Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (7): 1985-1999    DOI: 10.1016/j.jia.2022.12.002
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of genetic loci for grain yield‑related traits in the wheat population Zhongmai 578/Jimai 22
LIU Dan1, ZHAO De-hui1, 2, ZENG Jian-qi1, Rabiu Sani SHAWAI1, 3, TONG Jing-yang1, LI Ming1, LI Fa-ji1, 4, ZHOU Shuo5, HU Wen-li6, XIA Xian-chun1, TIAN Yu-bing1, ZHU Qian7, WANG Chun-ping2, WANG De-sen1, HE Zhong-hu1, 8, LIU Jin-dong1, 9#, ZHANG Yong1#
1 Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, P.R.China
2 College of Agriculture, Henan University of Science & Technology, Luoyang 471000, P.R.China
3 Department of Crop Science, Faculty of Agriculture and Agricultural Technology, Aliko Dangote University of Science and Technology Wudil, Kano 713281, Nigeria
4 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, P.R.China
5 Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P.R.China
6 Gaoyi Stock Seed Station, Shijiazhuang 053110, P.R.China
7 Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, P.R.China
8 International Maize and Wheat Improvement Center (CIMMYT), China Office, c/o CAAS, Beijing 100081, P.R.China
9 Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

发掘稳定的数量性状位点(Quantitative trait lociQTL,并开发其紧密连锁分子标记进一步提高小麦产量的重要途径本研究以中麦578/济麦22重组自交系(Recombinant inbreed linesRIL)群体262个家系为材料,通过调查两年五个环境千粒重、粒长、粒宽、平均灌浆速率、穗粒数和株高共六个产量相关性状利用50K SNP芯片基因型分析数据,构建了含有1501bin标记的遗传连锁图谱,图谱总长度2384.95 cM。利用完备区间作图法,在1D2、2A9、2B6、2D、3A2、3B2、4A5、4D、5B8、5D2、7A7、7B3)和7D5染色体上共定位到53个产量相关QTL,可解释表型变异的2.7–25.5%其中23QTL可在3个以上环境定位到,表现稳定;QKl.caas-2A.1QKl.caas-7DQKw.caas-7DQGfr.caas-2B.1QGfr.caas-4AQGfr.caas-7AQPh.caas-2A.17QTL可能是新的位点。定位到的一因多效QTL共形成六个富集区段(R1–R6),分别包含2–6QTL,位于2A2B4A5B7A7D染色体TaSus2-2BWAPO-A1分别是位于2B7A染色体上一因多效QTL的候选基因。7D染色体上的QTL富集区段内含有4个稳定QTL,分别控制千粒重、粒长、粒宽和株高,利用与其紧密连锁的侧翼标记,开发了KASP标记,在自然群体中对其效应进行了验证。本研究结果为小麦高产育种和中麦578的进一步改良提供基因和分子标记



Abstract  The identification of stable quantitative trait locus (QTL) for yield-related traits and tightly linked molecular markers is important for improving wheat grain yield. In the present study, six yield-related traits in a recombinant inbred line (RIL) population derived from the Zhongmai 578/Jimai 22 cross were phenotyped in five environments. The parents and 262 RILs were genotyped using the wheat 50K single nucleotide polymorphism (SNP) array. A high-density genetic map was constructed with 1 501 non-redundant bin markers, spanning 2 384.95 cM. Fifty-three QTLs for six yield-related traits were mapped on chromosomes 1D (2), 2A (9), 2B (6), 2D, 3A (2), 3B (2), 4A (5), 4D, 5B (8), 5D (2), 7A (7), 7B (3) and 7D (5), which explained 2.7–25.5% of the phenotypic variances. Among the 53 QTLs, 23 were detected in at least three environments, including seven for thousand-kernel weight (TKW), four for kernel length (KL), four for kernel width (KW), three for average grain filling rate (GFR), one for kernel number per spike (KNS) and four for plant height (PH). The stable QTLs QKl.caas-2A.1, QKl.caas-7D, QKw.caas-7D, QGfr.caas-2B.1, QGfr.caas-4A, QGfr.caas-7A and QPh. caas-2A.1 are likely to be new loci. Six QTL-rich regions on 2A, 2B, 4A, 5B, 7A and 7D, showed pleiotropic effects on various yield traits. TaSus2-2B and WAPO-A1 are potential candidate genes for the pleiotropic regions on 2B and 7A, respectively. The pleiotropic QTL on 7D for TKW, KL, KW and PH was verified in a natural population. The results of this study enrich our knowledge of the genetic basis underlying yield-related traits and provide molecular markers for high-yield wheat breeding.
Keywords:  grain yield       KASP marker        QTL mapping        SNP chip  
Received: 21 July 2022   Online: 21 December 2022   Accepted: 03 November 2022
Fund: This work was funded by the Core Research Budget of the Non-profit Governmental Research Institutions, Institute of Crop Sciences, CAAS (S2022ZD04), the Agricultural Science and Technology Innovation Program, CAAS (CAAS-ZDRW202002), and the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (CAST) (2020QNRC001).
About author:  LIU Dan, E-mail: dnadouble4@163.com; #Correspondence ZHANG Yong, Tel: +86-10-82108745, E-mail: zhangyong05@caas.cn; LIU Jin-dong, Tel: +86-10-82108889, E-mail: liujindong@caas.cn

Cite this article: 

LIU Dan, ZHAO De-hui, ZENG Jian-qi, Rabiu Sani SHAWAI, TONG Jing-yang, LI Ming, LI Fa-ji, ZHOU Shuo, HU Wen-li, XIA Xian-chun, TIAN Yu-bing, ZHU Qian, WANG Chun-ping, WANG De-sen, HE Zhong-hu, LIU Jin-dong, ZHANG Yong. 2023. Identification of genetic loci for grain yield‑related traits in the wheat population Zhongmai 578/Jimai 22. Journal of Integrative Agriculture, 22(7): 1985-1999.

Assanga S O, Fuentealba M, Zhang G, Tan C, Dhakal S, Rudd J C, Ibrahim A M H, Xue Q, Haley S, Chen J, Chao S, Baker J, Jessup K, Liu S. 2017. Mapping of quantitative trait loci for grain yield and its components in a US popular winter wheat TAM 111 using 90K SNPs. PLoS ONE12, e0189669.

Cao P, Liang X, Zhao H, Feng B, Xu E, Wang L, Hu Y. 2019. Identification of the quantitative trait loci controlling spike-related traits in hexaploid wheat (Triticum aestivum L.). Planta250, 1967–1981.

Cao S, Xu D, Hanif M, Xia X, He Z. 2020. Genetic architecture underpinning yield component traits in wheat. Theoretical and Applied Genetics133, 1811–1823.

Chai L, Xin M, Dong C, Chen Z, Zhai H, Zhuang J, Cheng X, Wang N, Geng J, Wang X, Bian R, Yao Y, Guo W, Hu Z, Peng H, Bai G, Sun Q, Su Z, Liu J, Ni Z. 2022. A natural variation in Ribonuclease H-like gene underlies Rht8 to confer “Green Revolution” trait in wheat. Molecular Plant15, 377–380.

Chen Z, Cheng X, Chai L, Wang Z, Du D, Wang Z, Bian R, Zhao A, Xin M, Guo W, Hu Z, Peng H, Yao Y, Sun Q, Ni Z. 2020. Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics133, 1825–1838.

Corsi B, Obinu L, Zanella C M, Cutrupi S, Day R, Geyer M, Lillemo M, Lin M, Mazza L, Percival-Alwyn L, Stadlmeier M, Mohler V, Hartl L, Cockram J. 2021. Identification of eight QTL controlling multiple yield components in a German multi-parental wheat population, including Rht24WAPO-A1WAPO-B1 and genetic loci on chromosomes 5A and 6A. Theoretical and Applied Genetics134, 1435–1454.

Cui F, Ding A, Li J, Zhao C, Wang L, Wang X, Qi X, Li X, Li G, Gao J, Wang H. 2011. QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica186, 177–192.

Cui F, Zhao C, Ding A, Li J, Wang L, Li X, Bao Y, Li J, Wang H. 2014. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theoretical and Applied Genetics127, 659–675.

Ding P Y, Zhou J G, Zhao C H, Tang H P, Mu Y, Tang L W, Wei Y M, Lan X J, Ma J. 2021. Dissection of haplotypes, geographical distribution and breeding utilization of WAPO1 associated with spike development in wheat. Acta Agronomica Sinica48, 14. (in Chinese)

Dixon L E, Greenwood J R, Bencivenga S, Zhang P, Cockram J, Mellers G, Ramm K, Cavanagh C, Swain S M, Boden S A. 2018. TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). The Plant Cell30, 563–581.

Dobrovolskaya O, Pont C, Sibout R, Martinek P, Badaeva E, Murat F, Chosson A, Watanabe N, Prat E, Gautier N, Gautier V, Poncet C, Orlov Y L, Krasnikov A A, Berges H, Salina E, Laikova L, Salse J. 2015. FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiology167, 189–199.

Du D, Zhang D, Yuan J, Feng M, Li Z, Wang Z, Zhang Z, Li X, Ke W, Li R, Chen Z, Chai L, Hu Z, Guo W, Xing J, Su Z, Peng H, Xin M, Yao Y, Sun Q, et al. 2021. FRIZZY PANICLE defines a regulatory hub for simultaneously controlling spikelet formation and awn elongation in bread wheat. New Phytologist231, 814–833.

Ellis H, Spielmeyer W, Gale R, Rebetzke J, Richards A. 2002. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics105, 1038–1042.

Gao F, Wen W, Liu J, Rasheed A, Yin G, Xia X, Wu X, He Z. 2015. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Frontiers in Plant Science6, 1099.

Grover G, Sharma A, Gill H S, Srivastava P, Bains N S. 2018. Rht8 gene as an alternate dwarfing gene in elite Indian spring wheat cultivars. PLoS ONE13, e0199330.

Guan P, Lu L, Jia L, Kabir M R, Zhang J, Lan T, Zhao Y, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Peng H. 2018. Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). Frontiers in Plant Science9, 529.

Hou J, Jiang Q, Hao C, Wang Y, Zhang H, Zhang X. 2014. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiology164, 1918–1929.

Hu M J, Zhang H P, Cao J J, Zhu X F, Wang S X, Jiang H, Wu Z Y, Lu J, Chang C, Sun G L, Ma C X. 2016. Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Molecular Breeding36, 25.

Hussain W, Baenziger P S, Belamkar V, Guttieri M J, Venegas J P, Easterly A, Sallam A, Poland J. 2017. Genotyping-by-sequencing derived high-density linkage map and its application to QTL mapping of flag leaf traits in bread wheat. Scientific Reports7, 16394.

Isham K, Wang R, Zhao W, Wheeler J, Klassen N, Akhunov E, Chen J. 2021. QTL mapping for grain yield and three yield components in a population derived from two high-yielding spring wheat cultivars. Theoretical and Applied Genetics134, 2079–2095.

IWGSC (International Wheat Genome Sequencing Consortium). 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science361, eaar7191.

Jiang Q, Hou J, Hao C, Wang L, Ge H, Dong Y, Zhang X. 2011. The wheat (Taestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Functional and Integrative Genomics11, 49–61.

Keeble-Gagnere G, Rigault P, Tibbits J, Pasam R, Hayden M, Forrest K, Frenkel Z, Korol A, Huang B E, Cavanagh C, Taylor J, Abrouk M, Sharpe A, Konkin D, Sourdille P, Darrier B, Choulet F, Bernard A, Rochfort S, Dimech A, et al. 2018. Optical and physical mapping with local finishing enables megabase-scale resolution of agronomically important regions in the wheat genome. Genome Biology19, 112.

Kirigwi F M, Van Ginkel M, Brown-Guedira G, Gill B S, Paulsen G M, Fritz A K. 2007. Markers associated with a QTL for grain yield in wheat under drought. Molecular Breeding20, 401–413.

Kuzay S, Lin H, Li C, Chen S, Woods D P, Zhang J, Lan T, von Korff M, Dubcovsky J. 2021. WAPO-A1 is the causal gene of the 7AL QTL for spikelet number per spike in wheat. PLoS Genetics18, e1009747.

Kuzay S, Xu Y, Zhang J, Katz A, Pearce S, Su Z, Fraser M, Anderson J A, Brown-Guedira G, DeWitt N, Haugrud A P, Faris J D, Akhunov E, Bai G, Dubcovsky J. 2019. Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theoretical and Applied Genetics132, 2689–2705.

Li F, Wen W, He Z, Liu J, Jin H, Cao S, Geng H, Yan J, Zhang P, Wan Y, Xia X. 2018. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theoretical and Applied Genetics131, 1903–1924.

Li F, Wen W, Liu J, Zhang Y, Cao S, He Z, Rasheed A, Jin H, Zhang C, Yan J, Zhang P, Wan Y, Xia X. 2019. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biology19, 168.

Li Q, Zhang Y, Liu T, Wang F, Liu K, Chen J, Tian J. 2015. Genetic analysis of kernel weight and kernel size in wheat (Triticum aestivum L.) using unconditional and conditional QTL mapping. Molecular Breeding35, 194.

Li S, Jia J, Wei X, Zhang X, Li L, Chen H, Fan Y, Sun H, Zhao X, Lei T, Xu Y, Jiang F, Wang H, Li L. 2007. A intervarietal genetic map and QTL analysis for yield traits in wheat. Molecular Breeding20, 167–178.

Li S, Wang L, Meng Y, Hao Y, Xu H, Hao M, Lan S, Zhang Y, Lv L, Zhang K, Peng X, Lan C, Li X, Zhang Y. 2021. Dissection of genetic basis underpinning kernel weight-related traits in common wheat. Plants10, 713.

Li X, Xia X, Xiao Y, He Z, Wang D, Trethowan R, Wang H, Chen X. 2015. QTL mapping for plant height and yield components in common wheat under water-limited and full irrigation environments. Crop and Pasture Science66, 660.

Li Y, Gao J, Zhang R, Song G, Zhang S, Li W, Li G. 2020. Identification of new QTL for yield-related traits in Chinese landrace and elite wheat varieties through a genome-wide linkage mapping. Euphytica216, 124.

Lin Y, Jiang X, Tao Y, Yang X, Wang Z, Wu F, Liu S, Li C, Deng M, Ma J, Chen G, Wei Y, Zheng Y, Liu Y. 2020. Identification and validation of stable quantitative trait loci for grain filling rate in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics133, 2377–2385.

Liu G, Jia L, Lu L, Qin D, Zhang J, Guan P, Ni Z, Yao Y, Sun Q, Peng H. 2014. Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat. Theoretical and Applied Genetics127, 2415–2432.

Liu H, Mullan D, Zhang C, Zhao S, Li X, Zhang A, Lu Z, Wang Y, Yan G. 2020. Major genomic regions responsible for wheat yield and its components as revealed by meta-QTL and genotype-phenotype association analyses. Planta252, 65.

Liu J, Wu B, Singh R P, Velu G. 2019. QTL mapping for micronutrients concentration and yield component traits in a hexaploid wheat mapping population. Journal of Cereal Science88, 57–64.

Liu X, Xu Z, Feng B, Zhou Q, Ji G, Guo S, Liao S, Lin D, Fan X, Wang T. 2022. Quantitative trait loci identification and breeding value estimation of grain weight-related traits based on a new wheat 50K single nucleotide polymorphism array-derived genetic map. Frontiers in Plant Science13, 967432.

Luo Q, Zheng Q, Hu P, Liu L, Yang G, Li H, Li B, Li Z. 2020. Mapping QTL for agronomic traits under two levels of salt stress in a new constructed RIL wheat population. Theoretical and Applied Genetics134, 171–189.

Lv D, Zhang C, Yv R, Yao J, Wu J, Song X, Jian J, Song P, Zhang Z, Han D, Sun D. 2021. Utilization of a wheat50K SNP microarray-derived high-density genetic map for QTL mapping of plant height and grain traits in wheat. Plants-Basel10, 1167.

Ma D, Yan J, He Z, Wu L, Xia X. 2012. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Molecular Breeding29, 43–52.

McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R, Xia X. 2013. Catalogue of gene symbols for wheat. In: 12th International Wheat Genetics Symposium. Yokohama, Japan.

Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal3, 269–283.

Miao Y, Jing F, Ma J, Liu Y, Zhang P, Chen T, Che Z, Yang D. 2022. Major genomic regions for wheat grain weight as revealed by QTL linkage mapping and meta-analysis. Frontiers in Plant Science13, 802310.

Nerson H. 1980. Effects of population density and number of ears on wheat yield and its components. Field Crops Research3, 225–234.

Nyquist W E, Baker R J. 1991. Estimation of heritability and prediction of selection response in plant populations. Critical Reviews in Plant Sciences10, 235–322.

Qu X, Li C, Liu H, Liu J, Luo W, Xu Q, Tang H, Mu Y, Deng M, Pu Z, Ma J, Jiang Q, Chen G, Qi P, Jiang Y, Wei Y, Zheng Y, Lan X, Ma J. 2022. Quick mapping and characterization of a co-located kernel length and thousand-kernel weight-related QTL in wheat. Theoretical and Applied Genetics135, 2849–2860.

Ray D K, Mueller N D, West P C, Foley J A. 2013. Yield trends are insufficient to double global crop production by 2050. PLoS ONE8, e66428.

Ren T, Fan T, Chen S, Li C, Chen Y, Ou X, Jiang Q, Ren Z, Tan F, Luo P, Chen C, Li Z. 2021. Utilization of a Wheat55K SNP array-derived high-density genetic map for high-resolution mapping of quantitative trait loci for important kernel-related traits in common wheat. Theoretical and Applied Genetics134, 807–821.

Saini D K, Srivastava P, Pal N, Gupta P K. 2022. Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 135, 1049–1081.

Sakuma S, Golan G, Guo Z, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T. 2019. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proceedings of the National Academy of Sciences of the United States of America116, 5182–5187.

Simmonds J, Scott P, Leverington-Waite M, Turner A S, Brinton J, Korzun V, Snape J, Uauy C. 2014. Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.). BMC Plant Biology14, 191.

Su Z, Hao C, Wang L, Dong Y, Zhang X. 2011. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics122, 211–223.

Tian X, Wen W, Xie L, Fu L, Xu D, Fu C, Wang D, Chen X, Xia X, Chen Q, He Z, Cao S. 2017. Molecular mapping of reduced plant height gene Rht24 in bread wheat. Frontiers in Plant Science8, 1379.

Tian X, Xia X, Xu D, Liu Y, Xie L, Hassan M A, Song J, Li F, Wang D, Zhang Y, Hao Y, Li G, Chu C, He Z, Cao S. 2021. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytologist233, 738–750.

Tian X, Zhu Z, Xie L, Xu D, Li J, Fu C, Chen X, Wang D, Xia X, He Z, Cao S. 2019. Preliminary exploration of the source, spread, and distribution of Rht24 reducing height in bread wheat. Crop Science59, 19–24.

Voorrips R E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity93, 77–78.

Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. 2009. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai×Yu8679. Theoretical and Applied Genetics118, 313–325.

Wang W, Wang Z, Li X, Ni Z, Hu Z, Xin M, Peng H, Yao Y, Sun Q, Guo W. 2020. SnpHub: An easy-to-set-up web server framework for exploring large-scale genomic variation data in the post-genomic era with applications in wheat. GigaScience9, giaa060.

Wang X, Dong L, Hu J, Pang Y, Hu L, Xiao G, Ma X, Kong X, Jia J, Wang H, Kong L. 2019. Dissecting genetic loci affecting grain morphological traits to improve grain weight via nested association mapping. Theoretical and Applied Genetics132, 3115–3128.

Wu Q H, Chen Y X, Zhou S H, Fu L, Chen J J, Xiao Y, Zhang D, Ouyang S H, Zhao X J, Cui Y, Zhang D Y, Liang Y, Wang Z Z, Xie J Z, Qin J X, Wang G X, Li D L, Huang Y L, Yu M H, Lu P W, et al. 2015. High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda1817×Beinong6. PLoS ONE10, e0118144.

Wurschum T, Langer S M, Longin C F H, Tucker M R, Leiser W L. 2017. A modern Green Revolution gene for reduced height in wheat. The Plant Journal92, 892–903.

Xie Q, Mayes S, Sparkes D L. 2015. Carpel size, grain filling, and morphology determine individual grain weight in wheat. Journal of Experimental Botany66, 6715–6730.

Xie Q, Sparkes D L. 2021. Dissecting the trade-off of grain number and size in wheat. Planta254, 3.

Xiong H, Zhou C, Fu M, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Li Y, Zhang J, Wang K, Li X, Liu L. 2022. Cloning and functional characterization of Rht8, a “Green Revolution” replacement gene in wheat. Molecular Plant15, 373–376.

Xu Y F, Li S S, Li L H, Ma F F, Fu X Y, Shi Z L, Xu H X, Ma P T, An D G. 2017. QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Molecular Breeding37, 34.

Yang L, Zhao D, Meng Z, Xu K, Yan J, Xia X, Cao S, Tian Y, He Z, Zhang Y. 2019. QTL mapping for grain yield-related traits in bread wheat via SNP-based selective genotyping. Theoretical and Applied Genetics133, 857–872.

Yang M J, Wang C R, Hassan M A, Wu Y Y, Xia X C, Shi S B, Xiao Y G, He Z H. 2021. QTL mapping of seedling biomass and root traits under different nitrogen conditions in bread wheat (Triticum aestivum L.). Journal of Integrative Agriculture20, 1180–1192.

Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P, Cui C, Lu S, Chen L, Hu Y G. 2021. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theoretical and Applied Genetics134, 3083–3109.

Zhang J, Gizaw S A, Bossolini E, Hegarty J, Howell T, Carter A H, Akhunov E, Dubcovsky J. 2018. Identification and validation of QTL for grain yield and plant water status under contrasting water treatments in fall-sown spring wheats. Theoretical and Applied Genetics131, 1741–1759.

Zhang X, Jia H, Li T, Wu J, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z, Chen C, Carver B F, Yan L. 2022. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science376, 180–183.

Zhang Y, Liu J, Xia X, He Z. 2014. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Molecular Breeding34, 1097–1107.

Zhou C Y, Xiong H C, Li Y T, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Song X Y, Liu L X. 2020. Genetic analysis and QTL mapping of a novel reduced height gene in common wheat (Triticum aestivum L.). Journal of Integrative Agriculture19, 1721–1730.

Zhou Y, He Z H, Sui X X, Xia X C, Zhang X K, Zhang G S. 2007. Genetic improvement of grain yield and associated traits in the northern China winter wheat region from 1960 to 2000. Crop Science47, 245–253.

[1] Hui Fang, Xiuyi Fu, Hanqiu Ge, Mengxue Jia, Jie Ji, Yizhou Zhao, Zijian Qu, Ziqian Cui, Aixia Zhang, Yuandong Wang, Ping Li, Baohua Wang. Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2196-2210.
[2] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[3] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[4] Junnan Hang, Bowen Wu, Diyang Qiu, Guo Yang, Zhongming Fang, Mingyong Zhang.

OsNPF3.1, a nitrate, abscisic acid and gibberellin transporter gene, is essential for rice tillering and nitrogen utilization efficiency [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1087-1104.

[5] Tingcheng Zhao, Aibin He, Mohammad Nauman Khan, Qi Yin, Shaokun Song, Lixiao Nie.

Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions [J]. >Journal of Integrative Agriculture, 2024, 23(1): 93-107.

[6] Jingui Wei, Qiang Chai, Wen Yin, Hong Fan, Yao Guo, Falong Hu, Zhilong Fan, Qiming Wang. Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions[J]. >Journal of Integrative Agriculture, 2024, 23(1): 122-140.
[7] Akmaral Baidyussen, Gulmira Khassanova, Maral Utebayev, Satyvaldy Jatayev, Rystay Kushanova, Sholpan Khalbayeva, Aigul Amangeldiyeva, Raushan Yerzhebayeva, Kulpash Bulatova, Carly Schramm, Peter Anderson, Colin L. D. Jenkins, Kathleen L. Soole, Yuri Shavrukov. Assessment of molecular markers and marker-assisted selection for drought tolerance in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2024, 23(1): 20-38.
[8] WEI Huan-he, GE Jia-lin, ZHANG Xu-bin, ZHU Wang, DENG Fei, REN Wan-jun, CHEN Ying-long, MENG Tian-yao, DAI Qi-gen. Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2041-2053.
[9] DING Yong-gang, ZHANG Xin-bo, MA Quan, LI Fu-jian, TAO Rong-rong, ZHU Min, Li Chun-yan, ZHU Xin-kai, GUO Wen-shan, DING Jin-feng. Tiller fertility is critical for improving grain yield, photosynthesis and nitrogen efficiency in wheat[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2054-2066.
[10] ZHAO Xiao-dong, QIN Xiao-rui, LI Ting-liang, CAO Han-bing, XIE Ying-he. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1560-1573.
[11] LI Min, ZHU Da-wei, JIANG Ming-jin, LUO De-qiang, JIANG Xue-hai, JI Guang-mei, LI Li-jiang, ZHOU Wei-jia. Dry matter production and panicle characteristics of high yield and good taste indica hybrid rice varieties[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1338-1350.
[12] WANG Xin-yu, YANG Guo-dong, XU Le, XIANG Hong-shun, YANG Chen, WANG Fei, PENG Shao-bing. Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in Central China[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1009-1020.
[13] YIN Wen, FAN Zhi-long, HU Fa-long, FAN Hong, HE Wei, SUN Ya-li, WANG Feng, ZHAO Cai, YU Ai-zhong, CHAI Qiang. No-tillage with straw mulching boosts grain yield of wheat via improving the eco-physiological characteristics in arid regions[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3416-3429.
[14] ZHANG Guang-xin, ZHAO De-hao, FAN Heng-zhi, LIU Shi-ju, LIAO Yun-cheng, HAN Juan. Combining controlled-release urea and normal urea with appropriate nitrogen application rate to reduce wheat stem lodging risk and increase grain yield and yield stability[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3006-3021.
[15] ZHENG Chang, WANG Yue-chao, XU Wen-ba, YANG De-sheng, YANG Guo-dong, YANG Chen, HUANG Jian-liang, PENG Shao-bing. Border effects of the main and ratoon crops in rice ratooning system[J]. >Journal of Integrative Agriculture, 2023, 22(1): 80-91.
No Suggested Reading articles found!