Please wait a minute...
Journal of Integrative Agriculture  2014, Vol. 13 Issue (8): 1835-1844    DOI: 10.1016/S2095-3119(13)60655-3
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
QTL Mapping for Important Agronomic Traits in Synthetic Hexaploid Wheat Derived from Aegiliops tauschii ssp. tauschii
 YU Ma, CHEN Guo-yue, ZHANG Lian-quan, LIU Ya-xi, LIU Deng-cai, WANG Ji-rui, PU Zhien, ZHANG Li, LAN Xiu-jin, WEI Yu-ming, LIU Chun-ji , ZHENG You-liang
1、Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R.China
2、School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P.R.China
3、Agronomy College, Sichuan Agricultural University, Chengdu 611130, P.R.China
4、CSIRO Plant Industry, St Lucia, QLD 4067, Australia
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Aegiliops tauschii is classified into two subspecies: Ae. tauschii ssp. tauschii and Ae. tauschii ssp. strangulata. Novel genetic variations exist in Ae. tauschii ssp. tauschii that can be utilized in wheat improvement. We synthesized a hexaploid wheat genotype (SHW-L1) by crossing an Ae. tauschii ssp. tauschii accession (AS60) with a tetraploid wheat genotype (AS2255). A population consisting of 171 F8 recombinant inbred lines was developed from SHW-L1 and Chuanmai 32 to identify QTLs associated with agronomic traits. A new genetic map with high density was constructed and used to detect the QTLs for heading date, kernel width, spike length, spikelet number, and thousand kernel weight. A total of 30 putative QTLs were identified for five investigated traits. Thirteen QTLs were located on D genomes of SHW-L1, six of them showed positive effect on agronomic traits. Chromosome region flanked by wPt-6133–wPt-8134 on 2D carried five environment-independent QTLs. Each QTL accounted for more than 10% phenotypic variance. These QTLs were highly consistent across environments and should be used in wheat breeding.

Abstract  Aegiliops tauschii is classified into two subspecies: Ae. tauschii ssp. tauschii and Ae. tauschii ssp. strangulata. Novel genetic variations exist in Ae. tauschii ssp. tauschii that can be utilized in wheat improvement. We synthesized a hexaploid wheat genotype (SHW-L1) by crossing an Ae. tauschii ssp. tauschii accession (AS60) with a tetraploid wheat genotype (AS2255). A population consisting of 171 F8 recombinant inbred lines was developed from SHW-L1 and Chuanmai 32 to identify QTLs associated with agronomic traits. A new genetic map with high density was constructed and used to detect the QTLs for heading date, kernel width, spike length, spikelet number, and thousand kernel weight. A total of 30 putative QTLs were identified for five investigated traits. Thirteen QTLs were located on D genomes of SHW-L1, six of them showed positive effect on agronomic traits. Chromosome region flanked by wPt-6133–wPt-8134 on 2D carried five environment-independent QTLs. Each QTL accounted for more than 10% phenotypic variance. These QTLs were highly consistent across environments and should be used in wheat breeding.
Keywords:  genetic map       QTL       DArT       agronomic traits       synthetic wheat       Aegilops tauschii ssp. tauschii  
Received: 12 July 2013   Accepted:
Fund: 

This work was supported by the National Natural Science Foundation of China (31171556, 31171555, 31230053), the National High-Tech R&D Program of China (2011AA100103-02) and the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2013BAD01B02-9).

Corresponding Authors:  ZHENG You-liang, Tel: +86-835-2882007, Fax: +86-835-2883153, E-mail: ylzheng@sicau.edu.cn     E-mail:  ylzheng@sicau.edu.cn
About author:  YU Ma, E-mail: yuwen.0073@hotmail.com

Cite this article: 

YU Ma, CHEN Guo-yue, ZHANG Lian-quan, LIU Ya-xi, LIU Deng-cai, WANG Ji-rui, PU Zhien, ZHANG Li, LAN Xiu-jin, WEI Yu-ming, LIU Chun-ji , ZHENG You-liang. 2014. QTL Mapping for Important Agronomic Traits in Synthetic Hexaploid Wheat Derived from Aegiliops tauschii ssp. tauschii. Journal of Integrative Agriculture, 13(8): 1835-1844.

Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S,Uszynski G, Mohler V, Lehmensiek A, KuchelH, HaydenM J, Howes N, Sharp P, Vaughan P, Rathnell B, HuttnerE, Kilian A. 2006. Diversity arrays technology (DArT) forhigh-throughput profiling of the hexaploid wheat genome.Theoretical and Applied Genetics, 113, 1409-1420

Ammiraju J S S, Dholakia B B, Santra D K, Singh H, Lagu MD, Tamhankar S A, Dhaliwal H S, Rao V S, Gupta V S,Ranjekar P K. 2001. Identification of inter simple sequencerepeat (ISSR) markers associated with seed size in wheat.Theoretical and Applied Genetics, 102, 726-732

Beales J, Turner A, Griffiths S, Snape J W, Laurie D A.2007. A Pseudo-Response regulator is misexpressed inthe photoperiod insensitive Ppd-D1a mutant of wheat(Triticum aestivum L.). Theoretical and Applied Genetics,115, 721-733

Bullrich L, Appendino M L, Tranquilli G, Lewis S, DubcovskyJ. 2002. Mapping of a thermo-sensitive earliness perse gene on Trticum monococcum chromosome 1Am.Theoretical and Applied Genetics, 105, 585-593

Cui F, Li J, Ding A M, Zhao C H, Li X F, Feng D S, Wang XQ, Wang L, Wang H G. 2012. QTL detection of internodelength and its component index in wheat using two relatedRIL populations. Cereal Research Communications, 40,373-384

Cui F, Li J, Ding A M, Zhao C H, Wang L, Wang X Q, Li S S,Bao Y G, Li X F, Feng D S, Kong L R, Wang H G. 2011.Conditional QTL mapping for plant height with respectto the length of the spike and internode in two mappingpopulations of wheat. Theoretical and Applied Genetics,122, 1517-1536

Cui F, Zhao C H, Li J, Ding A M, Li X F, Bao Y G, Li J M,Ji J, Wang H G. 2013. Kernel weight per spike: Whatcontributes to it at the individual QTL level? MolecularBreeding, 31, 265-278

Daryl M, Kolumbina M. 2008. Genetic variation for qualitytraits in synthetic wheat germplasm. Australian Journal ofAgricultural Research, 59, 406-412

Ding A M, Li J, Cui F, Zhao C H, Ma H Y, Wang H G. 2011.Mapping QTLs for yield related traits using two associatedRIL populations of wheat. Acta Agronomica Sinica, 37,1511-1524 (in Chinese)

Distelfeld A, Li C, Dubcovsky J. 2009. Regulation of floweringin temperate cereals. Current Opinion in Plant Biology, 12, 178-184

Doerge R W. 2002. Mapping and analysis of quantitativetrait loci in experimental populations. Nature Genetics,3, 43-52

Dubcovsky J, Dvorak J. 2007. Genome plasticity a key factorin the success of polyploid wheat under domestication.Science, 316, 1862-1866

Dudnikov A J, Kawahara T. 2004. Aegilops tauschii: Geneticvariation in Iran. Genetic Resources and Crop Evolution,53, 579-586

Dvorak J, Luo M C, Yang Z L, Zhang H B. 1998. The structureof the Aegilops tauschii genepool and the evolution ofhexaploid wheat. Theoretical and Applied Genetics, 97,657-670

Gegas V C, Nazari A, Griffiths S, Simmonds J, Fish L, OrfordS, Sayers L, Doonan J H, Snape J W. 2010. A geneticframework for grain size and shape variation in wheat.The Plant Cell, 22, 1046-1056

Gororo N N, Flood R G, Eastwood R F, Eagles H A. 2001.Photoperiod and vernalization responses in Triticumturgidum×T. tauschii synthetic hexaploid wheats. Annalsof Botany, 88, 947-952

Huang L, Wang Q, Zhang L Q, Yuan Z W, Wang J R, ZhangH G, Zheng Y L, Liu D C. 2011. Haplotype variations ofgene Ppd-D1 in Aegilops tauschii and their implicationson wheat origin. Genetic Resources and Crop Evolution,59, 1027-1032

Kihara H. 1944. Discovery of the DD-analyser, one of theancestors of vulgare wheat. Agriculture and Horticulture,19, 889-890

Lage J, Skovmand B, Andersen S B. 2003. Expression andsuppression of resistance to greenbug (Homoptera:Aphididae) in synthetic hexaploid wheats derived fromTriticum dicoccum×Aegilops tauschii crosses. Journal ofEconomic Entomology, 96, 202-206

Lewis S, Faricelli M E, Appendino M L, Valarik M,Dubcovsky J. 2008. The chromosome region includingthe earliness per se locus Eps-Am1 affects the duration ofearly developmental phases and spikelet number in diploidwheat. Journal of Experimental Botany, 59, 3595-3607

Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C,Singh R P, Qu Y Y, Xia X C. 2006. Molecular mappingof stripe rust resistance gene YrCH42 in Chinese wheatcultivar Chuanmai 42 and its allelism with Yr24 and Yr26.Theoretical and Applied Genetics, 112, 1434-1440

Li S S, Jia J Z, Wei X Y, Zhang X C, Li L Z, Chen H M, FanH Y, Zhao X H, Lei T D, Xu Y F, Jiang F S, Wang H G, LiL H. 2007. A intervarietal genetic map and QTL analysisfor yield traits in wheat. Molecular Breeding, 20, 167-178

Liu D C, Lan X J, Yang Z J, Wei Y M, Zhou Y H. 2002. Aunique aegilops tauschii genotype needless to immatureembryo culture in cross with wheat. Acta Botanica Sinica,44, 708-713

Liu D C, Zhang L Q, Yan Z H, Lan X J, Zheng Y. 2010. Striperust resistance in Aegilops tauschii and its genetic analysis.Genetic Resources and Crop Evolution, 57, 325-328

Ma J, Li H B, Zhang C Y, Yang X M, Liu Y X, Yan G J,Liu C J. 2010. Identification and validation of a majorQTL conferring crown rot resistance in hexaploid wheat.Theoretical and Applied Genetics, 120, 1119-1128

Marza F, Bai G H, Carver B F, Zhou W C. 2006. Quantitativetrait loci for yield and related traits in the wheat populationNing7840×Clark. Theoretical and Applied Genetics, 112,688-698

McFadden E S, Sears E R. 1946. The origin of Triticumspelta and its free-threshing hexaploid relatives. Journalof Heredity, 37, 81-89, 107-116

Mujeeb-Kazi A, Rosas V, Roldan S. 1996. Conservation ofthe genetic variation of Triticum tauschii (Coss.) Schmalh.(Aegilops squarrosa auct. Non L.) in synthetic hexaploidwheats (T. turgidum L.×T. tauschii; 2n=6x=42, AABBDD)and its potential utilization for wheat improvement. GeneticResources and Crop Evolution, 43, 129-134

Nguyen A T, Iehisa J C M, Kajimura K, Murai K, Takumi S.2013. Identification of quantitative trait loci for floweringrelatedtraits in the D genome of synthetic hexaploid wheatlines. Euphytica, 192, 401-412

van Ooijen J W. 2006. Joinmap 4, Software for the Calculationof Genetic Linkage Maps in Experimental Populations.Kyazma B V, Wageningen, Netherlands.

Paillard S, Schnurbusch T, Winzeler M, Messmer M, SourdilleP, Abderhalden O, Keller B, Schachermayr G. 2003. Anintegrative genetic linkage map of winter wheat (Triticumaestivum L.). Theoretical and Applied Genetics, 107,1235-1242

Peng Z S, Wang Z X, Yen C, Yang J L. 2000. Chromosomaleffect on heading date of multispikelet wheat line“88F2185”. Acta Agronomica Sinica, 26, 231-234 (inChinese)

Ramya R, Chaubal A, Kulkarni K, Gupta L, Kadoo N, DhaliwalHS, Chhuneja P, Lagu M, Gupta V. 2010. QTL mappingof 1 000-kernel weight, kernel length, and kernel width inbread wheat (Triticum aestivum L.). Journal of AppliedGenetics, 51, 421-429

SAS Institute. 2003. SAS/STAT User’s Guide. version 9.1.SAS Institute, Cary.

Shindo C, Tsujimoto H, Sasakuma T. 2003. Segregationanalysis of heading traits in hexaploid wheat utilizingrecombinant inbred lines. Heredity, 90, 56-63

Snape J W, Butterworth K, Whitechurch E, Worland A J.2001. Waiting for fine times: Genetics of flowering timein wheat. Euphytica, 119, 185-190

Sourdille P, Snape J W, Cadalen T, Charmet G, Nakata N,Bernard S, Bernard M. 2000. Detection of QTLs forheading time and photoperiod response in wheat using adoubled-haploid population. Genome, 43, 487-494

Trethowan R M, Mujeeb-Kazi A. 2008. Novel germplasmresources for improving environmental stress tolerance ofhexaploid wheat. Crop Science, 48, 1255-1265

Wang L, Cui F, Ding A M, Li J, Wang J P, Zhao C H, Li XF, Feng D S, Wang H G. 2012. Length of internode andspike: how do they contribute to plant height of wheat at an individual QTL level? Cereal Research Communications,40, 1-12

Wang R X, Zhang X Y, Wu L, Wang R, Hai L, You G X,Yan C S, Xiao S H. 2009. QTL analysis of grain size andrelated traits in winter wheat under different ecologicalenvironments. Scientia Agricultura Sinica, 42, 398-407(in Chinese)

Wang S, Basten C J, Zeng Z B. 2007. Windows QTLCartographer 2.5. Department of Statistics, North CarolinaState University, Raleigh, NC.

Wang S W, Carver B, Yan L L. 2009. Genetic loci in thephotoperiod pathway interactively modulate reproductivedevelopment of winter wheat. Theoretical and AppliedGenetics, 118, 1339-1349

Xiang Z G, Zhang L Q, Ning S Z, Zheng Y L, Liu D C.2009. Evaluation of Aegilops tauschii for heading dateand its gene location in a re-synthesized hexaploid wheat.Agricultural Sciences in China, 8, 1-7

Yang W Y, Liu D C, Li J, Zhang L Q, Wei H T, Hu X R,Zheng Y L, He Z H, Zou Y C. 2009. Synthetic hexaploidwheat and its utilization for wheat genetic improvementin China. Journal of Genetics and Genomics, 36, 539-546

Zhang L Q, Liu D C, Yan Z H, Lan X J, Zheng Y L, ZhouY H. 2004. Rapid changes of microsatellite flankingsequence in the allopolyploidization of new synthesizedhexaploid wheat. Science in China (Ser. C Life Sciences),47, 553-561.
[1] Hui Fang, Xiuyi Fu, Hanqiu Ge, Mengxue Jia, Jie Ji, Yizhou Zhao, Zijian Qu, Ziqian Cui, Aixia Zhang, Yuandong Wang, Ping Li, Baohua Wang. Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2196-2210.
[2] Li Miao, Xiangyu Wang, Chao Yu, Chengyang Ye, Yanyan Yan, Huasen Wang.

What factors control plant height? [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1803-1824.

[3] Yingzhen Wang, Ying Wu, Xinlei Wang, Wangmei Ren, Qinyao Chen, Sijia Zhang, Feng Zhang, Yunzhi Lin, Junyang Yue, Yongsheng Liu.

Genome wide association analysis identifies candidate genes for fruit quality and yield in Actinidia eriantha  [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1929-1939.

[4] Keanning Li, Bingxing An, Mang Liang, Tianpeng Chang, Tianyu Deng, Lili Du, Sheng Cao, Yueying Du, Hongyan Li, Lingyang Xu, Lupei Zhang, Xue Gao, Junya LI, Huijiang Gao.

Prescreening of large-effect markers with multiple strategies improves the accuracy of genomic prediction [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1634-1643.

[5] Minghao Cai, Xuhui Li, Zhi Liang, Jie Wang, Delin Li, Zhipeng Yuan, Riliang Gu, Jianhua Wang, Li Li.

qSTA2-2, a novel QTL that contributes to seed starch synthesis in Zea mays L. [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1118-1133.

[6] Hongxiang Zheng, Yingying Dang, Xianmin Diao, Na Sui.

Molecular mechanisms of stress resistance in sorghum: Implications for crop improvement strategies [J]. >Journal of Integrative Agriculture, 2024, 23(3): 741-768.

[7] Pengcheng , Shuangyi Yin, Yunyun Wang, Tianze Zhu, Xinjie Zhu, Minggang Ji, Wenye Rui, Houmiao Wang Chenwu Xu, Zefeng Yang.

Dynamics and genetic regulation of macronutrient concentrations during grain development in maize [J]. >Journal of Integrative Agriculture, 2024, 23(3): 781-794.

[8] Akmaral Baidyussen, Gulmira Khassanova, Maral Utebayev, Satyvaldy Jatayev, Rystay Kushanova, Sholpan Khalbayeva, Aigul Amangeldiyeva, Raushan Yerzhebayeva, Kulpash Bulatova, Carly Schramm, Peter Anderson, Colin L. D. Jenkins, Kathleen L. Soole, Yuri Shavrukov. Assessment of molecular markers and marker-assisted selection for drought tolerance in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2024, 23(1): 20-38.
[9] Mu Zeng, Binhu Wang, Lei Liu, Yalan Yang, Zhonglin Tang. Genome-wide association study identifies 12 new genetic loci associated with growth traits in pigs[J]. >Journal of Integrative Agriculture, 2024, 23(1): 217-227.
[10] Simin Liao, Zhibin Xu, Xiaoli Fan, Qiang Zhou, Xiaofeng Liu, Cheng Jiang, Liangen Chen, Dian Lin, Bo Feng, Tao Wang.

Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(1): 77-92.

[11] LI Meng-wei, HE Yu-hua, LIU Rong, LI Guan, WANG Dong, JI Yi-shan, YAN Xin, HUANG Shu-xian, WANG Chen-yu, MA Yu, LIU Bei, YANG Tao, ZONG Xu-xiao. Construction of SNP genetic maps based on targeted next-generation sequencing and QTL mapping of vital agronomic traits in faba bean (Vicia faba L.)[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2648-2659.
[12] LIU Dan, ZHAO De-hui, ZENG Jian-qi, Rabiu Sani SHAWAI, TONG Jing-yang, LI Ming, LI Fa-ji, ZHOU Shuo, HU Wen-li, XIA Xian-chun, TIAN Yu-bing, ZHU Qian, WANG Chun-ping, WANG De-sen, HE Zhong-hu, LIU Jin-dong, ZHANG Yong. Identification of genetic loci for grain yield‑related traits in the wheat population Zhongmai 578/Jimai 22[J]. >Journal of Integrative Agriculture, 2023, 22(7): 1985-1999.
[13] QU Shu-ping, YANG Dan, YU Hai-yang, CHEN Fang-yuan, WANG Ke-xin, DING Wen-qi, XU Wen-long, WANG Yun-li. QTL analysis of early flowering of female flowers in zucchini (Cucurbita pepo L.)[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3321-3330.
[14] CHEN Ke-xin, DAI Dong-yang, WANG Ling, YANG Li-min, LI Dan-dan, WANG Chao, JI Peng, SHENG Yun-yan. SLAF marker based QTL mapping of fruit-related traits reveals a major-effect candidate locus ff2.1 for flesh firmness in melon[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3331-3345.
[15] SHA Xiao-qian, GUAN Hong-hui, ZHOU Yu-qian, SU Er-hu, GUO Jian, LI Yong-xiang, ZHANG Deng-feng, LIU Xu-yang, HE Guan-hua, LI Yu, WANG Tian-yu, ZOU Hua-wen, LI Chun-hui. Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3394-3407.
No Suggested Reading articles found!