Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (10): 2734-2748    DOI: 10.1016/S2095-3119(20)63575-4
Special Issue: 动物科学合辑Animal Science
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Integration of association and computational methods reveals functional variants of LEPR gene for abdominal fat content in chickens
LI Yu-dong1, 2, 3, WANG Wei-jia1, 2, 3, LI Zi-wei1, 2, 3, WANG Ning1, 2, 3, XIAO Fan4, GAO Hai-he4, GUO Huai-shun4, LI Hui1, 2, 3, WANG Shou-zhi1, 2, 3 
1 Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, P.R.China
2 Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, P.R.China
3 School of Animal Sciences and Technology, Northeast Agricultural University, Harbin 150030, P.R.China
4 Fujian Sunnzer Biotechnology Development Co., Ltd., Guangze 354100, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

瘦素受体(LEPR)是瘦素的高亲和力受体,在人类和动物肥胖中起着至关重要的作用。本研究的目的是以东北农业大学肉鸡双向选择品系(NEAUHLF)为研究材料,通过关联分析和电子计算分析相结合的方法,研究LEPR外显子功能变异对鸡脂肪沉积的影响。使用5种在线生物信息学工具预测编码区单核苷酸多态性(SNPs)的功能。进一步,通过基于氨基酸残基的保守性和稳定性分析、蛋白质配体结合位点的预测、蛋白质二级结构分析、蛋白质三级结构的建模等生物信息学分析,确定了高置信度SNPs的可能结构与功能。同时,对鸡LEPR基因外显子20个非同义单核苷酸多态性(nsSNPs)与腹脂性状进行了关联分析。5种在线生物信息学工具显示,rs731962924(N867I)和rs13684622(C1002R)是最可能影响鸡腹部脂肪性状的功能性nsSNPs。氨基酸残基稳定性和保守型分析显示,大部分nsSNPs可引起蛋白质稳定性下降,rs731962924(N867I)和rs13684622(C1002R)在进化过程中相对保守。蛋白质结构分析显示rs731962924(N867I)和rs13684622(C1002R)均在可引起LEPR蛋白质结构和功能的显著变化。关联分析显示rs13684622(C1002R)与鸡腹脂重和腹脂率显著相关(P=0.0413,P=0.0260)。因此,我们认为rs13684622(C1002R)可能是一个影响鸡腹脂沉积的重要功能性SNP,有望应用于分子标记辅助选择(MAS)中培育低脂肉鸡品系。本研究的主要创新点是结合了多种生物信息学方法和nsSNPs与腹脂性状之间的关联分析进行LEPR基因功能性SNPs的筛选,为后续进行深入的功能分析提供优先研究SNP(priorization SNP)。此外,本研究用到的关联分析与计算机电子计算分析相结合的方法为鉴定农业动物重要经济性状的功能性分子标记提供了一条新的途径。




Abstract  
Leptin receptor (LEPR) plays a vital role in obesity in humans and animals.  The objective of this study is to assess LEPR functional variants for chicken adipose deposition by integration of association and in-silico analysis using a unique chicken population, the Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF).  Five online bioinformatics tools were used to predict the functionality of the single nucleotide polymorphisms (SNPs) in coding region.  Further, the possible structure–function relationship of high confidence SNPs was determined by bioinformatics analyses, including the conservation and stability analysis based on amino acid residues, prediction of protein ligand-binding sites, and the superposition of protein tertiary structure.  Meanwhile, we analyzed the association between abdominal fat traits and 20 polymorphisms of chicken LEPR gene.  The integrated results showed that rs731962924 (N867I) and rs13684622 (C1002R) could lead to striking changes in the structure and function of proteins, of which rs13684622 (C1002R) was significantly associated with abdominal fat weight (AFW, P=0.0413) and abdominal fat percentage (AFP, P=0.0260) in chickens.  Therefore, we are of the opinion that rs13684622 (C1002R) may be an essential functional SNP affecting chicken abdominal fat deposition, and potentially applied to improvement of broiler abdominal fat in molecular marker-assisted selection (MAS) program.  Additionally, the coupling of association with computer electronic predictive analysis provides a new avenue to identify important molecular markers for breeders.
Keywords:  chicken        LEPR        nsSNPs        bioinformatics tools        abdominal fat content        association analysis  
Received: 05 August 2020   Accepted:
Fund: This work was supported by the National Natural Science Foundation of China (31572394), the China Agriculture Research System of MOF and MARA (CARS-41), and the White Feather Broiler Breeding Joint Project of the Ministry of Agriculture and Rural Affairs of China (19190526).
Corresponding Authors:  Correspondence WANG Shou-zhi, Tel: +86-451-55191495, E-mail: shouzhiwang@neau.edu.cn   
About author:  LI Yu-dong, E-mail: 710827104@qq.com;

Cite this article: 

LI Yu-dong, WANG Wei-jia, LI Zi-wei, WANG Ning, XIAO Fan, GAO Hai-he, GUO Huai-shun, LI Hui, WANG Shou-zhi. 2021. Integration of association and computational methods reveals functional variants of LEPR gene for abdominal fat content in chickens. Journal of Integrative Agriculture, 20(10): 2734-2748.

AbdulAzeez S, Borgio J F. 2016. In-silico computing of the most deleterious nsSNPs in HBA1 Gene. PLoS ONE, 11, e0147702.
Agrahari A K, Krishna P M, Praveen K M, Tayubi I A, Siva R, Prabhu C B, George P D C, Zayed H. 2019. Understanding the structure–function relationship of HPRT1 missense mutations in association with Lesch-Nyhan disease and HPRT1-related gout by in silico mutational analysis. Computers in Biology and Medicine, 107, 161–171.
Allensworth-James M L, Odle A, Haney A, Childs G. 2015. Sex differences in somatotrope dependency on leptin receptors in young mice: Ablation of LEPR causes severe growth hormone deficiency and abdominal obesity in males. Endocrinology, 156, 3253–3264.
Alshatwi A A, Hasan T N, Syed N A, Shafi G, Grace B L. 2012. Identification of functional SNPs in BARD1 gene and in silico analysis of damaging SNPs: Based on data procured from dbSNP database. PLoS ONE, 7, e43939.
Amir M, Kumar V, Mohammad T, Dohare R, Hussain A, Rehman M T, Alam P, Alajmi M F, Islam A, Ahmad F, Hassan M I. 2018. Investigation of deleterious effects of nsSNPs in the POT1 gene: A structural genomics-based approach to understand the mechanism of cancer development. Journal of Cellular Biochemistry, 120, 10281–10294.
Arifuzzaman M, Mitra S, Das R, Hamza A, Absar N, Dash R. 2020. In silico analysis of nonsynonymous single-nucleotide polymorphisms (nsSNPs) of the SMPX gene. Annals of Human Genetics, 84, 54–71.
Arshad M, Bhatti A, John P. 2018. Identification and in-silico analysis of functional SNPs of human TAGAP protein: A comprehensive study. PLoS ONE, 13, e0188143.
Badgujar N V, Tarapara B V, Shah F D. 2019. Computational analysis of high-risk SNPs in human CHK2 gene responsible for hereditary breast cancer: A functional and structural impact. PLoS ONE, 14, e0220711.
Bromberg Y, Rost B. 2007. SNAP: Predict effect of non-synonymous polymorphisms on function. Nucleic Acids Research, 35, 3823–3835.
Capriotti E, Calabrese R, Fariselli P, Martelli P L, Altman R B, Casadio R. 2013. WS-SNPs&GO: A web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genomics, 14 (Suppl. 3), S6.
Chen K W, Gao Y S, Wang Z Y, Ding Y R, Zhang X Y, Li H F, Bu Z. 2004. Performance Terms and Measurement for Poultry. NY/T 823–2004. China Agriculture Press, Beijing. (in Chinese)
Dakal T C, Kala D, Dhiman G, Yadav V, Krokhotin A, Dokholyan N V. 2017. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms in IL8 gene. Scientific Reports, 7, 6525.
Dong J Q, Zhang H, Jiang X F, Wang S, Du Z, Wang Z, Leng L, Cao Z, Li Y, Luan P. 2015. Comparison of serum biochemical parameters between two broiler chicken lines divergently selected for abdominal fat content. Journal of Animal Science, 93, 3278–3286.
Duan X, Cheng S, Ai Y, Wu J. 2016. Enhancing the thermostability of serratia plymuthica sucrose isomerase using B-factor-directed mutagenesis. PLoS ONE, 11, e0149208.
Elkhattabi L, Morjane I, Charoute H, Amghar S, Bouafi H, Elkarhat Z, Saile R, Rouba H, Barakat A. 2019. In silico analysis of coding/noncoding SNPs of human RETN gene and characterization of their impact on resistin stability and structure. Journal of Diabetes Research, 2019, 1–9.
Ewuola M, Akinyemi M, Osaiyuwu H. 2018. Insilico analysis of myostatin gene in selected poultry species. Journal of Advances in Biology & Biotechnology, 17, 1–10.
Ezawa K. 2016. Characterization of multiple sequence alignment errors using complete-likelihood score and position-shift map. BMC Bioinformatics, 17, 133.
Falomir-Lockhart A H, Villegas-Castagnaso E E, Giovambattista G, Rogberg-Munoz A. 2018. Computational prediction of nsSNPs effects on protein function and structure, a prioritization approach for further in vitro studies applied to bovine GSTP1. Free Radical Biology and Medicine, 129, 486–491.
Foucan L, Bassien-Capsa V, Rambhojan C, Lacorte J M, Larifla L. 2019. Influence of K656N polymorphism of the leptin receptor gene on obesity-related traits in nondiabetic Afro-Caribbean individuals. Metabolic Syndrome and Related Disorders, 17, 197–203.
Gomes T, Estevao L, De Toledo R, Cavalcanti P R. 2012. A survey of GLSL examples. IEEE Computer Society, doi:  10.1109/SIBGRAPI-T.2012.11.
Gu Z L, Zhao J G, Li H, Meng H, Wang Q G, Wang Q H, Zhu D H. 2002. Single nucleotide polymorphism analysis in chicken leptin receptor exon 9. Hereditas, 24, 259–262. (in Chinese)
Guttula P K, Chandrasekaran G, Gupta M K. 2019. Screening and in silico analysis of deleterious nsSNPs (missense) in human CSF3 for their effects on protein structure, stability and function. Computational Biology and Chemistry, 82, 57–64.
Guzzi A F, Oliveira F S L, Amaro M M S, Tavares-Filho P F, Gabriel J E. 2020. In silico prediction of the functional and structural consequences of the non-synonymous single nucleotide polymorphism A122V in bovine CXC chemokine receptor type 1. Brazilian Journal of Biology, 80, 39–46.
Islam M J, Parves M R, Mahmud S, Tithi F A, Reza M A. 2019. Assessment of structurally and functionally high-risk nsSNPs impacts on human bone morphogenetic protein receptor type IA (BMPR1A) by computational approach. Computational Biology and Chemistry, 80, 31–45.
Jacob K K, Radhika G, Aravindakshan T V. 2020. An in silico evaluation of non-synonymous single nucleotide polymorphisms of mastitis resistance genes in cattle. Animal Biotechnology, 31, 25–31.
Jones M, Sergeant C, Richardson M, Groth D, Brooks S, Munyard K. 2019. A non-synonymous SNP in exon 3 of the KIT gene is responsible for the classic grey phenotype in alpacas (Vicugna pacos). Animal Genetics, 50, 493–500.
Kamaraj B, Purohit R. 2013. In silico screening and molecular dynamics simulation of disease-associated nsSNP in TYRP1 gene and its structural consequences in OCA3. Biomed Research International, 2013, 697051.
Khan I, Ansari I A, Singh P, Dass J F P, Khan F. 2018. Identification and characterization of functional single nucleotide polymorphisms (SNPs) in Axin 1 gene: A molecular dynamics approach. Cell Biochemistry and Biophysics, 76, 173–185.
Lei M M, Wu S Q, Shao X B, Li X W, Chen Z, Ying S J, Shi Z D. 2015. Creating leptin-like biofunctions by active immunization against chicken leptin receptor in growing chickens. Domestic Animal Endocrinology, 50, 55–64.
Leng L, Wang S, Li Z, Wang Q, Li H. 2009. A polymorphism in the 3´-flanking region of insulin-like growth factor binding protein 2 gene associated with abdominal fat in chickens. Poultry Science, 88, 938–942.
Li H, Yang L, Liu Z, Yin W, Liu D, Shen Y, Walsh T, Shao B, Wang Y. 2018. Molecular insights into functional differences between mcr-3- and mcr-1-mediated colistin resistance. Antimicrobial Agents and Chemotherapy, 62, e00366–e00384.
Li S C. 2013. The difficulty of protein structure alignment under the RMSD. Algorithms for Molecular Biology, 8, 1.
Mandell D J, Coutsias E A, Kortemme T. 2009. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nature Methods, 6, 551–552.
Momen R, Azizi A, Wang L, Ping Y, Xu T, Kirk S R, Li W, Manzhos S, Jenkins S. 2017. Exploration of the forbidden regions of the Ramachandran plot (?–ψ) with QTAIM. Physical Chemistry Chemical Physics, 19, 26423–26434.
Moreira G C M, Boschiero C, Cesar A S M, Reecy J M, Godoy T F, Pertille F, Ledur M C, Moura A, Garrick D J, Coutinho L L. 2018. Integration of genome wide association studies and whole genome sequencing provides novel insights into fat deposition in chicken. Scientific Reports, 8, 16222.
El Moujahid E M, Chen S, Jin S, Lu Y, Zhang D, Ji C, Yang N. 2014. Association of leptin receptor gene polymorphisms with growth and feed efficiency in meat-type chickens. Poultry Science, 93, 1910–1915.
Nailwal M, Chauhan J B. 2017. In silico analysis of non-synonymous single nucleotide polymorphisms in human DAZL gene associated with male infertility. Systems Biology in Reproductive Medicine, 63, 248–258.
Ngan C H, Hall D R, Zerbe B, Grove L E, Kozakov D, Vajda S. 2012. FTSite: High accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics, 28, 286–287.
NRC (National Research Council). 1994. Nutrient Requirements of Poultry. 9th ed. National Academies Press, Washington, D.C.
Pollastri G, Baldi P, Fariselli P, Casadio R. 2002. Prediction of coordination number and relative solvent accessibility in proteins. Proteins, 47, 142–153.
Porto W F, Franco O L, Alencar S A. 2015. Computational analyses and prediction of guanylin deleterious SNPs. Peptides, 69, 92–102.
Rasal K D, Shah T M, Vaidya M, Jakhesara S J, Joshi C G. 2015. Analysis of consequences of non-synonymous SNP in feed conversion ratio associated TGF-β receptor type 3 gene in chicken. Meta Gene, 4, 107–117.
Saleh M A, Solayman M, Paul S, Saha M, Khalil M I, Gan S H. 2016. Impacts of nonsynonymous single nucleotide polymorphisms of adiponectin receptor 1 gene on corresponding protein stability: A computational approach. Biomed Research International, 2016, 9142190.
Seroussi E, Knytl M, Pitel F, Elleder D, Krylov V, Leroux S, Morisson M, Yosefi S, Miyara S, Ganesan S, Ruzal M, Andersson L, Friedman-Einat M. 2019. Avian expression patterns and genomic mapping implicate leptin in digestion and TNF signaling, suggesting that their interacting adipokine role is unique to mammals. International Journal of Molecular Sciences, 20, 4489.
Al-Shuhaib M B S, Al-Kafajy F R, Badi M A, AbdulAzeez S, Marimuthu K, Al-Juhaishi H A I, Borgio J F. 2018. Highly deleterious variations in COX1, CYTB, SCG5, FK2, PRL and PGF genes are the potential adaptation of the immigrated african ostrich population. Computers in Biology and Medicine, 100, 17–26.
Singh R K, Mahalingam K. 2017. In silico approach to identify non-synonymous SNPs in human obesity related gene, MC3R (melanocortin-3-receptor). Computational Biology and Chemistry, 67, 122–130.
Tian J, Wang S, Wang Q, Leng L, Hu X, Li H. 2010. A single nucleotide polymorphism of chicken acetyl-CoA carboxylase A gene associated with fatness traits. Animal Biotechnology, 21, 42–50.
Wang Q, Mehmood A, Wang H, Xu Q, Xiong Y, Wei D Q. 2019. Computational screening and analysis of lung cancer related non-synonymous single nucleotide polymorphisms on the human Kirsten rat sarcoma gene. Molecules, 24, 1951.
Wang S Z, Xie K J, Li Z W, Zhang C C, Wang W J, Wang N, Li H. 2019. Functional identification analysis of OBR gene g.7851G>A in chickens (Gallus gallus). Journal of Northeast Agricultural University, 50, 71–79. (in Chinese)
Wang Y, Li H, Gu Z L, Zhao J G, Wang Q G, Wang Y X. 2004. Correlation analysis between single nucleotide polymorphism of the leptin receptor intron 8 and fatness traits in chickens. Acta Genetica Sinica, 31, 265–269. (in Chinese)
Wang Z, Huang C, Lv H, Zhang M, Li X. 2020. In silico analysis and high-risk pathogenic phenotype predictions of non-synonymous single nucleotide polymorphisms in human Crystallin beta A4 gene associated with congenital cataract. PLoS ONE, 15, e0227859.
Webb B, Sali A. 2014a. Comparative protein structure modeling using MODELLER. Current Protocols Bioinformatics, 47, 5.6.1–5.6.32.
Webb B, Sali A. 2014b. Protein structure modeling with MODELLER. Methods in Molecular Biology, 1137, 1–15.
Wiltgen M. 2009. Structural bioinformatics: from the sequence to structure and function. Current Bioinformatics, 4, 54–87.
Xu D, Zhang Y. 2011. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal, 101, 2525–2534.
Yakubu A, De Donato M, Imumorin I G. 2017. Modelling functional and structural impact of non-synonymous single nucleotide polymorphisms of the DQA1 gene of three Nigerian goat breeds. South African Journal of Animal Science, 47, 146–156.
Zhang H, Liang Q, Wang N, Wang Q, Leng L, Mao J, Wang Y, Wang S, Zhang J, Liang H, Zhou X, Li Y, Cao Z, Luan P, Wang Z, Yuan H, Wang Z, Zhou X, Lamont S J, Da Y, et al. 2020. Microevolutionary dynamics of chicken genomes under divergent selection for adiposity. iScience, 23, 101193.
Zhang M, Huang C, Wang Z, Lv H, Li X. 2020. In silico analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in the human GJA3 gene associated with congenital cataract. BMC Molecular and Cell Biology, 21, 12.
[1] WANG Jie, LEI Qiu-xia, CAO Ding-guo, ZHOU Yan, HAN Hai-xia, LIU Wei, LI Da-peng, LI Fu-wei, LIU Jie. Whole genome SNPs among 8 chicken breeds enable identification of genetic signatures that underlie breed features[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2200-2212.
[2] ZHAO Ruo-nan, CHEN Si-yuan, TONG Cui-hong, HAO Jie, LI Pei-si, XIE Long-fei, XIAO Dan-yu, ZENG Zhen-ling, XIONG Wen-guang. Insights into the effects of pulsed antimicrobials on the chicken resistome and microbiota from fecal metagenomes[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1857-1869.
[3] WANG Yong-li, HUANG Chao, YU Yang, CAI Ri-chun, SU Yong-chun, CHEN Zhi-wu, ZHENG Maiqing, CUI Huan-xian.

Dietary aflatoxin B1 induces abnormal deposition of melanin in the corium layer of the chicken shank possibly via promoting the expression of melanin synthesis-related genes [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1847-1856.

[4] SHAN Yan-ju, JI Gai-ge, ZHANG Ming, LIU Yi-fan, TU Yun-jie, JU Xiao-jun, SHU Jing-ting, ZOU Jian-min. Use of transcriptome sequencing to explore the effect of CSRP3 on chicken myoblasts[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1159-1171.
[5] CUI Huan-xian, LUO Na, GUO Li-ping, LIU Lu, XING Si-yuan, ZHAO Gui-ping, WEN Jie. TIMP2 promotes intramuscular fat deposition by regulating the extracellular matrix in chicken[J]. >Journal of Integrative Agriculture, 2023, 22(3): 853-863.
[6] LIU Xiao-jing, WANG Yong-li, LIU Li, LIU Lu, ZHAO Gui-ping, WEN Jie, JIA Ya-xiong, CUI Huan-xian. Potential regulation of linoleic acid and volatile organic compound contents in meat of chickens by PLCD1[J]. >Journal of Integrative Agriculture, 2023, 22(1): 222-234.
[7] SUN Yu-hang, ZHAI Gui-ying, PANG Yong-jia, LI Rui, LI Yu-mao, CAO Zhi-ping, WANG Ning, LI Hui, WANG Yu-xiang. PPAR gamma2: The main isoform of PPARγ that positively regulates the expression of the chicken Plin1 gene[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2357-2371.
[8] ZENG Xian-ying, HE Xin-wen, MENG Fei, MA Qi, WANG Yan, BAO Hong-mei, LIU Yan-jing, DENG Guo-hua, SHI Jian-zhong, LI Yan-bing, TIAN Guo-bin, CHEN Hua-lan. Protective efficacy of an H5/H7 trivalent inactivated vaccine (H5-Re13, H5-Re14, and H7-Re4 strains) in chickens, ducks, and geese against newly detected H5N1, H5N6, H5N8, and H7N9 viruses[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2086-2094.
[9] LI Yu-dong, BAI Xue, LIU Xin , WANG Wei-jia, LI Zi-wei, WANG Ning, XIAO Fan, GAO Hai-he, GUO Huai-shun, LI Hui, WANG Shou-zhi. Integration of genome-wide association study and selection signatures reveals genetic determinants for skeletal muscle production traits in an F2 chicken population[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2065-2075.
[10] CHEN Hong-yan, CHENG Bo-han, MA Yan-yan, ZHANG Qi, LENG Li, WANG Shou-zhi, LI Hui. HBP1 inhibits chicken preadipocyte differentiation by activating the STAT3 signaling via directly enhancing JAK2 expression[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1740-1754.
[11] WEI Yuan-hang, ZHAO Xi-yu, SHEN Xiao-xu, YE Lin, ZHANG Yao, WANG Yan, LI Di-yan, ZHU Qing, YIN Hua-dong. The expression, function, and coding potential of circular RNA circEDC3 in chicken skeletal muscle development[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1444-1456.
[12] WANG Dan-dan, ZHANG Yan-yan, TENG Meng-lin, WANG Zhang, XU Chun-lin, JIANG Ke-ren, MA Zheng, LI Zhuan-jian, TIAN Ya-dong, Kang Xiang-tao, LI Hong, LIU Xiao-jun. Integrative analysis of hypothalamic transcriptome and genetic association study reveals key genes involved in the regulation of egg production in indigenous chickens[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1457-1474.
[13] HUANG Hua-yun, LIANG Zhong, LIU Long-zhou, LI Chun-miao, HUANG Zhen-yang, WANG Qian-bao, LI Shou-feng, ZHAO Zhen-hua. C-type natriuretic peptide stimulates chicken myoblast differentiation through NPRB/NPRC receptors and metabolism pathway[J]. >Journal of Integrative Agriculture, 2022, 21(2): 496-503.
[14] CHENG Wan-li, ZENG Li, YANG Xue, HUANG Dian, YU Hao, CHEN Wen, CAI Min-min, ZHENG Long-yu, YU Zi-niu, ZHANG Ji-bin. Preparation and efficacy evaluation of Paenibacillus polymyxa KM2501-1 microbial organic fertilizer against root-knot nematodes[J]. >Journal of Integrative Agriculture, 2022, 21(2): 542-551.
[15] WANG Ying-jie, LIANG Ya-xi, HU Fu-li, SUN Ying-fei, ZOU Meng-yun, LUO Rong-long, PENG Xiu-li. Chinese herbal formulae defend against Mycoplasma gallisepticum infection[J]. >Journal of Integrative Agriculture, 2022, 21(10): 3026-3036.
No Suggested Reading articles found!