Please wait a minute...
Journal of Integrative Agriculture  2014, Vol. 13 Issue (8): 1845-1853    DOI: 10.1016/S2095-3119(13)60668-1
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Molecular Diversity and Association Analysis of Drought and Salt Tolerance in Gossypium hirsutum L. Germplasm
 JIA Yin-hua, SUN Jun-ling, WANG Xi-wen, ZHOU Zhong-li, PAN Zao-e, HE Shou-pu, PANG Bao-yin, WANG Li-ru , DU Xiong-ming
State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Association mapping is a useful tool for the detection of genes selected during plant domestication based on their linkage disequilibrium (LD). This study was carried out to estimate genetic diversity, population structure and the extent of LD to develop an association framework in order to identify genetic variations associated with drought and salt tolerance traits. 106 microsatellite marker primer pairs were used in 323 Gossypium hirsutum germplasms which were grown in the drought shed and salt pond for evaluation. Polymorphism (PIC=0.53) was found, and three groups were detected (K=3) with the second likelihood ΔK using STRUCTURE software. LD decay rates were estimated to be 13-15 cM at r2 0.20. Significant associations between polymorphic markers and drought and salt tolerance traits were observed using the general linear model (GLM) and mixed linear model (MLM) (P 0.01). The results also demonstrated that association mapping within the population structure as well as stratification existing in cotton germplasm resources could complement and enhance quantitative trait loci (QTLs) information for marker-assisted selection.

Abstract  Association mapping is a useful tool for the detection of genes selected during plant domestication based on their linkage disequilibrium (LD). This study was carried out to estimate genetic diversity, population structure and the extent of LD to develop an association framework in order to identify genetic variations associated with drought and salt tolerance traits. 106 microsatellite marker primer pairs were used in 323 Gossypium hirsutum germplasms which were grown in the drought shed and salt pond for evaluation. Polymorphism (PIC=0.53) was found, and three groups were detected (K=3) with the second likelihood ΔK using STRUCTURE software. LD decay rates were estimated to be 13-15 cM at r2 0.20. Significant associations between polymorphic markers and drought and salt tolerance traits were observed using the general linear model (GLM) and mixed linear model (MLM) (P 0.01). The results also demonstrated that association mapping within the population structure as well as stratification existing in cotton germplasm resources could complement and enhance quantitative trait loci (QTLs) information for marker-assisted selection.
Keywords:  cotton germplasm       genetic diversity       simple sequence repeats (SSR) markers       linkage disequilibrium (LD)       association analysis  
Received: 26 June 2013   Accepted:
Fund: 

This research was supported by the National Natural Science Foundation of China (31201246) and the Project of International Science and Technology Cooperation and Exchange from the Ministry of Science and Technology, China (2010DFR30620-3).

Corresponding Authors:  DU Xiong-ming, E-mail: dujeffrey8848@hotmail.com     E-mail:  dujeffrey8848@hotmail.com
About author:  JIA Yin-hua, E-mail: jia.yinhua@gmail.com

Cite this article: 

JIA Yin-hua, SUN Jun-ling, WANG Xi-wen, ZHOU Zhong-li, PAN Zao-e, HE Shou-pu, PANG Bao-yin, WANG Li-ru , DU Xiong-ming. 2014. Molecular Diversity and Association Analysis of Drought and Salt Tolerance in Gossypium hirsutum L. Germplasm. Journal of Integrative Agriculture, 13(8): 1845-1853.

Abdurakhmonovn I Y, Kohe R J, Yu J Z, Pepper A E,Abdullaev A A, Kushanov F N, Salakhutdinov I B, BurievZ T, Saha S, Scheffler B E, Jenkins J N, AbdukarimovA. 2008. Molecular diversity and association mapping offiber quality traits in exotic G. hirsutum L. germplasm.Genomics, 92, 478-487

Abdurakhmonov I Y, Saha S, Jenkins J N, Buriev Z T,Shermatov S E, Scheffler B E, Pepper A E, Yu J Z, KohelR Z, Abdukarimov A. 2009. Linkage disequilibrium basedassociation mapping of fiber quality traits in G. hirsutumL. variety germplasm. Genetica, 136, 401-417

Blenda A, Scheffler J, Scheffler B, Palmer M, Lacape J M, YuJ Z, Jesudurai C, Jung S, Muthukumar S, Yellambalase P,Ficklin S, Staton M, Eshelman R, Ulloa M, Saha S, BurrB, Liu S, Zhang T Z, Fang D Q, Pepper A. 2006. CMD:A cotton microsatellite database resource for Gossypiumgenomics. BMC Genomics, 7, 132.

Breseghello F, Sorrells M E. 2006. Association mapping ofkernel size and milling quality in wheat (Triticum aestivumL.) cultivars. Genetics, 172, 1165-1177

Doebley J, Stec A, Hubbard L. 1997. The evolution of apicaldominance in maize. Nature, 386, 485-488

Evanno G, Regnaut S, Goudet J. 2005. Detecting the numberof clusters of individuals using the software structure:A simulation study. Molecular Ecology, 14, 2611-2620

Goldstein D B, Tate S K, Sisodiya S M. 2003. Pharmacogeneticsgoes genomic. Nature Reviews Genetics, 4, 937-947

Hardy O J, Vekemans X. 2002. SpaGeDi: A versatile computerprogramto analyze spatial genetic structure at the individualor population levels. Molecular Ecology Notes, 2, 618-620

Ivandic V, Thomas W T B, Nevo E, Zhang Z, Forster BP. 2003. Associations of simple sequence repeats withquantitative trait variation including biotic and abioticstress tolerance in Hordeum spontaneum. Plant Breeding,122, 300-304

Kantartzi S K, Stewart J M. 2008. Association analysis of fibretraits in Gossypium arboreum accessions. Plant Breeding,127, 173-179

Kohel R J, Yu J, Park Y H, Lazo G R. 2001. Molecular mappingand characterization of traits controlling fiber quality incotton. Euphytica, 121, 163-172

Kraakman A T W, Rients E N, Petra M M, van den B M, StamP, van E F A. 2004. Linkage disequilibrium mapping ofyield and yield stability in modern spring barley cultivars.Genetics, 168, 435-446

Lacape J M, Dessauw D, Rajab M, Noyer J L, Hau B.2007. Microsatellite diversity in tetraploid Gossypiumgermplasm: assembling a highly informative genotypingset of cotton SSRs. Molecular Breeding, 19, 45-58

Lacape J M, Llewellyn D, Jacobs J, Arioli T, Becker D,Calhoun S, Al-Ghazi Y, Liu S, Georges O P S, GibandM, Giband M, de Assuncao H, Barroso P, Claverie M,Gawryziak G, Jean J, Vialle M, Viot C. 2010. Metaanalysisof cotton fiber quality QTLs across diverseenvironments in a Gossypium hirsutum×G. barbadenseRIL population. BMC Plant Biology, 10, 132.

Levi A, Ovnat L, Paterson A H, Saranga Y. 2009a.Photosynthesis of cotton near-isogenic lines introgressedwith QTLs for productivity and drought related traits. PlantScience, 177, 88-96

Levi A, Paterson A H, Barak V, Yakir D, Wang B, Chee P W,Saranga Y. 2009b. Field evaluation of cotton near-isogeniclines introgressed with QTLs for productivity and droughtrelated traits. Molecular Breeding, 23, 179-195

Lilley J M, Ludlow M M, Mccouch S R, O’Toole J C. 1996.Locating QTL for osmotic adjustment and dehydrationtolerance in rice. Journal of Experimental Botany, 47,1427-1436

Liu J, Ye W, Fan B. 1998. Studying and utilization of resistance of cotton in China. China Cotton, 25, 5-6

Liu K, Muse S V. 2005. PowerMarker: An integrated analysisenvironment for genetic marker analysis. Bioinformatics,21, 2128-2129

Ma X X, Ding Y Z, Zhou B L, Guo W Z, Lv Y L, Zhu X F,Zhang T Z. 2008. QTL mapping in A-genome diploidAsiatic cotton and their congruence analysis with ADgenometetraploid cotton in genus Gossypium. Journal ofGenetics and Genomics, 35, 751-762

Mansur L M, Lark K G, Kross H, Oliveira A. 1993. Intervalmapping of quantitative trait loci for reproductive,morphological, and seed traits of soybean (Glycine maxL.). Theoretical and Applied Genetics, 86, 907-913

Muhammad B, Yehoshua S, Zafar I, Muhammad A, Yusuf Z,Edward L, Peng C. 2009. Identification of QTLs and impactof selection from various environments (dry vs. irrigated)on the genetic relationships among the selected cotton linesfrom f6 population using a phylogenetic approach. AfricanJournal of Biotechnology, 8, 4802-4810

Muhammad S, Guo W Z, Ihsan U, Tabbasam N, ZafarY, Rahman M, Zhang T Z. 2011. QTL mapping forphysiology, yield and plant architecture traits in cotton(Gossypium hirsutum L.) grown under well-wateredversus water-stress conditions. Electronic Journal ofBiotechnology, 14, 1-13

Muhammad S, Guo W Z, Zhang T Z. 2014. Associationmapping for salinity tolerance in cotton (Gossypiumhirsutum L.) germplasm from US and diverse regions ofChina. Australian Journal of Crop Science, 8, 338-346

Paterson A H, Smith R H. 1999. Future horizons: Biotechnologyfor cotton improvement. In: Smith C W, Cothren J T, eds.,Cotton: Origin, History, Technology, and Production.John Wiley&Sons, Inc., New York. pp. 415-432

Pritchard J K, Stephens M, Donnelly P. 2000a. Inferenceof population structure using multilocus genotype data.Genetics, 155, 945-959

Pritchard J K, Stephens M, Rosenberg N A, Donnelly P.2000b. Association mapping in structured populations.The American Journal of Human Genetics, 67, 170-181

Pritchard J K, Wen W. 2003. Documentation for StructureSoftware. ver. 2. Department of Human Genetics,University of Chicago, Chicago.

Rong J K, Feltus F A, Waghmare V N, Pierce G J, Chee PW, Draye X, Saranga Y, Wright R J, Wilkins T A, MayO L, Smith C W, Gannaway J R, Wendel J F, Paterson AH. 2007. Meta-analysis of polyploid cotton QTL showsunequal contributions of subgenomes to a complexnetwork of genes and gene clusters implicated in lintfiber development. The Genetics Society of America, 176,2577-2588

Rungis D, Llewellyn D, Dennis E S, Lyon B R. 2005. Simplesequence repeat (SSR) markers reveal low levels ofpolymorphism between cotton (Gossypium hirsutum L.)cultivars. Australian Journal of Agricultural Research,56, 301-307

Sambrook J, Fritsch E F, Maniatis T. 1989. Molecular Cloning,vol. 2. Cold Spring Harbor Laboratory Press, New York.

Saranga Y, Menz M, Jiang C X, Wright R J, Yakir D, PatersonA H. 2001. Genomic dissection of genotype x environmentinteractions conferring adaptation of cotton to aridconditions. Genome Research, 11, 1988-1995

Stich B, Melchinger A E, Frisch M, Maurer H P, HeckenbergerM, Reif J C. 2005. Linkage disequilibrium in Europeanelite maize germplasm investigated with SSRs. Theoreticaland Applied Genetics, 111, 723-730

Thornsberry J M, Goodman M M, Doebley J, Kresovich S,Nielsen D, Buckler E S. 2001. Dwarf8 polymorphismsassociate with variation in flowering time. Nature Genetic,28, 286-289

Tuberrosa R, Sanguineti M C, Landi P, Salvi S, Casarini E,Conti S. 1998. RFLP mapping of quantitative trait locicontrolling abscisic acid concentration in leaves of droughtstressedmaize (Zea mays L.). Theoretical and AppliedGenetics, 97, 744-755

Viviane J D, Ed S B, Bruce D S, Thomas P G, Alan C,Doebley J, Pääbo S. 2003. Early allelic selection in maizeas revealed by ancient DNA. Science, 302, 1206-1208

Wang R L, Stec A, Hey J, Lukens L, Doebley J. 1999. Thelimits of selection during maize domestication. Nature,398, 236-239

Weiss K M, Clark A G. 2002. Linkage disequilibrium and themapping of complex human traits. Trends in Genetics,18, 19-24

Ye W, Liu J. 1998. The method of evaluating the salt stressin cotton and utilization. China Cotton, 25, 34-38

 (inChinese)Zhang H B, Li Y, Wang B, Chee P W. 2008. Recent advances incotton genomics. International Journal of Plant Genomics,2008, 742304.Zhang J, Wu Y T, Guo W Z, Zhang T Z. 2000. Fast screening ofmicrosatellite markers in cotton with PAGE/silver staining.Cotton Science, 12, 267-269 (in Chinese)

Zhang X, Zhen J B, Li Z H, Kang D M, Yang Y M, Kong J,Hua J P. 2011. Expression profile of early responsive genesunder salt stress in upland cotton (Gossypium hirsutum L.).Plant Molecular Biology Reporter, 29, 626-637

Zhang Z S, Hu M H, Zhang J, Liu D J, Zheng J, Zhang K,Wang W, Wan Q. 2009. Construction of a comprehensivePCR-based marker linkage map and QTL mapping for fiberquality traits in upland cotton (Gossypium hirsutum L.).Molecular Breeding, 24, 49-61.
[1] WANG Meng-qi, ZHANG Hong-rui, XI Yu-qiang, WANG Gao-ping, ZHAO Man, ZHANG Li-juan, GUO Xian-ru. Population genetic variation and historical dynamics of the natural enemy insect Propylea japonica (Coleoptera: Coccinellidae) in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2456-2469.
[2] WANG Jie, LEI Qiu-xia, CAO Ding-guo, ZHOU Yan, HAN Hai-xia, LIU Wei, LI Da-peng, LI Fu-wei, LIU Jie. Whole genome SNPs among 8 chicken breeds enable identification of genetic signatures that underlie breed features[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2200-2212.
[3] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[4] GUO Yi, GONG Ying, HE Yong-meng, YANG Bai-gao, ZHANG Wei-yi, CHEN Bo-er, HUANG Yong-fu, ZHAO Yong-ju, ZHANG Dan-ping, MA Yue-hui, CHU Ming-xing, E Guang-xin. Investigation of Mitochondrial DNA genetic diversity and phylogeny of goats worldwide[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1830-1837.
[5] XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long. Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of japonica (oryza sativa L.) in Northeast China[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1539-1550.
[6] WANG Fu-qiang, FAN Xiu-cai, ZHANG Ying, SUN Lei, LIU Chong-huai, JIANG Jian-fu. Establishment and application of an SNP molecular identification system for grape cultivars[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1044-1057.
[7] LIU Na, CHENG Fang-yun, GUO Xin, ZHONG Yuan. Development and application of microsatellite markers within transcription factors in flare tree peony (Paeonia rockii) based on next-generation and single-molecule long-read RNA-seq[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1832-1848.
[8] GAO Yuan, WANG Da-jiang, WANG Kun, CONG Pei-hua, LI Lian-wen, PIAO Ji-cheng. Analysis of genetic diversity and structure across a wide range of germplasm reveals genetic relationships among seventeen species of Malus Mill. native to China [J]. >Journal of Integrative Agriculture, 2021, 20(12): 3186-3198.
[9] LI Yu-dong, WANG Wei-jia, LI Zi-wei, WANG Ning, XIAO Fan, GAO Hai-he, GUO Huai-shun, LI Hui, WANG Shou-zhi. Integration of association and computational methods reveals functional variants of LEPR gene for abdominal fat content in chickens[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2734-2748.
[10] MIAO Li-li, LI Yu-ying, ZHANG Hong-juan, ZHANG Hong-ji, LIU Xiu-lin, WANG Jing-yi, CHANG Xiao-ping, MAO Xin-guo, JING Rui-lian. TaSnRK2.4 is a vital regulator in control of thousand-kernel weight and response to abiotic stress in wheat[J]. >Journal of Integrative Agriculture, 2021, 20(1): 46-54.
[11] HUANG Jun-fang, LI Long, MAO Xin-guo, WANG Jing-yi, LIU Hui-min, LI Chao-nan, JING Rui-lian. dCAPS markers developed for nitrate transporter genes TaNRT2L12s associating with 1 000-grain weight in wheat[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1543-1553.
[12] May Oo kHINE, brozenká MICHAELA, LIU Yan, Jiban kumar kUNDU, WANG Xi-feng. Molecular diversity of barley yellow dwarf virus-PAV from China and the Czech Republic[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2736-2745.
[13] GU Xiao-zhen, CAO Ya-cong, ZHANG Zheng-hai, ZHANG Bao-xi, ZHAO Hong, ZHANG Xiao-min, WANG Hai-ping, LI Xi-xiang, WANG Li-hao. Genetic diversity and population structure analysis of Capsicum germplasm accessions[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1312-1320.
[14] WU Huai-heng, WAN Peng, HUANG Min-song, LEI Chao-liang. Microsatellites reveal strong genetic structure in the common cutworm, Spodoptera litura[J]. >Journal of Integrative Agriculture, 2019, 18(3): 636-643.
[15] WANG Chen, CHEN Yao-sheng, HAN Jian-lin, MO De-lin, LI Xiu-jin, LIU Xiao-hong. Mitochondrial DNA diversity and origin of indigenous pigs in South China and their contribution to western modern pig breeds[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2338-2350.
No Suggested Reading articles found!