Please wait a minute...
Journal of Integrative Agriculture  2014, Vol. 13 Issue (8): 1835-1844    DOI: 10.1016/S2095-3119(13)60655-3
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
QTL Mapping for Important Agronomic Traits in Synthetic Hexaploid Wheat Derived from Aegiliops tauschii ssp. tauschii
 YU Ma, CHEN Guo-yue, ZHANG Lian-quan, LIU Ya-xi, LIU Deng-cai, WANG Ji-rui, PU Zhien, ZHANG Li, LAN Xiu-jin, WEI Yu-ming, LIU Chun-ji , ZHENG You-liang
1、Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R.China
2、School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P.R.China
3、Agronomy College, Sichuan Agricultural University, Chengdu 611130, P.R.China
4、CSIRO Plant Industry, St Lucia, QLD 4067, Australia
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Aegiliops tauschii is classified into two subspecies: Ae. tauschii ssp. tauschii and Ae. tauschii ssp. strangulata. Novel genetic variations exist in Ae. tauschii ssp. tauschii that can be utilized in wheat improvement. We synthesized a hexaploid wheat genotype (SHW-L1) by crossing an Ae. tauschii ssp. tauschii accession (AS60) with a tetraploid wheat genotype (AS2255). A population consisting of 171 F8 recombinant inbred lines was developed from SHW-L1 and Chuanmai 32 to identify QTLs associated with agronomic traits. A new genetic map with high density was constructed and used to detect the QTLs for heading date, kernel width, spike length, spikelet number, and thousand kernel weight. A total of 30 putative QTLs were identified for five investigated traits. Thirteen QTLs were located on D genomes of SHW-L1, six of them showed positive effect on agronomic traits. Chromosome region flanked by wPt-6133–wPt-8134 on 2D carried five environment-independent QTLs. Each QTL accounted for more than 10% phenotypic variance. These QTLs were highly consistent across environments and should be used in wheat breeding.

Abstract  Aegiliops tauschii is classified into two subspecies: Ae. tauschii ssp. tauschii and Ae. tauschii ssp. strangulata. Novel genetic variations exist in Ae. tauschii ssp. tauschii that can be utilized in wheat improvement. We synthesized a hexaploid wheat genotype (SHW-L1) by crossing an Ae. tauschii ssp. tauschii accession (AS60) with a tetraploid wheat genotype (AS2255). A population consisting of 171 F8 recombinant inbred lines was developed from SHW-L1 and Chuanmai 32 to identify QTLs associated with agronomic traits. A new genetic map with high density was constructed and used to detect the QTLs for heading date, kernel width, spike length, spikelet number, and thousand kernel weight. A total of 30 putative QTLs were identified for five investigated traits. Thirteen QTLs were located on D genomes of SHW-L1, six of them showed positive effect on agronomic traits. Chromosome region flanked by wPt-6133–wPt-8134 on 2D carried five environment-independent QTLs. Each QTL accounted for more than 10% phenotypic variance. These QTLs were highly consistent across environments and should be used in wheat breeding.
Keywords:  genetic map       QTL       DArT       agronomic traits       synthetic wheat       Aegilops tauschii ssp. tauschii  
Received: 12 July 2013   Accepted:
Fund: 

This work was supported by the National Natural Science Foundation of China (31171556, 31171555, 31230053), the National High-Tech R&D Program of China (2011AA100103-02) and the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2013BAD01B02-9).

Corresponding Authors:  ZHENG You-liang, Tel: +86-835-2882007, Fax: +86-835-2883153, E-mail: ylzheng@sicau.edu.cn     E-mail:  ylzheng@sicau.edu.cn
About author:  YU Ma, E-mail: yuwen.0073@hotmail.com

Cite this article: 

YU Ma, CHEN Guo-yue, ZHANG Lian-quan, LIU Ya-xi, LIU Deng-cai, WANG Ji-rui, PU Zhien, ZHANG Li, LAN Xiu-jin, WEI Yu-ming, LIU Chun-ji , ZHENG You-liang. 2014. QTL Mapping for Important Agronomic Traits in Synthetic Hexaploid Wheat Derived from Aegiliops tauschii ssp. tauschii. Journal of Integrative Agriculture, 13(8): 1835-1844.

Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S,Uszynski G, Mohler V, Lehmensiek A, KuchelH, HaydenM J, Howes N, Sharp P, Vaughan P, Rathnell B, HuttnerE, Kilian A. 2006. Diversity arrays technology (DArT) forhigh-throughput profiling of the hexaploid wheat genome.Theoretical and Applied Genetics, 113, 1409-1420

Ammiraju J S S, Dholakia B B, Santra D K, Singh H, Lagu MD, Tamhankar S A, Dhaliwal H S, Rao V S, Gupta V S,Ranjekar P K. 2001. Identification of inter simple sequencerepeat (ISSR) markers associated with seed size in wheat.Theoretical and Applied Genetics, 102, 726-732

Beales J, Turner A, Griffiths S, Snape J W, Laurie D A.2007. A Pseudo-Response regulator is misexpressed inthe photoperiod insensitive Ppd-D1a mutant of wheat(Triticum aestivum L.). Theoretical and Applied Genetics,115, 721-733

Bullrich L, Appendino M L, Tranquilli G, Lewis S, DubcovskyJ. 2002. Mapping of a thermo-sensitive earliness perse gene on Trticum monococcum chromosome 1Am.Theoretical and Applied Genetics, 105, 585-593

Cui F, Li J, Ding A M, Zhao C H, Li X F, Feng D S, Wang XQ, Wang L, Wang H G. 2012. QTL detection of internodelength and its component index in wheat using two relatedRIL populations. Cereal Research Communications, 40,373-384

Cui F, Li J, Ding A M, Zhao C H, Wang L, Wang X Q, Li S S,Bao Y G, Li X F, Feng D S, Kong L R, Wang H G. 2011.Conditional QTL mapping for plant height with respectto the length of the spike and internode in two mappingpopulations of wheat. Theoretical and Applied Genetics,122, 1517-1536

Cui F, Zhao C H, Li J, Ding A M, Li X F, Bao Y G, Li J M,Ji J, Wang H G. 2013. Kernel weight per spike: Whatcontributes to it at the individual QTL level? MolecularBreeding, 31, 265-278

Daryl M, Kolumbina M. 2008. Genetic variation for qualitytraits in synthetic wheat germplasm. Australian Journal ofAgricultural Research, 59, 406-412

Ding A M, Li J, Cui F, Zhao C H, Ma H Y, Wang H G. 2011.Mapping QTLs for yield related traits using two associatedRIL populations of wheat. Acta Agronomica Sinica, 37,1511-1524 (in Chinese)

Distelfeld A, Li C, Dubcovsky J. 2009. Regulation of floweringin temperate cereals. Current Opinion in Plant Biology, 12, 178-184

Doerge R W. 2002. Mapping and analysis of quantitativetrait loci in experimental populations. Nature Genetics,3, 43-52

Dubcovsky J, Dvorak J. 2007. Genome plasticity a key factorin the success of polyploid wheat under domestication.Science, 316, 1862-1866

Dudnikov A J, Kawahara T. 2004. Aegilops tauschii: Geneticvariation in Iran. Genetic Resources and Crop Evolution,53, 579-586

Dvorak J, Luo M C, Yang Z L, Zhang H B. 1998. The structureof the Aegilops tauschii genepool and the evolution ofhexaploid wheat. Theoretical and Applied Genetics, 97,657-670

Gegas V C, Nazari A, Griffiths S, Simmonds J, Fish L, OrfordS, Sayers L, Doonan J H, Snape J W. 2010. A geneticframework for grain size and shape variation in wheat.The Plant Cell, 22, 1046-1056

Gororo N N, Flood R G, Eastwood R F, Eagles H A. 2001.Photoperiod and vernalization responses in Triticumturgidum×T. tauschii synthetic hexaploid wheats. Annalsof Botany, 88, 947-952

Huang L, Wang Q, Zhang L Q, Yuan Z W, Wang J R, ZhangH G, Zheng Y L, Liu D C. 2011. Haplotype variations ofgene Ppd-D1 in Aegilops tauschii and their implicationson wheat origin. Genetic Resources and Crop Evolution,59, 1027-1032

Kihara H. 1944. Discovery of the DD-analyser, one of theancestors of vulgare wheat. Agriculture and Horticulture,19, 889-890

Lage J, Skovmand B, Andersen S B. 2003. Expression andsuppression of resistance to greenbug (Homoptera:Aphididae) in synthetic hexaploid wheats derived fromTriticum dicoccum×Aegilops tauschii crosses. Journal ofEconomic Entomology, 96, 202-206

Lewis S, Faricelli M E, Appendino M L, Valarik M,Dubcovsky J. 2008. The chromosome region includingthe earliness per se locus Eps-Am1 affects the duration ofearly developmental phases and spikelet number in diploidwheat. Journal of Experimental Botany, 59, 3595-3607

Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C,Singh R P, Qu Y Y, Xia X C. 2006. Molecular mappingof stripe rust resistance gene YrCH42 in Chinese wheatcultivar Chuanmai 42 and its allelism with Yr24 and Yr26.Theoretical and Applied Genetics, 112, 1434-1440

Li S S, Jia J Z, Wei X Y, Zhang X C, Li L Z, Chen H M, FanH Y, Zhao X H, Lei T D, Xu Y F, Jiang F S, Wang H G, LiL H. 2007. A intervarietal genetic map and QTL analysisfor yield traits in wheat. Molecular Breeding, 20, 167-178

Liu D C, Lan X J, Yang Z J, Wei Y M, Zhou Y H. 2002. Aunique aegilops tauschii genotype needless to immatureembryo culture in cross with wheat. Acta Botanica Sinica,44, 708-713

Liu D C, Zhang L Q, Yan Z H, Lan X J, Zheng Y. 2010. Striperust resistance in Aegilops tauschii and its genetic analysis.Genetic Resources and Crop Evolution, 57, 325-328

Ma J, Li H B, Zhang C Y, Yang X M, Liu Y X, Yan G J,Liu C J. 2010. Identification and validation of a majorQTL conferring crown rot resistance in hexaploid wheat.Theoretical and Applied Genetics, 120, 1119-1128

Marza F, Bai G H, Carver B F, Zhou W C. 2006. Quantitativetrait loci for yield and related traits in the wheat populationNing7840×Clark. Theoretical and Applied Genetics, 112,688-698

McFadden E S, Sears E R. 1946. The origin of Triticumspelta and its free-threshing hexaploid relatives. Journalof Heredity, 37, 81-89, 107-116

Mujeeb-Kazi A, Rosas V, Roldan S. 1996. Conservation ofthe genetic variation of Triticum tauschii (Coss.) Schmalh.(Aegilops squarrosa auct. Non L.) in synthetic hexaploidwheats (T. turgidum L.×T. tauschii; 2n=6x=42, AABBDD)and its potential utilization for wheat improvement. GeneticResources and Crop Evolution, 43, 129-134

Nguyen A T, Iehisa J C M, Kajimura K, Murai K, Takumi S.2013. Identification of quantitative trait loci for floweringrelatedtraits in the D genome of synthetic hexaploid wheatlines. Euphytica, 192, 401-412

van Ooijen J W. 2006. Joinmap 4, Software for the Calculationof Genetic Linkage Maps in Experimental Populations.Kyazma B V, Wageningen, Netherlands.

Paillard S, Schnurbusch T, Winzeler M, Messmer M, SourdilleP, Abderhalden O, Keller B, Schachermayr G. 2003. Anintegrative genetic linkage map of winter wheat (Triticumaestivum L.). Theoretical and Applied Genetics, 107,1235-1242

Peng Z S, Wang Z X, Yen C, Yang J L. 2000. Chromosomaleffect on heading date of multispikelet wheat line“88F2185”. Acta Agronomica Sinica, 26, 231-234 (inChinese)

Ramya R, Chaubal A, Kulkarni K, Gupta L, Kadoo N, DhaliwalHS, Chhuneja P, Lagu M, Gupta V. 2010. QTL mappingof 1 000-kernel weight, kernel length, and kernel width inbread wheat (Triticum aestivum L.). Journal of AppliedGenetics, 51, 421-429

SAS Institute. 2003. SAS/STAT User’s Guide. version 9.1.SAS Institute, Cary.

Shindo C, Tsujimoto H, Sasakuma T. 2003. Segregationanalysis of heading traits in hexaploid wheat utilizingrecombinant inbred lines. Heredity, 90, 56-63

Snape J W, Butterworth K, Whitechurch E, Worland A J.2001. Waiting for fine times: Genetics of flowering timein wheat. Euphytica, 119, 185-190

Sourdille P, Snape J W, Cadalen T, Charmet G, Nakata N,Bernard S, Bernard M. 2000. Detection of QTLs forheading time and photoperiod response in wheat using adoubled-haploid population. Genome, 43, 487-494

Trethowan R M, Mujeeb-Kazi A. 2008. Novel germplasmresources for improving environmental stress tolerance ofhexaploid wheat. Crop Science, 48, 1255-1265

Wang L, Cui F, Ding A M, Li J, Wang J P, Zhao C H, Li XF, Feng D S, Wang H G. 2012. Length of internode andspike: how do they contribute to plant height of wheat at an individual QTL level? Cereal Research Communications,40, 1-12

Wang R X, Zhang X Y, Wu L, Wang R, Hai L, You G X,Yan C S, Xiao S H. 2009. QTL analysis of grain size andrelated traits in winter wheat under different ecologicalenvironments. Scientia Agricultura Sinica, 42, 398-407(in Chinese)

Wang S, Basten C J, Zeng Z B. 2007. Windows QTLCartographer 2.5. Department of Statistics, North CarolinaState University, Raleigh, NC.

Wang S W, Carver B, Yan L L. 2009. Genetic loci in thephotoperiod pathway interactively modulate reproductivedevelopment of winter wheat. Theoretical and AppliedGenetics, 118, 1339-1349

Xiang Z G, Zhang L Q, Ning S Z, Zheng Y L, Liu D C.2009. Evaluation of Aegilops tauschii for heading dateand its gene location in a re-synthesized hexaploid wheat.Agricultural Sciences in China, 8, 1-7

Yang W Y, Liu D C, Li J, Zhang L Q, Wei H T, Hu X R,Zheng Y L, He Z H, Zou Y C. 2009. Synthetic hexaploidwheat and its utilization for wheat genetic improvementin China. Journal of Genetics and Genomics, 36, 539-546

Zhang L Q, Liu D C, Yan Z H, Lan X J, Zheng Y L, ZhouY H. 2004. Rapid changes of microsatellite flankingsequence in the allopolyploidization of new synthesizedhexaploid wheat. Science in China (Ser. C Life Sciences),47, 553-561.
[1] LIU Dan, ZHAO De-hui, ZENG Jian-qi, Rabiu Sani SHAWAI, TONG Jing-yang, LI Ming, LI Fa-ji, ZHOU Shuo, HU Wen-li, XIA Xian-chun, TIAN Yu-bing, ZHU Qian, WANG Chun-ping, WANG De-sen, HE Zhong-hu, LIU Jin-dong, ZHANG Yong. Identification of genetic loci for grain yield‑related traits in the wheat population Zhongmai 578/Jimai 22[J]. >Journal of Integrative Agriculture, 2023, 22(7): 1985-1999.
[2] GAO Ri-xin, HU Ming-jian, ZHAO Hai-ming, LAI Jin-sheng, SONG Wei-bin.

Genetic dissection of ear-related traits using immortalized F2 population in maize [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2492-2507.

[3] CHAO Kai-xiang, WU Cai-juan, LI Juan, WANG Wen-li, WANG Bao-tong, LI Qiang. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat landrace Wudubaijian in multi-environment trials[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2305-2318.
[4] PAN Wen-jing, HAN Xue, HUANG Shi-yu, YU Jing-yao, ZHAO Ying, QU Ke-xin, ZHANG Ze-xin, YIN Zhen-gong, QI Hui-dong, YU Guo-long, ZHANG Yong, XIN Da-wei, ZHU Rong-sheng, LIU Chun-yan, WU Xiao-xia, JIANG Hong-wei, HU Zhen-bang, ZUO Yu-hu, CHEN Qing-shan, QI Zhao-ming. Identification of candidate genes related to soluble sugar contents in soybean seeds using multiple genetic analyses[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1886-1902.
[5] LIU Chen, TIAN Yu, LIU Zhang-xiong, GU Yong-zhe, ZHANG Bo, LI Ying-hui, NA Jie, QIU Li-juan. Identification and characterization of long-InDels through whole genome resequencing to facilitate fine-mapping of a QTL for plant height in soybean (Glycine max L. Merr.)[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1903-1912.
[6] DING Pu-yang, MO Zi-qiang, TANG Hua-ping, MU Yang, DENG Mei, JIANG Qian-tao, LIU Ya-xi, CHEN Guang-deng, CHEN Guo-yue, WANG Ji-rui, LI Wei, QI Peng-fei, JIANG Yun-feng, KANG Hou-yang, YAN Gui-jun, Wei Yu-ming, ZHENG You-liang, LAN Xiu-jin, MA Jian. A major and stable QTL for wheat spikelet number per spike validated in different genetic backgrounds[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1551-1562.
[7] TIAN Yu, YANG Lei, LU Hong-feng, ZHANG Bo, LI Yan-fei, LIU Chen, GE Tian-li, LIU Yu-lin, HAN Jia-nan, LI Ying-hui, QIU Li-juan. QTL analysis for plant height and fine mapping of two environmentally stable QTLs with major effects in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(4): 933-946.
[8] JIANG Xue-qian, ZHANG Fan, WANG Zhen, LONG Rui-cai, LI Ming-na, HE Fei, YANG Xi-jiang, YANG Chang-fu, JIANG Xu, YANG Qing-chuan, WANG Quan-zhen, KANG Jun-mei. Detection of quantitative trait loci (QTL) associated with spring regrowth in alfalfa (Medicago sativa L.)[J]. >Journal of Integrative Agriculture, 2022, 21(3): 812-818.
[9] JIA Jia, WANG Huan, CAI Zhan-dong, WEI Ru-qian, HUANG Jing-hua, XIA Qiu-ju, XIAO Xiao-hui, MA Qi-bin, NIAN Hai, CHENG Yan-bo. Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycine max (L.) Merr.][J]. >Journal of Integrative Agriculture, 2022, 21(11): 3169-3184.
[10] WANG Li, ZHANG Song-lin, JIAO Chen, LI Zhi, LIU Chong-huai, WANG Xi-ping. QTL-seq analysis of seed size trait in grape provides new molecular insight on seedlessness[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2910-2925.
[11] SHI Mei-qi, LIAO Xi-liang, YE Qian, ZHANG Wei, LI Ya-kai, Javaid Akhter BHAT, KAN Gui-zhen, YU De-yue. Linkage and association mapping of wild soybean (Glycine soja) seeds germinating under salt stress[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2833-2847.
[12] WANG Chao-nan, LUAN Fei-shi, LIU Hong-yu, Angela R. DAVIS, ZHANG Qi-an, DAI Zu-yun, LIU Shi. Mapping and predicting a candidate gene for flesh color in watermelon[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2100-2111.
[13] WANG Li-xia, WANG Jie, LUO Gao-ling, YUAN Xing-xing, GONG Dan, HU Liang-liang, WANG Su-hua, CHEN Hong-lin, CHEN Xin, CHENG Xu-zhen. Construction of a high-density adzuki bean genetic map and evaluation of its utility based on a QTL analysis of seed size[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1753-1761.
[14] YANG Meng-jiao, WANG Cai-rong, Muhammad Adeel HASSAN, WU Yu-ying, XIA Xian-chun, SHI Shu-bing, XIAO Yong-gui, HE Zhong-hu. QTL mapping of seedling biomass and root traits under different nitrogen conditions in bread wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1180-1192.
[15] YU Chao, WAN Hui-hua, Peter M. BOURKE, CHENG Bi-xuan, LUO Le, PAN Hui-tang, ZHANG Qi-xiang . High density genetic map and quantitative trait loci (QTLs) associated with petal number and flower diameter identified in tetraploid rose[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1287-1301.
No Suggested Reading articles found!