Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (3): 741-768    DOI: 10.1016/j.jia.2023.12.023
Review Advanced Online Publication | Current Issue | Archive | Adv Search |

Molecular mechanisms of stress resistance in sorghum: Implications for crop improvement strategies

Hongxiang Zheng1*, Yingying Dang1*, Xianmin Diao2#, Na Sui1#

1 Shandong Provincial Key Laboratory of Plant Stress/College of life Sciences, Shandong Normal University, Jinan 250014, China

2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  在自然条件下,干旱、盐、极端温度、重金属污染等非生物胁迫是限制作物生长及产量的主要环境因素。高粱是一种光合高效的C4草类植物,由于其出色的抗逆性,能够在各种不利环境下生长。研究高粱的抗逆机制,可为培育抗逆作物提供理论基础,并且有利于利用边际土壤,保证正常耕地和粮食安全。在本综述中,我们讨论了自然环境下高粱对干旱胁迫、盐碱胁迫、温度胁迫以及对土壤重金属胁迫的适应机制,包括高粱在抵抗不同非生物胁迫中特殊性的反应,高粱抗逆种质的筛选及相关基因、QTL的鉴定及功能研究。此外,我们还讨论了当前报道的不同胁迫耐受性高粱种质的应用潜力,强调了在边际土壤种植及推广高粱的可行性。

Abstract  

Abiotic stresses, such as drought, salt, extreme temperatures, and heavy metal pollution, are the main environmental factors that limit crop growth and yield.  Sorghum, a C4 grass plant with high photosynthetic efficiency, can grow in adverse environmental conditions due to its excellent stress resistance characteristics.  Therefore, unraveling the stress-resistance mechanism of sorghum could provide a theoretical basis for developing and cultivating various stress-resistant crops.  This understanding could also help to create a conducive environment for using marginal soil in agriculture and ensuring food security.  In this review, we discuss the adaptation mechanisms of sorghum under drought, salinity, temperature, and soil heavy metal stresses, the specific response to stress, the screening of sorghum-resistant germplasm, and the identification and functional analysis of the relevant genes and quantitative trait loci (QTL).  In addition, we discuss the application potential of different stress-tolerant sorghum germplasms reported to date and emphasize the feasibility and potential use in developing and promoting highly stress-tolerant sorghum in marginal soil.

Keywords:  abiotic stress       C4 plants        QTL        sorghum        stress resistance        yield stability   
Online: 09 August 2023   Accepted: 13 November 2023
Fund: We are grateful for financial support from the National Key R&D Program of China (2022YFD1201702), the National Natural Science Foundation of China (32272040), and the Agricultural Fine Seed Project of Shandong Province, China (2021LZGC006).
About author:  #Correspondence Xianmin Diao, E-mail: diaoxianmin@caas.cn; Na Sui, E-mail: suina@sdnu.edu.cn

Cite this article: 

Hongxiang Zheng, Yingying Dang, Xianmin Diao, Na Sui. 2024.

Molecular mechanisms of stress resistance in sorghum: Implications for crop improvement strategies . Journal of Integrative Agriculture, 23(3): 741-768.

Abd El-Mageed T A, Rady M O A, Abd El-Wahed M H, Abd El-Mageed S A, Omran W M, Aljuaid B S, El-Shehawi A M, El-Tahan A M, El-Saadony M T, Abdou N M. 2022. Consecutive seasonal effect on yield and water productivity of drip deficit irrigated sorghum in saline soils. Saudi Journal of Biological Sciences, 29, 2683–2690.

Abou-Elwafa S F, Shehzad T. 2018. Genetic identification and expression profiling of drought responsive genes in sorghum. Environmental and Experimental Botany, 155, 12–20.

Adamczyk-Szabela D, Markiewicz J, Wolf W M. 2015. Heavy metal uptake by herbs. IV. Influence of soil pH on the content of heavy metals in Valeriana officinalis L. Water, Air, & Soil Pollution, 226, 1–8.

Aregawi K, Shen J, Pierroz G, Sharma M K, Dahlberg J, Owiti J, Lemaux P G. 2022. Morphogene-assisted transformation of Sorghum bicolor allows more efficient genome editing. Plant Biotechnology Journal, 20, 748–760.

Awika H O, Hays D B, Mullet J E, Rooney W L, Weers B D. 2017. QTL mapping and loci dissection for leaf epicuticular wax load and canopy temperature depression and their association with QTL for staygreen in Sorghum bicolor under stress. Euphytica, 213, 207.

Bailey-Serres J, Parker J E, Ainsworth E A, Oldroyd G E D, Schroeder J I. 2019. Genetic strategies for improving crop yields. Nature, 575, 109–118.

Baillo E H, Kimotho R N, Zhang Z, Xu P. 2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 10, 771.

Belton P S, Taylor J R N. 2004. Sorghum and millets: Protein sources for Africa. Trends in Food Science & Technology, 15, 94–98.

Blumwald E. 2000. Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology, 12, 431–434.

Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J. 2009. The ‘inner circle’ of the cereal genomes. Current Opinion in Plant Biology, 12, 119–125.

Boyles R E, Brenton Z W, Kresovich S. 2019. Genetic and genomic resources of sorghum to connect genotype with phenotype in contrasting environments. The Plant Journal, 97, 19–39.

Cao X, Sun B, Chen H, Zhou J, Song X, Liu X, Song X, Liu X, Deng X, Li X, Zhao Y, Zhang J, Li J. 2021. Approaches and research progresses of marginal land productivity expansion and ecological benefit improvement in China. Bulletin of Chinese Academy of Sciences, 3, 1664–1676. (in Chinese)

Chadalavada K, Kumari B D R, Kumar T S. 2021. Sorghum mitigates climate variability and change on crop yield and quality. Planta, 253, 113.

Chaves M M, Oliveira M M. 2004. Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. Journal of Experimental Botany, 55, 2365–2384.

Chen C, Shang X, Sun M, Tang S, Khan A, Zhang D, Yan H, Jiang Y, Yu F, Wu Y, Xie Q. 2022. Comparative transcriptome analysis of two sweet sorghum genotypes with different salt tolerance abilities to reveal the mechanism of salt tolerance. International Journal of Molecular Sciences, 23, 2272.

Chen J, Chopra R, Hayes C, Morris G, Marla S, Burke J, Xin Z, Burow G. 2017. Genome-wide association study of developing leaves’ heat tolerance during vegetative growth stages in a sorghum association panel. The Plant Genome, 10, 1–15.

Chen J, Xu W, Velten J, Xin Z, Stout J. 2012. Characterization of maize inbred lines for drought and heat tolerance. Journal of Soil and Water Conservation, 67, 354.

Chen K, Li G J, Bressan R A, Song C P, Zhu J K, Zhao Y. 2020. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 62, 25–54.

Chiluwal A, Bheemanahalli R, Kanaganahalli V, Boyle D, Perumal R, Pokharel M, Oumarou H, Jagadish S V K. 2020. Deterioration of ovary plays a key role in heat stress-induced spikelet sterility in sorghum. Plant, Cell & Environment, 43, 448–462.

Chiluwal A, Bheemanahalli R, Perumal R, Asebedo A R, Bashir E, Lamsal A, Sebela D, Shetty N J, Jagadish S V K. 2018. Integrated aerial and destructive phenotyping differentiates chilling stress tolerance during early seedling growth in sorghum. Field Crops Research, 227, 1–10.

Chopra R, Burow G, Burke J J, Gladman N, Xin Z. 2017. Genome-wide association analysis of seedling traits in diverse sorghum germplasm under thermal stress. BMC Plant Biology, 17, 12.

Chopra R, Burow G, Hayes C, Emendack Y, Xin Z, Burke J. 2015. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress. BMC Genomics, 16, 1040.

Crasta O R, Xu W W, Rosenow D T, Mullet J, Nguyen H T. 1999. Mapping of post-flowering drought resistance traits in grain sorghum: Association between QTLs influencing premature senescence and maturity. Molecular and General Genetics, 262, 579–588.

Darabi S A S, Almodares A, Ebrahimi M. 2017. In silico study shows arsenic induces P1B ATPase gene family as cation transporter by abscisic acid signaling pathway in seedling of Sorghum bicolor. Acta Physiologiae Plantarum, 39, 1–12.

Demidchik V, Maathuis F J M. 2007. Physiological roles of nonselective cation channels in plants: From salt stress to signalling and development. New Phytologist, 175, 387–404.

Desa U. 2019. World Population Prospects 2019: Highlights. United Nations Department for Economic and Social Affairs, New York, USA. p. 125.

Ding T, Zhen Y, Wei X, Yuan F, Yin S, Wang B. 2018. Evaluation of salt-tolerant germplasm and screening of the salt-tolerance traits of sweet sorghum in the germination stage. Functional Plant Biology, 45, 1073–1081.

Do P T, Lee H, Mookkan M, Folk W R, Zhang Z J. 2016. Rapid and efficient Agrobacterium-mediated transformation of sorghum (Sorghum bicolor) employing standard binary vectors and bar gene as a selectable marker. Plant Cell Reports, 35, 2065–2076.

Dong H, Kong X, Luo Z, Li W, Xin C. 2010. Unequal salt distribution in the root zone increases growth and yield of cotton. European Journal of Agronomy, 33, 285–292.

Dong M, Kuerban Z, Lü P, Ye K, Hou S, Liu G. 2019. Transcriptome analysis and gene mining of salt tolerance in sorghum seedlings (Sorghum bicolor L. Moench). Scientia Agricultura Sinica, 52, 3987–4001. (in Chinese)

Duvick J, Fu A, Muppirala U, Sabharwal M, Wilkerson M D, Lawrence C J, Lushbough C, Brendel V. 2007. PlantGDB: A resource for comparative plant genomics. Nucleic Acids Research, 36, D959–D965.

E Z G, Li T T, Chen C, Wang L. 2018. Genome-wide survey and expression analysis of P1B-ATPases in rice, maize and sorghum. Rice Science, 25, 208–217.

Edema R, Amoding G. 2015. Validating simple sequence repeat (SSR) markers for introgression of stay-green quantitative trait loci (QTLs) into elite sorghum lines. African Journal of Biotechnology, 14, 3101–3111.

Farré I, Faci J M. 2007. Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agricultural Water Management, 83, 135–143.

Feng J, Jia W, Lv S, Bao H, Miao F, Zhang X, Wang J, Li J, Li D, Zhu C, Li S, Li Y. 2018. Comparative transcriptome combined with morpho-physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes. Plant Biotechnology Journal, 16, 558–571.

Fernandez M G C, Schoenbaum G R, Goggi A S. 2014. Novel germplasm and screening methods for early cold tolerance in sorghum. Crop Science, 54, 2631–2638.

Gao C, Montoya L, Xu L, Madera M, Hollingsworth J, Purdom E, Singan V, Vogel J, Hutmacher R B, Dahlberg J A, Coleman-Derr D, Lemaux P G, Taylor J W. 2020. Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. Nature Communications, 11, 34.

George-Jaeggli B, Jordan D R, van Oosterom E J, Hammer G L. 2011. Decrease in sorghum grain yield due to the dw3 dwarfing gene is caused by reduction in shoot biomass. Field Crops Research, 124, 231–239.

Ghori N H, Ghori T, Hayat, M Q, Imadi S R, Gul A, Ozturk M. 2019. Heavy metal stress and responses in plants. Annals of the American Thoracic Society, 16, 1807–1828.

Gilliham M, Able J A, Roy S J. 2017. Translating knowledge about abiotic stress tolerance to breeding programmes. The Plant Journal, 90, 898–917.

Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella L R, Xu G, Chao D Y, Li J, Wang P Y, Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu J K. 2020. Plant abiotic stress response and nutrient use efficiency. Science China (Life Sciences), 63, 635–674.

Guden B, Erdurmus C, Erdal S, Uzun B. 2021. Evaluation of sweet sorghum genotypes for bioethanol yield and related traits. Biofuels, Bioproducts and Biorefining, 15, 545–562.

Hadebe S T, Modi A T, Mabhaudhi T. 2017. Drought tolerance and water use of cereal crops: A focus on sorghum as a food security crop in sub-Saharan Africa. Journal of Agronomy and Crop Science, 203, 177–191.

Hamza N B, Sharma N, Tripathi A, Sanan-Mishra N. 2016. MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expression Patterns (A: Section of Mechanisms of Development), 20, 88–98.

Han J, Wang P, Wang Q, Lin Q, Chen Z, Yu G, Miao C, Dao Y, Wu R, Schnable J C, Tang H, Wang K. 2020. Genome-wide characterization of DNase I-hypersensitive sites and cold response regulatory landscapes in grasses. The Plant Cell, 32, 2457–2473.

Haussmann B, Mahalakshmi V, Reddy B, Seetharama N, Hash C, Geiger H. 2002. QTL mapping of stay-green in two sorghum recombinant inbred populations. Theoretical and Applied Genetics, 106, 133–142.

Hostetler A N, Govindarajulu R, Hawkins J S. 2021. QTL mapping in an interspecific sorghum population uncovers candidate regulators of salinity tolerance. Plant Stress, 2, 100024.

Hussain D, Haydon M J, Wang Y, Wong E, Sherson S M, Young J, Camakaris J, Cobbett H C S. 2004. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell, 16, 1327–1339.

Jagadish S V K. 2020. Heat stress during flowering in cereals - Effects and adaptation strategies. New Phytologist, 226, 1567–1572.

Jamil A, Riaz S, Ashraf M, Foolad M R. 2011. Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences, 30, 435–458.

Ji G, Yan Y, Peng L, Du R, Fu C. 2014. Absorption of different sorghum accessions on heavy metals in polluted soil. Chinese Journal of Eco-Agriculture, 22, 185–192. (in Chinese)

Jia W, Lin K, Lou T, Feng J, Li Y. 2021. Comparative analysis of sRNAs, degradome and transcriptomics in sweet sorghum reveals the regulatory roles of miRNAs in Cd accumulation and tolerance. Planta, 254, 16.

Kadier Y, Zu Y Y, Dai Q M, Song G, Lin S W. 2017. Genome-wide identification, classification and expression analysis of NAC family of genes in sorghum [Sorghum bicolor (L.) Moench]. Plant Growth Regulation, 83, 301–312.

Kausar A, Ashraf M Y, Ali I, Niaz M, Abbass Q. 2011. Evaluation of sorghum varieties/lines for salt tolerance using physiological indices as screening tool. Pakistan Journal of Botany, 44, 47–52.

Kazemi H, Sabouri A, Aalami A, Abedi A. 2023. A comprehensive meta-analysis to identify the responsive genes in sorghum under salinity and drought stresses (Sorghum bicolor). Journal of Plant Growth Regulation, 42, 7096–7115.

Kebede H, Subudhi P K, Rosenow D T, Nguyen H T. 2001. Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theoretical and Applied Genetics, 103, 266–276.

KhavaninZade A R, Sodaeizadeh H, Ghalibaf M A, Veroustraete F, Balzarolo M. 2022. Amendment with halophytes and wind deposit allow subsequent cultivation of sorghum on a saline-sodic soil in the arid region of Yazd (Iran). International Journal of Phytoremediation, 24, 1491–1504.

Knoll J, Ejeta G. 2008. Marker-assisted selection for early-season cold tolerance in sorghum: QTL validation across populations and environments. Theoretical and Applied Genetics, 116, 541–553.

Krishnamurthy P, Ranathunge K, Nayak S, Schreiber L, Mathew M K. 2011. Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). Journal of Experimental Botany, 62, 4215–4228.

Kumar S A, Kumari P H, Nagaraju M, Reddy P S, Dheeraj T D, Mack A, Katam R, Kishor P B K. 2022. Genome-wide identification and multiple abiotic stress transcript profiling of potassium transport gene homologs in Sorghum bicolor. Frontiers in Plant Science, 13, 965530.

Kumari P H, Kumar S A, Ramesh K, Reddy P S, Nagaraju M, Prakash A B, Shah T, Henderson A, Srivastava R K, Rajasheker G, Chitikineni A, Varshney R K, Rathnagiri P, Narasu M L, Kishor P B K. 2018. Genome-wide identification and analysis of Arabidopsis sodium proton antiporter (NHX) and human sodium proton exchanger (NHE) Homologs in Sorghum bicolor. Genes, 9, 236.

Lamaoui M, Jemo M, Datla R, Bekkaoui F. 2018. Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6, 26.

Li H, Han X, Liu X, Zhou M, Ren W, Zhao B, Ju C, Liu Y, Zhao J. 2019. A leucine-rich repeat-receptor-like kinase gene SbER2-1 from sorghum (Sorghum bicolor L.) confers drought tolerance in maize. BMC Genomics, 20, 1–15.

Li H, Testerink C, Zhang Y. 2021. How roots and shoots communicate through stressful times. Trends in Plant Science, 26, 940–952.

Li S, Tan T, Fan Y, Raza M A, Wang Z, Wang B, Zhang J, Tan X, Chen P, Shafiq I, Yang W, Yang F. 2022. Responses of leaf stomatal and mesophyll conductance to abiotic stress factors. Journal of Integrative Agriculture, 21, 2787–2804.

Lin J, Guo H, Dong J, Yang K, Zhang H, Li Z, Zhao C, Xu J. 2019. Identification and expression analysis of AGO protein family genes in Sorghum bicolor. Journal of Nuclear Agricultural Sciences, 33, 1291. (in Chinese)

Liu X, Li Z, Jiang Z, Zhao Y, Peng J, Jin J, Guo H, Luo J. 2011. LSD: A leaf senescence database. Nucleic Acids Research, 39, D1103–D1107.

Liu Y, Wang Z, Wu X, Zhu J, Luo H, Tian D, Li C, Luo J, Zhao W, Hao H. 2021. SorGSD: Updating and expanding the sorghum genome science database with new contents and tools. Biotechnology for Biofuels, 14, 1–9.

Liu Y, Yao X, Lv L, Lei Y, Zhao D. 2016. Cloning of SbSKIP gene from sorghum (Sorghum bicolor) and analysis of drought-resistant function in tobacco (Nicotiana tabacum). Journal of Agricultural Biotechnology, 24, 1500–1511. (in Chinese)

Lu M, Wang Z, Fu S, Yang G, Shi M, Lu Y, Wang X, Xia J. 2017. Functional characterization of the SbNrat1 gene in sorghum. Plant Science, 262, 18–23.

Luo H, Zhao W, Wang Y, Xia Y, Wu X, Zhang L, Tang B, Zhu J, Fang L, Du Z, Bekele W A, Tai S, Jordan D R, Godwin I D, Snowdon R J, Mace E S, Luo J, Jing H C. 2016. SorGSD: A sorghum genome SNP database. Biotechnology for Biofuels, 9, 6.

Ma L, Ye J, Yang Y, Lin H, Yue L, Luo J, Long Y, Fu H, Liu X, Zhang Y. 2019. The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress. Developmental Cell, 48, 697–709.

Mace E, Innes D, Hunt C, Wang X, Tao Y, Baxter J, Hassall M, Hathorn A, Jordan D. 2019. The sorghum QTL Atlas: A powerful tool for trait dissection, comparative genomics and crop improvement. Theoretical and Applied Genetics, 132, 751–766.

Mace E S, Singh V, Van Oosterom E J, Hammer G L, Hunt C H, Jordan D R. 2012. QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theoretical and Applied Genetics, 124, 97–109.

Mace E S, Tai S, Gilding E K, Li Y, Prentis P J, Bian L, Campbell B C, Hu W, Innes D J, Han X, Cruickshank A, Dai C, Frère C, Zhang H, Hunt C H, Wang X, Shatte T, Wang M, Su Z, Li J, et al. 2013. Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nature Communications, 4, 2320.

Magalhaes J V, Liu J, Guimaraes C T, Lana U G, Alves V M, Wang Y H, Schaffert R E, Hoekenga O A, Pineros M A, Shaff J E. 2007. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics, 39, 1156–1161.

Maheshwari P, Kummari D, Palakolanu S R, Tejaswi U N, Nagaraju M, Rajasheker G, Jawahar G, Jalaja N, Rathnagiri P, Kishor P B K. 2019. Genome-wide identification and expression profile analysis of nuclear factor Y family genes in Sorghum bicolor L. (Moench). PLoS ONE, 14, e0222203.

Makita Y, Shimada S, Kawashima M, Kondou-Kuriyama T, Toyoda T, Matsui M. 2015. MOROKOSHI: Transcriptome database in Sorghum bicolor. Plant and Cell Physiology, 56, e6.

Mao C, Lu S, Lv B, Zhang B, Shen J, He J, Luo L, Xi D, Chen X, Ming F. 2017. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis Plant Physiology, 174, 1747–1763.

Marka N, Reddy P S, Kumar S A, Kumar A, Kishor P B K. 2020. Genome-wide identification and transcriptional profiling of small heat shock protein gene family under diverse abiotic stress conditions in Sorghum bicolor (L.). International Journal of Biological Macromolecules, 142, 822–834.

Maulana F, Weerasooriya D, Tesso T. 2017. Sorghum landrace collections from cooler regions of the world exhibit magnificent genetic differentiation and early season cold tolerance. Frontiers in Plant Science, 8, 756.

Melo J O, Martins L G, Barros B A, Pimenta M R, Lana U G, Duarte C E, Pastina M M, Guimaraes C T, Schaffert R E, Kochian L V. 2019. Repeat variants for the SbMATE transporter protect sorghum roots from aluminum toxicity by transcriptional interplay in cis and trans. Proceedings of the National Academy of Sciences of the United States of America, 116, 313–318.

Meng X, Liang Z, Dai X, Zhang Y, Mahboub S, Ngu D W, Roston R L, Schnable J C. 2021. Predicting transcriptional responses to cold stress across plant species. Proceedings of the National Academy of Sciences of United States of America, 118, e2026330118.

Metwali E, Gowayed S, Al-Maghrabi O A, Mosleh Y Y. 2013. Corresponding author: Evaluation of toxic effect of copper and cadmium on growth, physiological traits and protein profile of wheat (Triticum aestivium L.), maize (Zea mays L.) and sorghum (Sorghum bicolor L.). World Applied Sciences Journal, 21, 301–314.

Mishra D, Kumar S, Mishra B N. 2021. An overview of morpho-physiological, biochemical, and molecular responses of sorghum towards heavy metal stress. In: De Voogt P, ed., Reviews of Environmental Contamination and Toxicology. vol. 256. Springer International Publishing, Cham. pp. 155–177.

Moghimi N, Desai J S, Bheemanahalli R, Impa S M, Vennapusa A R, Sebela D, Perumal R, Doherty C J, Jagadish S V K. 2019. New candidate loci and marker genes on chromosome 7 for improved chilling tolerance in sorghum. Journal of Experimental Botany, 70, 3357–3371.

Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. 2009. Defect in non-yellow coloring 3, an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. The Plant Journal, 59, 940–952.

Muhammad J H, Muhammad A M, Sana Ur R, Muhammad A, Harun G, Imran K, Muhammad W, Mukhtar A, Ghulam A S, Yan P, Zhou L. 2020. Effect of cadmium toxicity on growth, oxidative damage, antioxidant defense system and cadmium accumulation in two sorghum cultivars. Plants, 9, 1575.

Munns R, James R A, Läuchli A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025–1043.

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651.

Nakamura Y, Kudo T, Terashima S, Saito M, Nambara E, Yano K. 2017. CATchUP: A web database for spatiotemporally regulated genes. Plant and Cell Physiology, 58, e3.

Nazli R I. 2020. Evaluation of different sweet sorghum cultivars for bioethanol yield potential and bagasse combustion characteristics in a semiarid Mediterranean environment. Biomass and Bioenergy, 139, 105624.

Ndlovu E, van Staden J, Maphosa M. 2021. Morpho-physiological effects of moisture, heat and combined stresses on Sorghum bicolor [Moench (L.)] and its acclimation mechanisms. Plant Stress, 2, 100018.

Olanrewaju O S, Babalola O O. 2022. The rhizosphere microbial complex in plant health: A review of interaction dynamics. Journal of Integrative Agriculture, 21, 2168–2182.

Ortiz D, Hu J, Fernandez M G S. 2017. Genetic architecture of photosynthesis in Sorghum bicolor under non-stress and cold stress conditions. Journal of Experimental Botany, 68, 4545–4557.

Parra-Londono S, Fiedler K, Kavka M, Samans B, Wieckhorst S, Zacharias A, Uptmoor R. 2018. Genetic dissection of early-season cold tolerance in sorghum: Genome-wide association studies for seedling emergence and survival under field and controlled environment conditions. Theoretical and Applied Genetics, 131, 581–595.

Pavli O I, Ghikas D V, Katsiotis A, Skaracis G N. 2011. Differential expression of heat shock protein genes in sorghum (Sorghum bicolor L.) genotypes under heat stress. Australian Journal of Crop Science, 5, 511–515.

Peng Z, Fan N, Bai W. 2022. Responses of different sorghum germplasm resources to salt stress. Seeds, 41, 112–116, 121.

Popescu A, Dinu T A, Stoian E. 2018. Sorghum - An important cereal in the world, in the European Union and Romania. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 18, 271–284.

Prasad P V V, Djanaguiraman M, Perumal R, Ciampitti I A. 2015. Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: Sensitive stages and thresholds for temperature and duration. Frontiers in Plant Science, 6, 820.

Prasad V B R, Govindaraj M, Djanaguiraman M, Djalovic I, Shailani A, Rawat N, Singla-Pareek S L, Pareek A, Prasad P V V. 2021. Drought and high temperature stress in sorghum: Physiological, genetic, and molecular insights and breeding approaches. International Journal of Molecular Sciences, 22, 9826.

Proietti I, Frazzoli C, Mantovani A. 2015. Exploiting nutritional value of staple foods in the world’s semi-arid areas: Risks, benefits, challenges and opportunities of sorghum. Healthcare, 3, 172–193.

Przybylska-Balcerek A, Frankowski J, Stuper-Szablewska K. 2020. The influence of weather conditions on bioactive compound content in sorghum grain. European Food Research and Technology, 246, 13–22.

Ranganathan J, Vennard D, Waite R, Dumas P, Lipinski B, Searchinger T, Dumas P, Lipinski B. 2016. Shifting Diets for a Sustainable Food Future. World Resources Institute. pp. 66–69.

Reddy P S, Reddy D S, Sivasakthi K, Bhatnagar-Mathur P, Vadez V, Sharma K K. 2016. Evaluation of sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Frontiers in Plant Science, 7, 529.

Robertson M J, Fukai S, Ludlow M M, Hammer G L. 1993. Water extraction by grain sorghum in a sub-humid environment. I. Analysis of the water extraction pattern. Field Crops Research, 33, 81–97.

Rutayisire A, Lubadde G, Mukayiranga A, Edema R. 2021. Response of sorghum to cold stress at early developmental stage. International Journal of Agronomy, 2021, 8875205.

Sabadin P, Malosetti M, Boer M, Tardin F, Santos F, Guimaraes C, Gomide R, Andrade C, Albuquerque P, Caniato F. 2012. Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theoretical and Applied Genetics, 124, 1389–1402.

Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. 2000. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant Journal, 23, 319–327.

Saluja M, Zhu F, Yu H, Walia H, Sattler S E. 2021. Loss of COMT activity reduces lateral root formation and alters the response to water limitation in sorghum brown midrib (bmr) 12 mutant. New Phytologist, 229, 2780–2794.

Schaffasz A, Windpassinger S, Snowdon R, Wittkop B. 2019. Reproductive cold stress tolerance in sorghum F1 hybrids is a heterotic trait. Agronomy, 9, 508.

Shi X, Xiong J, Yang X, Siddique K H M, Du T. 2022. Carbon footprint analysis of sweet sorghum-based bioethanol production in the potential saline–alkali land of northwest China. Journal of Cleaner Production, 349, 131476.

Shikha M, Gowdra M M, Rao A R, Jain P A, Dash P K, Nepolean T. 2017. Comparative analysis of CDPK family in maize, Arabidopsis, rice, and sorghum revealed potential targets for drought tolerance improvement. Frontiers in Chemistry, 5, 115.

Shim S, Lee H G, Lee H, Seo P J. 2020. H3K36me2 is highly correlated with m6A modifications in plants. Journal of Integrative Plant Biology, 62, 1455–1460.

Silva T N, Thomas J B, Dahlberg J, Rhee S Y, Mortimer J C. 2022. Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. Journal of Experimental Botany, 73, 646–664.

Singh V, Nguyen C T, Oosterom E V, Chapman S C, Jordan D R, Hammer G L. 2015. Sorghum genotypes differ in high temperature responses for seed set. Field Crops Research, 171, 32–40.

Song Y, Li J, Sui Y, Han G, Zhang Y, Guo S, Sui N. 2020. The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis. Plant Molecular Biology, 102, 603–614.

Song Y, Li S, Sui Y, Zheng H, Han G, Sun X, Yang W, Wang H, Zhuang K, Kong F, Meng Q, Sui N. 2022a. SbbHLH85, a bHLH member, modulates resilience to salt stress by regulating root hair growth in sorghum. Theoretical and Applied Genetics, 135, 201–216.

Song Y, Zheng H, Sui Y, Li S, Wu F, Sun X, Sui N. 2022b. SbWRKY55 regulates sorghum response to saline environment by its dual role in abscisic acid signaling. Theoretical and Applied Genetics, 135, 2609–2625.

Soni P G, Basak N, Rai A K, Sundha P, Narjary B, Kumar P, Yadav G, Kumar S, Yadav R K. 2021. Deficit saline water irrigation under reduced tillage and residue mulch improves soil health in sorghum–wheat cropping system in semi-arid region. Scientific Reports, 11, 1880.

Staggenborg S A, Dhuyvetter K C, Gordon W B. 2008. Grain sorghum and corn comparisons: Yield, economic, and environmental responses. Agronomy Journal, 100, 1600–1604.

Su M, Li X F, Ma X Y, Peng X J, Zhao A G, Cheng L Q, Chen S Y, Liu G S. 2011. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. Plant Science, 181, 652–659.

Subedi K D, Ma B L. 2005. Nitrogen uptake and partitioning in stay-green and leafy maize hybrids. Crop Science, 45, 740–747.

Sui N, Yang Z, Liu M, Wang B. 2015. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genomics, 16, 534.

Sukumaran S, Li X, Li X, Zhu C, Bai G, Perumal R, Tuinstra M R, Prasad P V V, Mitchell S E, Tesso T T, Yu J. 2016. QTL mapping for grain yield, flowering time, and stay-green traits in sorghum with genotyping-by-sequencing markers. Crop Science, 56, 1429–1442.

Sun X, Zheng H, Li J, Liu L, Zhang X, Sui N. 2020. Comparative transcriptome analysis reveals new lncRNAs responding to salt stress in sweet sorghum. Frontiers in Bioengineering and Biotechnology, 8, 331.

Sunoj V S J, Somayanda I M, Chiluwal A, Perumal R, Prasad P V V, Jagadish S V K. 2017. Resilience of pollen and post-flowering response in diverse sorghum genotypes exposed to heat stress under field conditions. Crop Science, 57, 1658–1669.

Tack J, Lingenfelser J, Jagadish S V K. 2017. Disaggregating sorghum yield reductions under warming scenarios exposes narrow genetic diversity in US breeding programs. Proceedings of the National Academy of Sciences of the United States of America, 114, 9296–9301.

Tang J, Yang J, Lu Q, Tang Q, Chen S, Jia G. 2022. The RNA N6-methyladenosine demethylase ALKBH9B modulates ABA responses in Arabidopsis. Journal of Integrative Plant Biology, 64, 2361–2373.

Tao Y, Luo H, Xu J, Cruickshank A, Zhao X, Teng F, Hathorn A, Wu X, Liu Y, Shatte T, Jordan D, Jing H, Mace E. 2021. Extensive variation within the pan-genome of cultivated and wild sorghum. Nature Plants, 7, 766–773.

Tello-Ruiz M K, Naithani S, Gupta P, Olson A, Wei S, Preece J, Jiao Y, Wang B, Chougule K, Garg P. 2021. Gramene 2021: Harnessing the power of comparative genomics and pathways for plant research. Nucleic Acids Research, 49, D1452–D1463.

Thomine S, Wang R, Ward J M, Crawford N M, Schroeder J I. 2000. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Sciences of the United States of Ameirica, 97, 4991–4996.

Tian T, You Q, Zhang L, Yi X, Yan H, Xu W, Su Z. 2016. SorghumFDB: Sorghum functional genomics database with multidimensional network analysis. Database, 2016, baw099.

Tsuboi K, Shehzad T, Yoneda J, Uraguchi S, Ito Y, Shinsei L, Morita S, Rai H, Nagasawa N, Asari K. 2016. Genetic analysis of cadmium accumulation in shoots of sorghum landraces. Crop Science, 57, 22.

Varoquaux N, Cole B, Gao C, Pierroz G, Baker C R, Patel D, Madera M, Jeffers T, Hollingsworth J, Sievert J, Yoshinaga Y, Owiti J A, Singan V R, DeGraaf S, Xu L, Blow M J, Harrison M J, Visel A, Jansson C, Niyogi K K, et al. 2019. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proceedings of the National Academy of Sciences of the United States of Ameirica, 116, 27124–27132.

Walker A M, Hayes R P, Youn B, Vermerris W, Sattler S E, Kang C. 2013. Elucidation of the structure and reaction mechanism of sorghum hydroxycinnamoyltransferase and its structural relationship to other coenzyme A-dependent transferases and synthases. Plant Physiology, 162, 640.

Wang H, Chen G, Zhang H, Liu B, Yang Y, Qin L, Chen E, Guan Y. 2014. Identification of QTLs for salt tolerance at germination and seedling stage of Sorghum bicolor L. Moench. Euphytica, 196, 117–127.

Wang H, Wang R, Liu B, Yang Y, Guan Y. 2020a. QTL analysis of salt tolerance in Sorghum bicolor during whole-plant growth stages. Plant Breeding, 139, 455–465.

Wang H, Wang R, Liu B, Yang Y, Qin L, Chen E, Zhang H, Guan Y. 2020b. QTL analysis of salt tolerance in Sorghum bicolor during whole-plant growth stages. Plant Breeding, 139, 455–465.

Wang H, Zhang H, Liu B, Yang Y, Qin L, Chen E, Guan Y. 2020c. Effects of harvesting at different growth stage on agronomic and nutritional quality related traits of sweet sorghum. Scientia Agricultura Sinica, 2, 640–610. (in Chinese)

Wang S, Huang D Y, Zhu Q H, Li B Z, Zhang Q. 2021. Agronomic traits and ionomics influence on Cd accumulation in various sorghum (Sorghum bicolor (L.) Moench) genotypes. Ecotoxicology and Environmental Safety, 214, 112019.

Wang Y, Lu W, Deng D. 2016. Bioinformatic landscapes for plant transcription factor system research. Planta, 243, 297–304.

Wang Y, Ping J, Niu H, Chu J, Lü X, Li H, Zhang F. 2019. Evaluation of identification and classification index for drought resistance at middle and late growth stage in grain sorghum germplasms. Scientia Agricultura Sinica, 52, 4039–4049. (in Chinese)

Woldesemayat A A, Modise D M, Gemeildien J, Ndimba B K, Christoffels A. 2018. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species. PLoS ONE, 13, e0192678.

Wu F, Yang J, Zheng H, Zhang F, Li S, Chen Z, Sui N. 2022. Interactions between the soil bacterial community assembly and gene regulation in salt-sensitive and salt-tolerant sweet sorghum cultivars. Land Degradation & Development, 33, 2985–2997.

Wu X, Liu Y, Luo H, Shang L, Leng C, Liu Z, Li Z, Lu X, Cai H, Hao H, Jing H C. 2022. Genomic footprints of sorghum domestication and breeding selection for multiple end uses. Molecular Plant, 15, 537–551.

Wu Y, Guo T, Mu Q, Wang J, Li X, Wu Y, Tian B, Wang M L, Bai G, Perumal R, Trick H N, Bean S R, Dweikat I M, Tuinstra M R, Morris G, Tesso T T, Yu J, Li X. 2019. Allelochemicals targeted to balance competing selections in African agroecosystems. Nature Plants, 5, 1229–1236.

Xiao Q, Huang T, Zhou C, Chen W, Cha J, Wei X, Xing F, Qian M, Ma Q, Duan H, Liu Z. 2023. Characterization of subunits encoded by SnRK1 and dissection of combinations among these subunits in sorghum (Sorghum bicolor L.). Journal of Integrative Agriculture, 22, 642–649.

Xie P, Shi J, Tang S, Chen C, Khan A, Zhang F, Xiong Y, Li C, He W, Wang G, Lei F, Wu Y, Xie Q. 2019. Control of bird feeding behavior by Tannin1 through modulating the biosynthesis of polyphenols and fatty acid-derived volatiles in sorghum. Molecular Plant, 12, 1315–1324.

Xie Q, Xu Z. 2019. Sustainable agriculture: From sweet sorghum planting and ensiling to ruminant feeding. Molecular Plant, 12, 603–606.

Xin Y, Gao L, Hu W, Gao Q, Yang B, Zhou J, Xu C. 2022. Genome-wide association study based on plant height and drought-tolerance indices reveals two candidate drought-tolerance genes in sweet sorghum. Sustainability, 14, 14339.

Xin Z, Wang M, Cuevas H E, Chen J, Harrison M, Pugh N A, Morris G. 2021. Sorghum genetic, genomic, and breeding resources. Planta, 254, 114.

Xu L, Hu X, Yao Y, Xing S, Liu Y. 2017. Cloning and expression analysis of WRKY transcription factor gene in sweet sorghum. Southwest China Journal of Agricultural Sciences, 30, 2429–2435. (in Chinese)

Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson K K, Kim Y M, Zink E M, Engbrecht K M, Wang Y, Gao C, DeGraaf S, Madera M A, Sievert J A, Hollingsworth J, Birdseye D, Scheller H V, Hutmacher R, Dahlberg J, Jansson C, et al. 2018. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proceedings of the National Academy of Sciences of the United States of Ameirica, 115, E4284–E4293.

Xu W, Subudhi P K, Crasta O R, Rosenow D T, Mullet J E, Nguyen H T. 2000. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome, 43, 461–469.

Yan X, Liu X, Cui H, Zhao M. 2022. The roles of microRNAs in regulating root formation and growth in plants. Journal of Integrative Agriculture, 21, 901–916.

Yang Z, Li J L, Liu L N, Xie Q, Sui N. 2020. Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. Frontiers in Plant Science, 10, 1722.

Yang Z, Zheng H, Wei X, Song J, Wang B, Sui N. 2018. Transcriptome analysis of sweet sorghum inbred lines differing in salt tolerance provides novel insights into salt exclusion by roots. Plant and Soil, 430, 423–439.

Yoshida T, Christmann A, Yamaguchi-Shinozaki K, Grill E, Fernie A R. 2019. Revisiting the basal role of ABA – roles outside of stress. Trends in Plant Science, 24, 625–635.

Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. 2020. How plant hormones mediate salt stress responses. Trends in Plant Science, 25, 1117–1130.

Zelm E V, Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71, 403–433.

Zhang D, Zeng T, Liu X, Gao C, Li Y, Li C, Song Y, Shi Y, Wang T, Li Y. 2019. Transcriptomic profiling of sorghum leaves and roots responsive to drought stress at the seedling stage. Journal of Integrative Agriculture, 18, 1980–1995.

Zhang F, Wang Y, Zhu K, Zhang Z, Zhu Z, Lu F, Zou J. 2019. Comparative transcriptome analysis of different salt tolerance sorghum (Sorghum bicolor L. Moench) under salt stress. Scientia Agricultura Sinica, 52, 4002–4015. (in Chinese)

Zhang H, Shi W L, You J F, Bian M D, Qin X M, Yu H, Liu Q, Ryan P R, Yang Z M. 2015. Transgenic Arabidopsis thaliana plants expressing a β-1,3-glucanase from sweet sorghum (Sorghum bicolor L.) show reduced callose deposition and increased tolerance to aluminium toxicity. Plant, Cell & Environment, 38, 1178–1188.

Zhang H, Wang R, Xu M, Liu B, Chen E, Huang R, Zhou Y, Wang H. 2019. Effects of heterogeneous salinity across rhizosphere on the growth of sorghum seedlings. Scientia Agricultura Sinica, 52, 4110–4118. (in Chinese)

Zhang H, Yu F, Xie P, Sun S, Qiao X, Tang S, Chen C, Yang S, Mei C, Yang D, Wu Y, Xia R, Li X, Lu J, Liu Y, Xie X, Ma D, Xu X, Liang Z, Feng Z, et al. 2023. A Gγ protein regulates alkaline sensitivity in crops. Science, 379, eade8416.

Zhang H, Zhao Y, Zhu J K. 2020. Thriving under stress: How plants balance growth and the stress response. Developmental Cell, 55, 529–543.

Zhang K, Zhang Z, Lu F, Wang Y, Ke F, Zhu Z, Duan Y, Wang J, Wu H, Zhang F. 2022. Bulked segregant analysis-sequencing identification of candidate genes for salt tolerance at the seedling stage of sorghum (Sorghum bicolor). Plant Breeding, 141, 366–378.

Zheng H, Gao Y, Sui Y, Dang Y, Wu F, Wang X, Zhang F, Du X, Sui N. 2023. R2R3 MYB transcription factor SbMYBHv33 negatively regulates sorghum biomass accumulation and salt tolerance. Theoretical and Applied Genetics, 136, 1–14.

Zheng H, Sun X, Li J, Song Y, Song J, Wang F, Liu L, Zhang X, Sui N. 2021. Analysis of N6-methyladenosine reveals a new important mechanism regulating the salt tolerance of sweet sorghum. Plant Science, 304, 110801.

Zhou M, Zhao B, Li H, Ren W, Zhang Q, Liu Y, Zhao J. 2022. Comprehensive analysis of MAPK cascade genes in sorghum (Sorghum bicolor L.) reveals SbMPK14 as a potential target for drought sensitivity regulation. Genomics, 114, 110311.

Zhou Y, Wang D, Lu Z, Wang N, Wang Y, Li F, Xu W, Huang R. 2014. Effects of drought stress on photosynthetic characteristics and endogenous hormone ABA and CTK contents in green-stayed sorghum. Scientia Agricultura Sinica, 47, 655–663. (in Chinese)

Zhu J K. 2016. Abiotic stress signaling and responses in plants. Cell, 167, 313–324.

Zhuang P, Shu W S, Li Z A, Liao B, Li J T, Shao J S. 2009. Removal of metals by sorghum plants from contaminated land. Journal of Environmental Sciences, 21, 1432–1437.

Zika M, Erb K H. 2009. The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecological Economics, 69, 310–318.

Zou J. 2020. New research progress on sorghum breeding and cultivation techniques. Scientia Agricultura Sinica, 53, 2769–2773. (in Chinese)

Zu Y, Ibadeti K, Sun Q, Pan J, Lu M. 2015. The analysis on the cloning and expression of SbNAC0584 gene in Sorghum bicolor L. Journal of Shandong Agricultural University (Natural Science), 46, 497–502. (in Chinese)

No related articles found!
No Suggested Reading articles found!