存在群体扩张历史。较其他野羊,Capra aegagrus与家养山羊系统发育关系最为密切,并可能贡献于山羊A、B、C和F单倍群簇的驯化起源。本研究表明线粒体D_Loop单倍型B簇可能起源于中国或在山羊驯化早期已迁至中国,在中国西南地区山羊群体中两个未知的D_Loop单倍型簇的发现表明中国西南地区可能具有独特的山羊母系背景或驯化历史;Capra aegagrus是最可能的家养山羊野生祖先,并可能贡献于山羊A、B、C和F单倍群簇的驯化起源。本研究利用大样本量全世界山羊线粒体D_Loop序列数据集分析有助于更好的理解世界范围内山羊母系驯化起源及基因流动的历史变化,为进一步明确世界山羊群体迁徙的演变历史及种群系统发育定位提供了宝贵的理论依据。




Abstract  Genetic diversity, population structure, and population expansion of goats worldwide (4 165 individuals from 196 breeds) were analyzed using published mitochondrial DNA (mtDNA) D_loop hypervariable region sequences. Results showed that 2 409 haplotypes and 301 polymorphic sites were present within the 401-bp length D_loop region, the nucleotide diversity (Pi) was 0.03471, and the haplotype diversity (Hd) was 0.9983. Phylogenetic analysis revealed that 98.92% of haplotypes were divided into six obvious clusters, consistent with the classification of the known mitochondrial haplogroups of goats. Haplogroup A accounted for the largest proportion (86%). Interestingly, two unknown divisions (Unknown I and Unknown II) were discovered from goats in Southwest China, suggesting that Southwest China has unique maternal haplogroups. Analysis of molecular variance (AMOVA) and the average number of pairwise differences between populations (PiXY) indicated that geographical variation was small but significant. Neutrality tests (Tajima’s D and Fu’s FS tests) and mismatch distribution showed that haplogroups B, C, and G had expansion histories. In addition, the phylogenetic relationship between domestic and wild goats suggested that Capra aegagrus is the most likely wild ancestor and may have participated in the domestication of ancestral populations of A, B, C, and F haplogroups. A meta-analysis on the mtDNA sequences of goats from international databases was conducted to analyze goats’ genetic diversity, population structure, and matrilineal system evolution worldwide. The results may help further understand the domestication history and gene flow of goats worldwide.
Keywords:  mitochondrial DNA        genetic diversity        population structure        population expansion        phylogeny  
Received: 26 February 2021   Accepted: 21 December 2021
Fund: 

This research was funded by the Chongqing Natural Science Foundation (cstc2021jcyj-msxmX0013) and National Natural Science Foundation of China (31172195).

About author:  GUO Yi, E-mail: 3466813215@qq.com; GONG Ying, E-mail: 3480766351@qq.com; Correspondence E Guang-xin, Tel: +86-23-68250205, Fax: +86-23-68251192, E-mail: eguangxin@126.com * These authors contributed equally to this study.

Cite this article: 

GUO Yi, GONG Ying, HE Yong-meng, YANG Bai-gao, ZHANG Wei-yi, CHEN Bo-er, HUANG Yong-fu, ZHAO Yong-ju, ZHANG Dan-ping, MA Yue-hui, CHU Ming-xing, E Guang-xin. 2022. Investigation of Mitochondrial DNA genetic diversity and phylogeny of goats worldwide. Journal of Integrative Agriculture, 21(6): 1830-1837.

Ahmed S, Grobler P, Madisha T, Kotze A. 2017. Mitochondrial D-loop sequences reveal a mixture of endemism and immigration in Egyptian goat populations. Mitochondrial DNA (Part A, DNA Mapping, Sequencing, and Analysis), 8, 711–716. 
Al-Araimi N A, Gaafar O M, Costa V, Neira A L, Al-Atiyat R M, Beja-Pereira A. 2017. Genetic origin of goat populations in Oman revealed by mitochondrial DNA analysis. PLoS ONE, 12, e0190235. 
Bruford M W, Bradley D G, Luikart G. 2003. DNA markers reveal the complexity of livestock domestication. Nature Reviews Genetics, 4, 900–910. 
Cai Y, Fu W, Cai D, Heller R, Zheng Z, Wen J, Li H, Wang X, Alshawi A, Sun Z, Zhu S, Wang J, Yang M, Hu S, Li Y, Yang Z, Gong M, Hou Y, Lan T, Wu K, et al. 2020. Ancient genomes reveal the evolutionary history and origin of cashmere-producing goats in China. Molecular Biology and Evolution, 37, 2099–2109. 
Chen S Y, Su Y H, Wu S F, Sha T, Zhang Y P. 2005. Mitochondrial diversity and phylogeographic structure of Chinese domestic goats. Molecular Phylogenetics and Evolution, 37, 804–814. 
Colli L, Lancioni H, Cardinali I, Olivieri A, Capodiferro M R, Pellecchia M, Rzepus M, Zamani W, Naderi S, Gandini F, Vahidi S M, Agha S, Randi E, Battaglia V, Sardina M T, Portolano B, Rezaei H R, Lymberakis P, Boyer F, Coissac E, et al. 2015. Whole mitochondrial genomes unveil the impact of domestication on goat matrilineal variability. BMC Genomics, 16, 1115. 
Deng J, Feng J, Li L, Zhong T, Wang L, Guo J, Ba G, Song T, Zhang H. 2018. Polymorphisms, differentiation, and phylogeny of 10 Tibetan goat populations inferred from mitochondrial D-loop sequences. Mitochondrial DNA (Part A: DNA Mapping, Sequencing, and Analysis), 29, 439–445. 
Drummond J, Rambaut A, Shapiro B, Pybus O G. 2005. Bayesian coalescent inference of past 484 population dynamics from molecular sequences. Molecular Biology and Evolution, 22, 1185–1192.
E G X, Hong Q H, Zhao Y J, Ma Y H, Chu M X, Zhu L, Huang Y F. 2019. Genetic diversity estimation of Yunnan indigenous goat breeds using microsatellite markers. Evolutionary Ecology, 9, 5916–5924. 
E G X, Zhao Y J, Chen L P, Ma Y H, Chu M X, Li X L, Hong Q H, Li L H, Guo J J, Zhu L, Han Y G, Gao H J, Zhang J H, Jiang H Z, Jiang C D, Wang G F, Ren H X, Jin M L, Sun Y Z, Zhou P, et al. 2018. Genetic diversity of the Chinese goat in the littoral zone of the Yangtze River as assessed by microsatellite and mtDNA. Ecology and Evolution, 8, 5111–5123.
Fantazi K, Migliore S, Kdidi S, Racinaro L, Tefiel H, Boukhari R, Federico G, Lo Presti V D, Gaouar S B S, Vitale M. 2018. Analysis of differences in prion protein gene (PRNP) polymorphisms between Algerian and Southern Italy’s goats. International Journal of Agriculture Sciences, 17, 578–585. 
Fu Y X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925.
Ghernouti N, Bodinier N, Ranebi M, Maftah D, Petit D, Gaouar S B S. 2017. Control region of mtDNA identifies three migration events of sheep breeds in Algeria. Small Ruminant Research, 155, 66–71.
Guo H W, Li C, Wang X N. 2017. Genetic diversity of mtDNA D-loop sequences in four native Chinese chicken breeds. British Poultry Science, 58, 490–497. 
Hammer S E, Schwammer H M, Suchentrunk F. 2008. Evidence for introgressive hybridization of captive markhor (Capra falconeri) with domestic goat: Cautions for reintroduction. Biochemical Genetics, 46, 216–226. 
Huang Y F, Chen L P, Zhao Y J, Zhang H, Na R S, Zhao Z Q, Zhang J H, Jiang C D, Ma Y H, Sun Y W, E G X. 2016. Complete mitochondrial genome of Chuanzhong black goat in southwest of China (Capra hircus). Mitochondrial DNA (Part A: DNA Mapping, Sequencing, and Analysis), 27, 3063–3064. 
Joshi M B, Rout P K, Mandal A K, Tyler-Smith C, Singh L, Thangaraj K. 2004. Phylogeography and origin of Indian domestic goats. Molecular Biology and Evolution, 21, 454–462. 
Ju Y, Liu H, He J, Wang L, Xu J, Liu H, Dong Y, Zhang R, Zhao P, Xing X. 2020. Genetic diversity of Aoluguya Reindeer based on D-loop region of mtDNA and its conservation implications. Gene, 733, 144271. 
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. 
Li M, Jin L, Ma J, Tian S, Li R, Li X. 2016. Detecting mitochondrial signatures of selection in wild Tibetan pigs and domesticated pigs. Mitochondrial DNA (Part A: DNA Mapping, Sequencing, and Analysis), 27, 747–752. 
Liu R Y, Xia X L, Lei C Z, Zhang M Z, Chen H, Yang G S. 2006a. Genetic diversity of mitochondrial DNA D-loop sequences in cattle breeds in Guizhou. Hereditas (Beijing), 28, 279–284. (in Chinese)
Liu R Y, Yang G S, Lei C C. 2006b. The genetic diversity of mtDNA D-loop and the origin of Chinese goat. Acta Genetica Sinica, 33, 420–428. 
Luikart G, Gielly L, Excoffier L, Vigne J D, Bouvet J, Taberlet P. 2001. Multiple maternal origins and weak phylogeographic structure in domestic goats. Proceedings of the National Academy of Sciences of the United States of America, 98, 5927–5932. 
Naderi S, Rezaei H R, Pompanon F, Blum M G, Negrini R, Naghash H R, Balkiz O, Mashkour M, Gaggiotti O E, Ajmone-Marsan P, Kence A, Vigne J D, Taberlet P. 2008. The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals. Proceedings of the National Academy of Sciences of the United States of America, 105, 17659–17664.
Naderi S, Rezaei H R, Taberlet P, Zundel S, Rafat S A, Naghash H R, el-Barody M A, Ertugrul O, Pompanon F, Econogene C. 2007. Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity. PLoS ONE, 10, 1–12. 
Nei M, Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.
Nei M, Li W H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76, 5269–5273. 
Rogers A R, Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552–569.
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio J C, Guirao-Rico S, Librado P, Ramos-Onsins S E, Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34, 3299–3302. 
Sardina M T, Ballester M, Marmi J, Finocchiaro R, van Kaam J B, Portolano B, Folch J M. 2006. Phylogenetic analysis of Sicilian goats reveals a new mtDNA lineage. Animal Genetics, 37, 376–378. 
Schneider S, Excoffier L, Laval G. 2010. Arlequin (version 3.5.1.2): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50. 
Sharma R, Kishore A, Mukesh M, Ahlawat S, Maitra A, Pandey A K, Tantia M S. 2015. Genetic diversity and relationship of Indian cattle inferred from microsatellite and mitochondrial DNA markers. BMC Genetics, 16, 73. 
Slatkin M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457–462.
Sultana S, Mannen H, Tsuji S. 2003. Mitochondrial DNA diversity of Pakistani goats. Animal Genetics, 34, 417–421. 
Tabata R, Kawaguchi F, Sasazaki S, Yamamoto Y, Rakotondraparany F, Ratsoavina F M, Yonezawa T, Mannen H. 2019. Phylogeographic analysis of madagascan goats using mtDNA control region and SRY gene sequences. Zoological Science, 36, 294–298.
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595.
Tarekegn G M, Tesfaye K, Mwai O A, Djikeng A, Dessie T, Birungi J, Osama S, Zergaw N, Alemu A, Achieng G, Tutah J, Mutai C, Njuguna J, Mwacharo J M. 2018. Mitochondrial DNA variation reveals maternal origins and demographic dynamics of Ethiopian indigenous goats. Ecology and Evolution, 8, 1543–1553. 
Tefiel H, Ata N, Chahbar M, Benyarou M, Fantazi K, Yilmaz O, Cemal I, Karaca O, Boudouma D, Gaouar S B S. 2018. Genetic characterization of four Algerian goat breeds assessed by microsatellite markers. Small Ruminant Research, 160, 65–71.
Wu Y P, Guan W J, Zhao Q J, He X H, Pu Y B, Huo J H, Xie J F, Han J L, Rao S Q, Ma Y H. 2009. A fine map for maternal lineage analysis by mitochondrial hypervariable region in 12 Chinese goat breeds. Animal Science Journal, 80, 372–380. 
Zeder M, Hesse B. 2000. The initial domestication of goats (Capra hircus) in the Zagros Mountains 10 000 years ago. Science, 287, 2254–2257. 
Zhang J, Jiao T, Zhao S. 2016. Genetic diversity in the mitochondrial DNA D-loop region of global swine (Sus scrofa) populations. Biochemical and Biophysical Research Communications, 473, 814–820. 
Zhang L C, Liu Y Q, Duan C H, Wang Y, Guo H X. 2020. Genetic diversity and genetic structure analysis of 7 local goat breeds. Biotechnology Bulletin, 36, 1–8. (in Chinese)
Zheng Z, Wang X, Li M, Li Y, Yang Z, Wang X, Pan X, Gong M, Zhang Y, Guo Y, Wang Y, Liu J, Cai Y, Chen Q, Okpeku M, Colli L, Cai D, Wang K, Huang S, Sonstegard T S, et al. 2020. The origin of domestication genes in goats. Science Advances, 6, 1–13. 
[1] NI Chun-hui, HAN Bian, LIU Yong-gang, Maria MUNAWAR, LIU Shi-ming, LI Wen-hao, SHI Ming-ming, LI Hui-xia, PENG De-liang.

Diagnosis and characterization of the ribosomal DNA-ITS of potato rot nematode (Ditylenchus destructor) populations from Chinese medicinal herbs [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1763-1781.

[2] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[3] XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long. Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of japonica (oryza sativa L.) in Northeast China[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1539-1550.
[4] LIU Na, CHENG Fang-yun, GUO Xin, ZHONG Yuan. Development and application of microsatellite markers within transcription factors in flare tree peony (Paeonia rockii) based on next-generation and single-molecule long-read RNA-seq[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1832-1848.
[5] NIE Xing-hua, WANG Ze-hua, LIU Ning-wei, SONG Li, YAN Bo-qian, XING Yu, ZHANG Qing, FANG Ke-feng, ZHAO Yong-lian, CHEN Xin, WANG Guang-peng, QIN Ling, CAO Qing-qin. Fingerprinting 146 Chinese chestnut (Castanea mollissima Blume) accessions and selecting a core collection using SSR markers[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1277-1286.
[6] DIAO Shu-qi, XU Zhi-ting, YE Shao-pan, HUANG Shu-wen, TENG Jin-yan, YUAN Xiao-long, CHEN Zan-mou, ZHANG Hao, LI Jia-qi, ZHANG Zhe. Exploring the genetic features and signatures of selection in South China indigenous pigs[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1359-1371.
[7] May Oo kHINE, brozenká MICHAELA, LIU Yan, Jiban kumar kUNDU, WANG Xi-feng. Molecular diversity of barley yellow dwarf virus-PAV from China and the Czech Republic[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2736-2745.
[8] WU Huai-heng, WAN Peng, HUANG Min-song, LEI Chao-liang. Microsatellites reveal strong genetic structure in the common cutworm, Spodoptera litura[J]. >Journal of Integrative Agriculture, 2019, 18(3): 636-643.
[9] WANG Chen, CHEN Yao-sheng, HAN Jian-lin, MO De-lin, LI Xiu-jin, LIU Xiao-hong. Mitochondrial DNA diversity and origin of indigenous pigs in South China and their contribution to western modern pig breeds[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2338-2350.
[10] YANG Hai-long, DONG Le, WANG Hui, LIU Chang-lin, LIU Fang, XIE Chuan-xiao. A simple way to visualize detailed phylogenetic tree of huge genomewide SNP data constructed by SNPhylo[J]. >Journal of Integrative Agriculture, 2018, 17(09): 1972-1978.
[11] HAN Yi-juan, ZHONG Zhen-hui, SONG Lin-lin, Olsson Stefan, WANG Zong-hua, LU Guo-dong. Evolutionary analysis of plant jacalin-related lectins (JRLs) family and expression of rice JRLs in response to Magnaporthe oryzae[J]. >Journal of Integrative Agriculture, 2018, 17(06): 1252-1267.
[12] Engin Yol, Seymus Furat, Hari D Upadhyaya, Bulent Uzun. Characterization of groundnut (Arachis hypogaea L.) collection using quantitative and qualitative traits in the Mediterranean Basin[J]. >Journal of Integrative Agriculture, 2018, 17(01): 63-75.
[13] WANG Bao-hua, Daniel J. Ebbole, WANG Zong-hua. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2746-2760.
[14] WANG Jian, HOU Lu, WANG Ruo-yu, HE Miao-miao, LIU Qing-chang. Genetic diversity and population structure of 288 potato (Solanum tuberosum L.) germplasms revealed by SSR and AFLP markers[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2434-2443.
[15] SHENG Fang, CHEN Shu-ying, TIAN Jia, LI Peng, QIN Xue, WANG Lei, LUO Shu-ping, LI Jiang. Morphological and ISSR molecular markers reveal genetic diversity of wild hawthorns (Crataegus songorica K. Koch.) in Xinjiang, China[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2482-2498.
No Suggested Reading articles found!