Abd
El-Mageed T A, Rady M O A, Abd El-Wahed M H, Abd El-Mageed S A, Omran W M,
Aljuaid B S, El-Shehawi A M, El-Tahan A M, El-Saadony M T, Abdou N M. 2022.
Consecutive seasonal effect on yield and water productivity of drip deficit
irrigated sorghum in saline soils. Saudi Journal of Biological Sciences, 29, 2683–2690.
Abou-Elwafa
S F, Shehzad T. 2018. Genetic identification and expression profiling of
drought responsive genes in sorghum. Environmental and Experimental Botany, 155, 12–20.
Adamczyk-Szabela
D, Markiewicz J, Wolf W M. 2015. Heavy metal uptake by herbs. IV. Influence of
soil pH on the content of heavy metals in Valeriana officinalis L. Water, Air, & Soil Pollution, 226,
1–8.
Aregawi K,
Shen J, Pierroz G, Sharma M K, Dahlberg J, Owiti J, Lemaux P G. 2022.
Morphogene-assisted transformation of Sorghum bicolor allows more
efficient genome editing. Plant Biotechnology Journal, 20,
748–760.
Awika H O,
Hays D B, Mullet J E, Rooney W L, Weers B D. 2017. QTL mapping and loci
dissection for leaf epicuticular wax load and canopy temperature depression and
their association with QTL for staygreen in Sorghum bicolor under
stress. Euphytica, 213, 207.
Bailey-Serres
J, Parker J E, Ainsworth E A, Oldroyd G E D, Schroeder J I. 2019. Genetic strategies
for improving crop yields. Nature, 575, 109–118.
Baillo E
H, Kimotho R N, Zhang Z, Xu P. 2019. Transcription factors associated with
abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 10, 771.
Belton P
S, Taylor J R N. 2004. Sorghum and millets: Protein sources for Africa. Trends in Food Science & Technology, 15,
94–98.
Blumwald
E. 2000. Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology, 12, 431–434.
Bolot S,
Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J. 2009. The
‘inner circle’ of the cereal genomes. Current Opinion in Plant Biology, 12, 119–125.
Boyles R
E, Brenton Z W, Kresovich S. 2019. Genetic and genomic resources of sorghum to
connect genotype with phenotype in contrasting environments. The Plant Journal, 97, 19–39.
Cao X, Sun
B, Chen H, Zhou J, Song X, Liu X, Song X, Liu X, Deng X, Li X, Zhao Y, Zhang J,
Li J. 2021. Approaches and research progresses of marginal land productivity
expansion and ecological benefit improvement in China. Bulletin of Chinese Academy of Sciences, 3, 1664–1676.
(in Chinese)
Chadalavada
K, Kumari B D R, Kumar T S. 2021. Sorghum mitigates climate variability and
change on crop yield and quality. Planta, 253, 113.
Chaves M
M, Oliveira M M. 2004. Mechanisms underlying plant resilience to water
deficits: Prospects for water-saving agriculture. Journal of Experimental Botany, 55, 2365–2384.
Chen C,
Shang X, Sun M, Tang S, Khan A, Zhang D, Yan H, Jiang Y, Yu F, Wu Y, Xie Q.
2022. Comparative transcriptome analysis of two sweet sorghum genotypes with
different salt tolerance abilities to reveal the mechanism of salt tolerance. International Journal of Molecular Sciences, 23, 2272.
Chen J,
Chopra R, Hayes C, Morris G, Marla S, Burke J, Xin Z, Burow G. 2017.
Genome-wide association study of developing leaves’ heat tolerance during
vegetative growth stages in a sorghum association panel. The Plant Genome, 10, 1–15.
Chen J, Xu
W, Velten J, Xin Z, Stout J. 2012. Characterization of maize inbred lines for
drought and heat tolerance. Journal of Soil and Water Conservation, 67, 354.
Chen K, Li
G J, Bressan R A, Song C P, Zhu J K, Zhao Y. 2020. Abscisic acid dynamics,
signaling, and functions in plants. Journal of Integrative Plant Biology, 62, 25–54.
Chiluwal
A, Bheemanahalli R, Kanaganahalli V, Boyle D, Perumal R, Pokharel M, Oumarou H,
Jagadish S V K. 2020. Deterioration of ovary plays a key role in heat
stress-induced spikelet sterility in sorghum. Plant, Cell & Environment, 43, 448–462.
Chiluwal A,
Bheemanahalli R, Perumal R, Asebedo A R, Bashir E, Lamsal A, Sebela D, Shetty N
J, Jagadish S V K. 2018. Integrated aerial and destructive phenotyping
differentiates chilling stress tolerance during early seedling growth in
sorghum. Field Crops Research, 227, 1–10.
Chopra R,
Burow G, Burke J J, Gladman N, Xin Z. 2017. Genome-wide association analysis of
seedling traits in diverse sorghum germplasm under thermal stress. BMC Plant Biology, 17, 12.
Chopra R,
Burow G, Hayes C, Emendack Y, Xin Z, Burke J. 2015. Transcriptome profiling and
validation of gene based single nucleotide polymorphisms (SNPs) in sorghum
genotypes with contrasting responses to cold stress. BMC Genomics, 16, 1040.
Crasta O
R, Xu W W, Rosenow D T, Mullet J, Nguyen H T. 1999. Mapping of post-flowering
drought resistance traits in grain sorghum: Association between QTLs
influencing premature senescence and maturity. Molecular and General Genetics, 262, 579–588.
Darabi S A
S, Almodares A, Ebrahimi M. 2017. In silico study shows arsenic induces
P1B ATPase gene family as cation transporter by abscisic acid signaling pathway
in seedling of Sorghum bicolor. Acta Physiologiae Plantarum, 39, 1–12.
Demidchik
V, Maathuis F J M. 2007. Physiological roles of nonselective cation channels in
plants: From salt stress to signalling and development. New Phytologist, 175, 387–404.
Desa U.
2019. World Population Prospects 2019: Highlights. United Nations
Department for Economic and Social Affairs, New York, USA. p. 125.
Ding T,
Zhen Y, Wei X, Yuan F, Yin S, Wang B. 2018. Evaluation of salt-tolerant
germplasm and screening of the salt-tolerance traits of sweet sorghum in the
germination stage. Functional Plant Biology, 45,
1073–1081.
Do P T,
Lee H, Mookkan M, Folk W R, Zhang Z J. 2016. Rapid and efficient
Agrobacterium-mediated transformation of sorghum (Sorghum bicolor)
employing standard binary vectors and bar gene as a selectable marker. Plant Cell Reports, 35, 2065–2076.
Dong H,
Kong X, Luo Z, Li W, Xin C. 2010. Unequal salt distribution in the root zone
increases growth and yield of cotton. European Journal of Agronomy, 33, 285–292.
Dong M,
Kuerban Z, Lü P, Ye K, Hou S, Liu G. 2019. Transcriptome analysis and gene
mining of salt tolerance in sorghum seedlings (Sorghum bicolor L.
Moench). Scientia Agricultura Sinica, 52,
3987–4001. (in Chinese)
Duvick J,
Fu A, Muppirala U, Sabharwal M, Wilkerson M D, Lawrence C J, Lushbough C,
Brendel V. 2007. PlantGDB: A resource for comparative plant genomics. Nucleic Acids Research, 36, D959–D965.
E Z G, Li
T T, Chen C, Wang L. 2018. Genome-wide survey and expression analysis of
P1B-ATPases in rice, maize and sorghum. Rice Science, 25,
208–217.
Edema R,
Amoding G. 2015. Validating simple sequence repeat (SSR) markers for
introgression of stay-green quantitative trait loci (QTLs) into elite sorghum
lines. African Journal of Biotechnology, 14,
3101–3111.
Farré I,
Faci J M. 2007. Comparative response of maize (Zea mays L.) and
sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a
Mediterranean environment. Agricultural Water Management, 83,
135–143.
Feng J,
Jia W, Lv S, Bao H, Miao F, Zhang X, Wang J, Li J, Li D, Zhu C, Li S, Li Y.
2018. Comparative transcriptome combined with morpho-physiological analyses
revealed key factors for differential cadmium accumulation in two contrasting
sweet sorghum genotypes. Plant Biotechnology Journal, 16,
558–571.
Fernandez
M G C, Schoenbaum G R, Goggi A S. 2014. Novel germplasm and screening methods
for early cold tolerance in sorghum. Crop Science, 54,
2631–2638.
Gao C,
Montoya L, Xu L, Madera M, Hollingsworth J, Purdom E, Singan V, Vogel J,
Hutmacher R B, Dahlberg J A, Coleman-Derr D, Lemaux P G, Taylor J W. 2020.
Fungal community assembly in drought-stressed sorghum shows stochasticity,
selection, and universal ecological dynamics. Nature Communications, 11, 34.
George-Jaeggli
B, Jordan D R, van Oosterom E J, Hammer G L. 2011. Decrease in sorghum grain
yield due to the dw3 dwarfing gene is caused by reduction in shoot
biomass. Field Crops Research, 124, 231–239.
Ghori N H,
Ghori T, Hayat, M Q, Imadi S R, Gul A, Ozturk M. 2019. Heavy metal stress and
responses in plants. Annals of the American Thoracic Society, 16, 1807–1828.
Gilliham
M, Able J A, Roy S J. 2017. Translating knowledge about abiotic stress
tolerance to breeding programmes. The Plant Journal, 90,
898–917.
Gong Z,
Xiong L, Shi H, Yang S, Herrera-Estrella L R, Xu G, Chao D Y, Li J, Wang P Y,
Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu J K. 2020. Plant abiotic
stress response and nutrient use efficiency. Science China (Life
Sciences), 63, 635–674.
Guden B,
Erdurmus C, Erdal S, Uzun B. 2021. Evaluation of sweet sorghum genotypes for
bioethanol yield and related traits. Biofuels, Bioproducts and Biorefining, 15, 545–562.
Hadebe S
T, Modi A T, Mabhaudhi T. 2017. Drought tolerance and water use of cereal
crops: A focus on sorghum as a food security crop in sub-Saharan Africa. Journal of Agronomy and Crop Science, 203,
177–191.
Hamza N B,
Sharma N, Tripathi A, Sanan-Mishra N. 2016. MicroRNA expression profiles in
response to drought stress in Sorghum bicolor. Gene Expression
Patterns (A: Section of Mechanisms of Development), 20, 88–98.
Han J,
Wang P, Wang Q, Lin Q, Chen Z, Yu G, Miao C, Dao Y, Wu R, Schnable J C, Tang H,
Wang K. 2020. Genome-wide characterization of DNase I-hypersensitive sites and
cold response regulatory landscapes in grasses. The Plant Cell, 32, 2457–2473.
Haussmann
B, Mahalakshmi V, Reddy B, Seetharama N, Hash C, Geiger H. 2002. QTL mapping of
stay-green in two sorghum recombinant inbred populations. Theoretical and Applied Genetics, 106, 133–142.
Hostetler
A N, Govindarajulu R, Hawkins J S. 2021. QTL mapping in an interspecific
sorghum population uncovers candidate regulators of salinity tolerance. Plant Stress, 2, 100024.
Hussain D,
Haydon M J, Wang Y, Wong E, Sherson S M, Young J, Camakaris J, Cobbett H C S.
2004. P-type ATPase heavy metal transporters with roles in essential zinc
homeostasis in Arabidopsis. Plant Cell, 16,
1327–1339.
Jagadish S
V K. 2020. Heat stress during flowering in cereals - Effects and adaptation
strategies. New Phytologist, 226, 1567–1572.
Jamil A,
Riaz S, Ashraf M, Foolad M R. 2011. Gene expression profiling of plants under
salt stress. Critical Reviews in Plant Sciences, 30, 435–458.
Ji G, Yan
Y, Peng L, Du R, Fu C. 2014. Absorption of different sorghum accessions on heavy
metals in polluted soil. Chinese Journal of Eco-Agriculture, 22, 185–192. (in Chinese)
Jia W, Lin
K, Lou T, Feng J, Li Y. 2021. Comparative analysis of sRNAs, degradome and
transcriptomics in sweet sorghum reveals the regulatory roles of miRNAs in Cd
accumulation and tolerance. Planta, 254, 16.
Kadier Y,
Zu Y Y, Dai Q M, Song G, Lin S W. 2017. Genome-wide identification,
classification and expression analysis of NAC family of genes in sorghum [Sorghum bicolor (L.) Moench]. Plant Growth Regulation, 83,
301–312.
Kausar A,
Ashraf M Y, Ali I, Niaz M, Abbass Q. 2011. Evaluation of sorghum
varieties/lines for salt tolerance using physiological indices as screening
tool. Pakistan Journal of Botany, 44, 47–52.
Kazemi H,
Sabouri A, Aalami A, Abedi A. 2023. A comprehensive meta-analysis to identify
the responsive genes in sorghum under salinity and drought stresses (Sorghum bicolor). Journal of Plant Growth Regulation, 42, 7096–7115.
Kebede H,
Subudhi P K, Rosenow D T, Nguyen H T. 2001. Quantitative trait loci influencing
drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theoretical
and Applied Genetics, 103, 266–276.
KhavaninZade
A R, Sodaeizadeh H, Ghalibaf M A, Veroustraete F, Balzarolo M. 2022. Amendment
with halophytes and wind deposit allow subsequent cultivation of sorghum on a
saline-sodic soil in the arid region of Yazd (Iran). International Journal of Phytoremediation, 24, 1491–1504.
Knoll J,
Ejeta G. 2008. Marker-assisted selection for early-season cold tolerance in
sorghum: QTL validation across populations and environments. Theoretical and Applied Genetics, 116, 541–553.
Krishnamurthy
P, Ranathunge K, Nayak S, Schreiber L, Mathew M K. 2011. Root apoplastic
barriers block Na+ transport to shoots in rice (Oryza sativa L.). Journal of Experimental Botany, 62,
4215–4228.
Kumar S A,
Kumari P H, Nagaraju M, Reddy P S, Dheeraj T D, Mack A, Katam R, Kishor P B K.
2022. Genome-wide identification and multiple abiotic stress transcript
profiling of potassium transport gene homologs in Sorghum bicolor. Frontiers in Plant Science, 13, 965530.
Kumari P
H, Kumar S A, Ramesh K, Reddy P S, Nagaraju M, Prakash A B, Shah T, Henderson
A, Srivastava R K, Rajasheker G, Chitikineni A, Varshney R K, Rathnagiri P,
Narasu M L, Kishor P B K. 2018. Genome-wide identification and analysis of Arabidopsis sodium proton antiporter (NHX) and human sodium proton exchanger (NHE) Homologs
in Sorghum bicolor. Genes, 9, 236.
Lamaoui M,
Jemo M, Datla R, Bekkaoui F. 2018. Heat and drought stresses in crops and
approaches for their mitigation. Frontiers in Chemistry, 6,
26.
Li H, Han
X, Liu X, Zhou M, Ren W, Zhao B, Ju C, Liu Y, Zhao J. 2019. A leucine-rich
repeat-receptor-like kinase gene SbER2-1 from sorghum (Sorghum bicolor L.) confers drought tolerance in maize. BMC Genomics, 20,
1–15.
Li H,
Testerink C, Zhang Y. 2021. How roots and shoots communicate through stressful
times. Trends in Plant Science, 26, 940–952.
Li S, Tan
T, Fan Y, Raza M A, Wang Z, Wang B, Zhang J, Tan X, Chen P, Shafiq I, Yang W,
Yang F. 2022. Responses of leaf stomatal and mesophyll conductance to abiotic
stress factors. Journal of Integrative Agriculture, 21,
2787–2804.
Lin J, Guo
H, Dong J, Yang K, Zhang H, Li Z, Zhao C, Xu J. 2019. Identification and
expression analysis of AGO protein family genes in Sorghum bicolor. Journal of Nuclear Agricultural Sciences, 33,
1291. (in Chinese)
Liu X, Li
Z, Jiang Z, Zhao Y, Peng J, Jin J, Guo H, Luo J. 2011. LSD: A leaf senescence
database. Nucleic Acids Research, 39, D1103–D1107.
Liu Y,
Wang Z, Wu X, Zhu J, Luo H, Tian D, Li C, Luo J, Zhao W, Hao H. 2021. SorGSD:
Updating and expanding the sorghum genome science database with new contents
and tools. Biotechnology for Biofuels, 14, 1–9.
Liu Y, Yao
X, Lv L, Lei Y, Zhao D. 2016. Cloning of SbSKIP gene from sorghum (Sorghum bicolor) and analysis of drought-resistant function in tobacco (Nicotiana tabacum). Journal of Agricultural Biotechnology, 24, 1500–1511. (in Chinese)
Lu M, Wang
Z, Fu S, Yang G, Shi M, Lu Y, Wang X, Xia J. 2017. Functional characterization
of the SbNrat1 gene in sorghum. Plant Science, 262,
18–23.
Luo H,
Zhao W, Wang Y, Xia Y, Wu X, Zhang L, Tang B, Zhu J, Fang L, Du Z, Bekele W A,
Tai S, Jordan D R, Godwin I D, Snowdon R J, Mace E S, Luo J, Jing H C. 2016.
SorGSD: A sorghum genome SNP database. Biotechnology for Biofuels, 9, 6.
Ma L, Ye
J, Yang Y, Lin H, Yue L, Luo J, Long Y, Fu H, Liu X, Zhang Y. 2019. The
SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium
signature under salt stress. Developmental Cell, 48,
697–709.
Mace E,
Innes D, Hunt C, Wang X, Tao Y, Baxter J, Hassall M, Hathorn A, Jordan D. 2019.
The sorghum QTL Atlas: A powerful tool for trait dissection, comparative
genomics and crop improvement. Theoretical and Applied Genetics, 132, 751–766.
Mace E S,
Singh V, Van Oosterom E J, Hammer G L, Hunt C H, Jordan D R. 2012. QTL for
nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate
with QTL for traits associated with drought adaptation. Theoretical and Applied Genetics, 124, 97–109.
Mace E S,
Tai S, Gilding E K, Li Y, Prentis P J, Bian L, Campbell B C, Hu W, Innes D J,
Han X, Cruickshank A, Dai C, Frère C, Zhang H, Hunt C H, Wang X, Shatte T, Wang
M, Su Z, Li J, et al. 2013. Whole-genome sequencing reveals
untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nature Communications, 4, 2320.
Magalhaes
J V, Liu J, Guimaraes C T, Lana U G, Alves V M, Wang Y H, Schaffert R E,
Hoekenga O A, Pineros M A, Shaff J E. 2007. A gene in the multidrug and toxic
compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics, 39, 1156–1161.
Maheshwari
P, Kummari D, Palakolanu S R, Tejaswi U N, Nagaraju M, Rajasheker G, Jawahar G,
Jalaja N, Rathnagiri P, Kishor P B K. 2019. Genome-wide identification and
expression profile analysis of nuclear factor Y family genes in Sorghum bicolor L. (Moench). PLoS ONE, 14, e0222203.
Makita Y,
Shimada S, Kawashima M, Kondou-Kuriyama T, Toyoda T, Matsui M. 2015. MOROKOSHI:
Transcriptome database in Sorghum bicolor. Plant and Cell Physiology, 56, e6.
Mao C, Lu
S, Lv B, Zhang B, Shen J, He J, Luo L, Xi D, Chen X, Ming F. 2017. A rice NAC
transcription factor promotes leaf senescence via ABA biosynthesis Plant Physiology, 174, 1747–1763.
Marka N,
Reddy P S, Kumar S A, Kumar A, Kishor P B K. 2020. Genome-wide identification
and transcriptional profiling of small heat shock protein gene family under
diverse abiotic stress conditions in Sorghum bicolor (L.). International Journal of Biological Macromolecules, 142,
822–834.
Maulana F,
Weerasooriya D, Tesso T. 2017. Sorghum landrace collections from cooler regions
of the world exhibit magnificent genetic differentiation and early season cold
tolerance. Frontiers in Plant Science, 8,
756.
Melo J O,
Martins L G, Barros B A, Pimenta M R, Lana U G, Duarte C E, Pastina M M,
Guimaraes C T, Schaffert R E, Kochian L V. 2019. Repeat variants for the SbMATE
transporter protect sorghum roots from aluminum toxicity by transcriptional
interplay in cis and trans. Proceedings of the National Academy of Sciences of the United States of America, 116, 313–318.
Meng X,
Liang Z, Dai X, Zhang Y, Mahboub S, Ngu D W, Roston R L, Schnable J C. 2021.
Predicting transcriptional responses to cold stress across plant species. Proceedings of the National Academy of Sciences of United States of America, 118, e2026330118.
Metwali E,
Gowayed S, Al-Maghrabi O A, Mosleh Y Y. 2013. Corresponding author: Evaluation
of toxic effect of copper and cadmium on growth, physiological traits and
protein profile of wheat (Triticum aestivium L.), maize (Zea mays L.) and sorghum (Sorghum bicolor L.). World Applied Sciences Journal, 21, 301–314.
Mishra D,
Kumar S, Mishra B N. 2021. An overview of morpho-physiological, biochemical,
and molecular responses of sorghum towards heavy metal stress. In: De Voogt P,
ed., Reviews of Environmental Contamination and Toxicology. vol. 256. Springer International Publishing, Cham. pp.
155–177.
Moghimi N,
Desai J S, Bheemanahalli R, Impa S M, Vennapusa A R, Sebela D, Perumal R,
Doherty C J, Jagadish S V K. 2019. New candidate loci and marker genes on
chromosome 7 for improved chilling tolerance in sorghum. Journal of Experimental Botany, 70, 3357–3371.
Morita R,
Sato Y, Masuda Y, Nishimura M, Kusaba M. 2009. Defect in non-yellow coloring 3,
an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf
senescence in rice. The Plant Journal, 59, 940–952.
Muhammad J
H, Muhammad A M, Sana Ur R, Muhammad A, Harun G, Imran K, Muhammad W, Mukhtar
A, Ghulam A S, Yan P, Zhou L. 2020. Effect of cadmium toxicity on growth,
oxidative damage, antioxidant defense system and cadmium accumulation in two
sorghum cultivars. Plants, 9, 1575.
Munns R,
James R A, Läuchli A. 2006. Approaches to increasing the salt tolerance of
wheat and other cereals. Journal of Experimental Botany, 57, 1025–1043.
Munns R,
Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651.
Nakamura
Y, Kudo T, Terashima S, Saito M, Nambara E, Yano K. 2017. CATchUP: A web
database for spatiotemporally regulated genes. Plant and Cell Physiology, 58, e3.
Nazli R I.
2020. Evaluation of different sweet sorghum cultivars for bioethanol yield
potential and bagasse combustion characteristics in a semiarid Mediterranean
environment. Biomass and Bioenergy, 139, 105624.
Ndlovu E,
van Staden J, Maphosa M. 2021. Morpho-physiological effects of moisture, heat
and combined stresses on Sorghum bicolor [Moench (L.)] and its
acclimation mechanisms. Plant Stress, 2, 100018.
Olanrewaju
O S, Babalola O O. 2022. The rhizosphere microbial complex in plant health: A
review of interaction dynamics. Journal of Integrative Agriculture, 21,
2168–2182.
Ortiz D,
Hu J, Fernandez M G S. 2017. Genetic architecture of photosynthesis in Sorghum bicolor under non-stress and cold stress conditions. Journal of Experimental Botany, 68, 4545–4557.
Parra-Londono
S, Fiedler K, Kavka M, Samans B, Wieckhorst S, Zacharias A, Uptmoor R. 2018.
Genetic dissection of early-season cold tolerance in sorghum: Genome-wide
association studies for seedling emergence and survival under field and
controlled environment conditions. Theoretical and Applied Genetics, 131, 581–595.
Pavli O I,
Ghikas D V, Katsiotis A, Skaracis G N. 2011. Differential expression of heat
shock protein genes in sorghum (Sorghum bicolor L.) genotypes
under heat stress. Australian Journal of Crop Science, 5, 511–515.
Peng Z,
Fan N, Bai W. 2022. Responses of different sorghum germplasm resources to salt
stress. Seeds, 41, 112–116, 121.
Popescu A,
Dinu T A, Stoian E. 2018. Sorghum - An important cereal in the world, in the
European Union and Romania. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 18, 271–284.
Prasad P V
V, Djanaguiraman M, Perumal R, Ciampitti I A. 2015. Impact of high temperature
stress on floret fertility and individual grain weight of grain sorghum:
Sensitive stages and thresholds for temperature and duration. Frontiers in Plant Science, 6, 820.
Prasad V B
R, Govindaraj M, Djanaguiraman M, Djalovic I, Shailani A, Rawat N,
Singla-Pareek S L, Pareek A, Prasad P V V. 2021. Drought and high temperature
stress in sorghum: Physiological, genetic, and molecular insights and breeding
approaches. International Journal of Molecular Sciences, 22, 9826.
Proietti
I, Frazzoli C, Mantovani A. 2015. Exploiting nutritional value of staple foods
in the world’s semi-arid areas: Risks, benefits, challenges and opportunities
of sorghum. Healthcare, 3, 172–193.
Przybylska-Balcerek
A, Frankowski J, Stuper-Szablewska K. 2020. The influence of weather conditions
on bioactive compound content in sorghum grain. European Food Research and Technology, 246, 13–22.
Ranganathan
J, Vennard D, Waite R, Dumas P, Lipinski B, Searchinger T, Dumas P, Lipinski B.
2016. Shifting Diets for a Sustainable Food Future. World Resources
Institute. pp. 66–69.
Reddy P S,
Reddy D S, Sivasakthi K, Bhatnagar-Mathur P, Vadez V, Sharma K K. 2016.
Evaluation of sorghum [Sorghum bicolor (L.)] reference genes in
various tissues and under abiotic stress conditions for quantitative real-time
PCR data normalization. Frontiers in Plant Science, 7, 529.
Robertson
M J, Fukai S, Ludlow M M, Hammer G L. 1993. Water extraction by grain sorghum
in a sub-humid environment. I. Analysis of the water extraction pattern. Field Crops Research, 33, 81–97.
Rutayisire
A, Lubadde G, Mukayiranga A, Edema R. 2021. Response of sorghum to cold stress
at early developmental stage. International Journal of Agronomy, 2021, 8875205.
Sabadin P,
Malosetti M, Boer M, Tardin F, Santos F, Guimaraes C, Gomide R, Andrade C,
Albuquerque P, Caniato F. 2012. Studying the genetic basis of drought tolerance
in sorghum by managed stress trials and adjustments for phenological and plant
height differences. Theoretical and Applied Genetics, 124, 1389–1402.
Saijo Y,
Hata S, Kyozuka J, Shimamoto K, Izui K. 2000. Over-expression of a single Ca2+-dependent
protein kinase confers both cold and salt/drought tolerance on rice plants. Plant Journal, 23, 319–327.
Saluja M,
Zhu F, Yu H, Walia H, Sattler S E. 2021. Loss of COMT activity reduces lateral
root formation and alters the response to water limitation in sorghum brown
midrib (bmr) 12 mutant. New Phytologist, 229,
2780–2794.
Schaffasz
A, Windpassinger S, Snowdon R, Wittkop B. 2019. Reproductive cold stress tolerance
in sorghum F1 hybrids is a heterotic trait. Agronomy, 9,
508.
Shi X,
Xiong J, Yang X, Siddique K H M, Du T. 2022. Carbon footprint analysis of sweet
sorghum-based bioethanol production in the potential saline–alkali land of
northwest China. Journal of Cleaner Production, 349,
131476.
Shikha M,
Gowdra M M, Rao A R, Jain P A, Dash P K, Nepolean T. 2017. Comparative analysis
of CDPK family in maize, Arabidopsis, rice, and sorghum revealed
potential targets for drought tolerance improvement. Frontiers in Chemistry, 5, 115.
Shim S,
Lee H G, Lee H, Seo P J. 2020. H3K36me2 is highly correlated with m6A
modifications in plants. Journal of Integrative Plant Biology, 62, 1455–1460.
Silva T N,
Thomas J B, Dahlberg J, Rhee S Y, Mortimer J C. 2022. Progress and challenges
in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. Journal of Experimental Botany, 73, 646–664.
Singh V,
Nguyen C T, Oosterom E V, Chapman S C, Jordan D R, Hammer G L. 2015. Sorghum
genotypes differ in high temperature responses for seed set. Field Crops Research, 171, 32–40.
Song Y, Li
J, Sui Y, Han G, Zhang Y, Guo S, Sui N. 2020. The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis. Plant Molecular Biology, 102, 603–614.
Song Y, Li
S, Sui Y, Zheng H, Han G, Sun X, Yang W, Wang H, Zhuang K, Kong F, Meng Q, Sui
N. 2022a. SbbHLH85, a bHLH member, modulates resilience to salt stress
by regulating root hair growth in sorghum. Theoretical and Applied Genetics, 135, 201–216.
Song Y,
Zheng H, Sui Y, Li S, Wu F, Sun X, Sui N. 2022b. SbWRKY55 regulates
sorghum response to saline environment by its dual role in abscisic acid
signaling. Theoretical and Applied Genetics, 135,
2609–2625.
Soni P G,
Basak N, Rai A K, Sundha P, Narjary B, Kumar P, Yadav G, Kumar S, Yadav R K.
2021. Deficit saline water irrigation under reduced tillage and residue mulch
improves soil health in sorghum–wheat cropping system in semi-arid region. Scientific Reports, 11, 1880.
Staggenborg
S A, Dhuyvetter K C, Gordon W B. 2008. Grain sorghum and corn comparisons:
Yield, economic, and environmental responses. Agronomy Journal, 100,
1600–1604.
Su M, Li X
F, Ma X Y, Peng X J, Zhao A G, Cheng L Q, Chen S Y, Liu G S. 2011. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic
stresses and MeJA treatment. Plant Science, 181, 652–659.
Subedi K
D, Ma B L. 2005. Nitrogen uptake and partitioning in stay-green and leafy maize
hybrids. Crop Science, 45, 740–747.
Sui N,
Yang Z, Liu M, Wang B. 2015. Identification and transcriptomic profiling of
genes involved in increasing sugar content during salt stress in sweet sorghum
leaves. BMC Genomics, 16, 534.
Sukumaran
S, Li X, Li X, Zhu C, Bai G, Perumal R, Tuinstra M R, Prasad P V V, Mitchell S
E, Tesso T T, Yu J. 2016. QTL mapping for grain yield, flowering time, and
stay-green traits in sorghum with genotyping-by-sequencing markers. Crop Science, 56, 1429–1442.
Sun X,
Zheng H, Li J, Liu L, Zhang X, Sui N. 2020. Comparative transcriptome analysis
reveals new lncRNAs responding to salt stress in sweet sorghum. Frontiers in Bioengineering and Biotechnology, 8, 331.
Sunoj V S
J, Somayanda I M, Chiluwal A, Perumal R, Prasad P V V, Jagadish S V K. 2017.
Resilience of pollen and post-flowering response in diverse sorghum genotypes
exposed to heat stress under field conditions. Crop Science, 57,
1658–1669.
Tack J,
Lingenfelser J, Jagadish S V K. 2017. Disaggregating sorghum yield reductions
under warming scenarios exposes narrow genetic diversity in US breeding
programs. Proceedings of the National Academy of Sciences of the United States of America, 114, 9296–9301.
Tang J,
Yang J, Lu Q, Tang Q, Chen S, Jia G. 2022. The RNA N6-methyladenosine
demethylase ALKBH9B modulates ABA responses in Arabidopsis. Journal of Integrative Plant Biology, 64, 2361–2373.
Tao Y, Luo
H, Xu J, Cruickshank A, Zhao X, Teng F, Hathorn A, Wu X, Liu Y, Shatte T,
Jordan D, Jing H, Mace E. 2021. Extensive variation within the pan-genome of
cultivated and wild sorghum. Nature Plants, 7, 766–773.
Tello-Ruiz
M K, Naithani S, Gupta P, Olson A, Wei S, Preece J, Jiao Y, Wang B, Chougule K,
Garg P. 2021. Gramene 2021: Harnessing the power of comparative genomics and
pathways for plant research. Nucleic Acids Research, 49,
D1452–D1463.
Thomine S,
Wang R, Ward J M, Crawford N M, Schroeder J I. 2000. Cadmium and iron transport
by members of a plant metal transporter family in Arabidopsis with
homology to Nramp genes. Proceedings of the National Academy of Sciences of the United States of Ameirica, 97, 4991–4996.
Tian T,
You Q, Zhang L, Yi X, Yan H, Xu W, Su Z. 2016. SorghumFDB: Sorghum functional
genomics database with multidimensional network analysis. Database, 2016,
baw099.
Tsuboi K,
Shehzad T, Yoneda J, Uraguchi S, Ito Y, Shinsei L, Morita S, Rai H, Nagasawa N,
Asari K. 2016. Genetic analysis of cadmium accumulation in shoots of sorghum
landraces. Crop Science, 57, 22.
Varoquaux
N, Cole B, Gao C, Pierroz G, Baker C R, Patel D, Madera M, Jeffers T,
Hollingsworth J, Sievert J, Yoshinaga Y, Owiti J A, Singan V R, DeGraaf S, Xu
L, Blow M J, Harrison M J, Visel A, Jansson C, Niyogi K K, et al. 2019. Transcriptomic analysis of field-droughted sorghum from seedling to
maturity reveals biotic and metabolic responses. Proceedings of the National Academy of Sciences of the United States of Ameirica, 116, 27124–27132.
Walker A
M, Hayes R P, Youn B, Vermerris W, Sattler S E, Kang C. 2013. Elucidation of
the structure and reaction mechanism of sorghum hydroxycinnamoyltransferase and
its structural relationship to other coenzyme A-dependent transferases and
synthases. Plant Physiology, 162, 640.
Wang H,
Chen G, Zhang H, Liu B, Yang Y, Qin L, Chen E, Guan Y. 2014. Identification of
QTLs for salt tolerance at germination and seedling stage of Sorghum bicolor L. Moench. Euphytica, 196, 117–127.
Wang H,
Wang R, Liu B, Yang Y, Guan Y. 2020a. QTL analysis of salt tolerance in Sorghum
bicolor during whole-plant growth stages. Plant Breeding, 139,
455–465.
Wang H,
Wang R, Liu B, Yang Y, Qin L, Chen E, Zhang H, Guan Y. 2020b. QTL analysis of
salt tolerance in Sorghum bicolor during whole-plant growth stages. Plant Breeding, 139, 455–465.
Wang H,
Zhang H, Liu B, Yang Y, Qin L, Chen E, Guan Y. 2020c. Effects of harvesting at
different growth stage on agronomic and nutritional quality related traits of
sweet sorghum. Scientia Agricultura Sinica, 2, 640–610. (in
Chinese)
Wang S,
Huang D Y, Zhu Q H, Li B Z, Zhang Q. 2021. Agronomic traits and ionomics
influence on Cd accumulation in various sorghum (Sorghum bicolor (L.) Moench) genotypes. Ecotoxicology and Environmental Safety, 214, 112019.
Wang Y, Lu
W, Deng D. 2016. Bioinformatic landscapes for plant transcription factor system
research. Planta, 243, 297–304.
Wang Y,
Ping J, Niu H, Chu J, Lü X, Li H, Zhang F. 2019. Evaluation of identification
and classification index for drought resistance at middle and late growth stage
in grain sorghum germplasms. Scientia Agricultura Sinica, 52,
4039–4049. (in Chinese)
Woldesemayat
A A, Modise D M, Gemeildien J, Ndimba B K, Christoffels A. 2018. Cross-species
multiple environmental stress responses: An integrated approach to identify
candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species. PLoS ONE, 13,
e0192678.
Wu F, Yang
J, Zheng H, Zhang F, Li S, Chen Z, Sui N. 2022. Interactions between the soil
bacterial community assembly and gene regulation in salt-sensitive and
salt-tolerant sweet sorghum cultivars. Land Degradation & Development, 33, 2985–2997.
Wu X, Liu
Y, Luo H, Shang L, Leng C, Liu Z, Li Z, Lu X, Cai H, Hao H, Jing H C. 2022.
Genomic footprints of sorghum domestication and breeding selection for multiple
end uses. Molecular Plant, 15, 537–551.
Wu Y, Guo
T, Mu Q, Wang J, Li X, Wu Y, Tian B, Wang M L, Bai G, Perumal R, Trick H N,
Bean S R, Dweikat I M, Tuinstra M R, Morris G, Tesso T T, Yu J, Li X. 2019.
Allelochemicals targeted to balance competing selections in African
agroecosystems. Nature Plants, 5, 1229–1236.
Xiao Q,
Huang T, Zhou C, Chen W, Cha J, Wei X, Xing F, Qian M, Ma Q, Duan H, Liu Z.
2023. Characterization of subunits encoded by SnRK1 and dissection of
combinations among these subunits in sorghum (Sorghum bicolor L.). Journal
of Integrative Agriculture, 22, 642–649.
Xie P, Shi
J, Tang S, Chen C, Khan A, Zhang F, Xiong Y, Li C, He W, Wang G, Lei F, Wu Y,
Xie Q. 2019. Control of bird feeding behavior by Tannin1 through
modulating the biosynthesis of polyphenols and fatty acid-derived volatiles in
sorghum. Molecular Plant, 12, 1315–1324.
Xie Q, Xu
Z. 2019. Sustainable agriculture: From sweet sorghum planting and ensiling to
ruminant feeding. Molecular Plant, 12, 603–606.
Xin Y, Gao
L, Hu W, Gao Q, Yang B, Zhou J, Xu C. 2022. Genome-wide association study based
on plant height and drought-tolerance indices reveals two candidate
drought-tolerance genes in sweet sorghum. Sustainability, 14,
14339.
Xin Z,
Wang M, Cuevas H E, Chen J, Harrison M, Pugh N A, Morris G. 2021. Sorghum
genetic, genomic, and breeding resources. Planta, 254, 114.
Xu L, Hu
X, Yao Y, Xing S, Liu Y. 2017. Cloning and expression analysis of WRKY
transcription factor gene in sweet sorghum. Southwest China Journal of Agricultural Sciences, 30, 2429–2435. (in
Chinese)
Xu L,
Naylor D, Dong Z, Simmons T, Pierroz G, Hixson K K, Kim Y M, Zink E M,
Engbrecht K M, Wang Y, Gao C, DeGraaf S, Madera M A, Sievert J A, Hollingsworth
J, Birdseye D, Scheller H V, Hutmacher R, Dahlberg J, Jansson C, et al. 2018. Drought delays development of the sorghum root microbiome and enriches
for monoderm bacteria. Proceedings of the National Academy of Sciences of the United States of Ameirica, 115, E4284–E4293.
Xu W,
Subudhi P K, Crasta O R, Rosenow D T, Mullet J E, Nguyen H T. 2000. Molecular
mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome, 43, 461–469.
Yan X, Liu
X, Cui H, Zhao M. 2022. The roles of microRNAs in regulating root formation and
growth in plants. Journal of Integrative Agriculture, 21,
901–916.
Yang Z, Li
J L, Liu L N, Xie Q, Sui N. 2020. Photosynthetic regulation under salt stress
and salt-tolerance mechanism of sweet sorghum. Frontiers in Plant Science, 10, 1722.
Yang Z,
Zheng H, Wei X, Song J, Wang B, Sui N. 2018. Transcriptome analysis of sweet
sorghum inbred lines differing in salt tolerance provides novel insights into
salt exclusion by roots. Plant and Soil, 430,
423–439.
Yoshida T,
Christmann A, Yamaguchi-Shinozaki K, Grill E, Fernie A R. 2019. Revisiting the
basal role of ABA – roles outside of stress. Trends in Plant Science, 24, 625–635.
Yu Z, Duan
X, Luo L, Dai S, Ding Z, Xia G. 2020. How plant hormones mediate salt stress
responses. Trends in Plant Science, 25,
1117–1130.
Zelm E V,
Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71, 403–433.
Zhang D,
Zeng T, Liu X, Gao C, Li Y, Li C, Song Y, Shi Y, Wang T, Li Y. 2019.
Transcriptomic profiling of sorghum leaves and roots responsive to drought
stress at the seedling stage. Journal of Integrative Agriculture, 18,
1980–1995.
Zhang F,
Wang Y, Zhu K, Zhang Z, Zhu Z, Lu F, Zou J. 2019. Comparative transcriptome
analysis of different salt tolerance sorghum (Sorghum bicolor L.
Moench) under salt stress. Scientia Agricultura Sinica, 52,
4002–4015. (in Chinese)
Zhang H,
Shi W L, You J F, Bian M D, Qin X M, Yu H, Liu Q, Ryan P R, Yang Z M. 2015.
Transgenic Arabidopsis thaliana plants expressing a β-1,3-glucanase from
sweet sorghum (Sorghum bicolor L.) show reduced callose
deposition and increased tolerance to aluminium toxicity. Plant, Cell & Environment, 38, 1178–1188.
Zhang H,
Wang R, Xu M, Liu B, Chen E, Huang R, Zhou Y, Wang H. 2019. Effects of
heterogeneous salinity across rhizosphere on the growth of sorghum seedlings. Scientia Agricultura Sinica, 52, 4110–4118. (in Chinese)
Zhang H,
Yu F, Xie P, Sun S, Qiao X, Tang S, Chen C, Yang S, Mei C, Yang D, Wu Y, Xia R,
Li X, Lu J, Liu Y, Xie X, Ma D, Xu X, Liang Z, Feng Z, et al. 2023.
A Gγ protein regulates alkaline sensitivity in crops. Science, 379,
eade8416.
Zhang H,
Zhao Y, Zhu J K. 2020. Thriving under stress: How plants balance growth and the
stress response. Developmental Cell, 55, 529–543.
Zhang K,
Zhang Z, Lu F, Wang Y, Ke F, Zhu Z, Duan Y, Wang J, Wu H, Zhang F. 2022. Bulked
segregant analysis-sequencing identification of candidate genes for salt
tolerance at the seedling stage of sorghum (Sorghum bicolor). Plant Breeding, 141, 366–378.
Zheng H,
Gao Y, Sui Y, Dang Y, Wu F, Wang X, Zhang F, Du X, Sui N. 2023. R2R3 MYB
transcription factor SbMYBHv33 negatively regulates sorghum biomass
accumulation and salt tolerance. Theoretical and Applied Genetics, 136, 1–14.
Zheng H,
Sun X, Li J, Song Y, Song J, Wang F, Liu L, Zhang X, Sui N. 2021. Analysis of N6-methyladenosine
reveals a new important mechanism regulating the salt tolerance of sweet
sorghum. Plant Science, 304, 110801.
Zhou M,
Zhao B, Li H, Ren W, Zhang Q, Liu Y, Zhao J. 2022. Comprehensive analysis of
MAPK cascade genes in sorghum (Sorghum bicolor L.) reveals SbMPK14 as a potential target for drought sensitivity regulation. Genomics, 114,
110311.
Zhou Y,
Wang D, Lu Z, Wang N, Wang Y, Li F, Xu W, Huang R. 2014. Effects of drought
stress on photosynthetic characteristics and endogenous hormone ABA and CTK
contents in green-stayed sorghum. Scientia Agricultura Sinica, 47, 655–663. (in Chinese)
Zhu J K.
2016. Abiotic stress signaling and responses in plants. Cell, 167,
313–324.
Zhuang P,
Shu W S, Li Z A, Liao B, Li J T, Shao J S. 2009. Removal of metals by sorghum
plants from contaminated land. Journal of Environmental Sciences, 21, 1432–1437.
Zika M,
Erb K H. 2009. The global loss of net primary production resulting from human-induced
soil degradation in drylands. Ecological Economics, 69,
310–318.
Zou J.
2020. New research progress on sorghum breeding and cultivation techniques. Scientia Agricultura Sinica, 53, 2769–2773. (in Chinese)
Zu Y,
Ibadeti K, Sun Q, Pan J, Lu M. 2015. The analysis on the cloning and expression
of SbNAC0584 gene in Sorghum bicolor L. Journal of
Shandong Agricultural University (Natural Science), 46, 497–502. (in
Chinese)
|