Please wait a minute...
Journal of Integrative Agriculture  2011, Vol. 10 Issue (9): 1385-1390    DOI: 10.1016/S1671-2927(11)60131-4
PLANT PROTECTION Advanced Online Publication | Current Issue | Archive | Adv Search |
Functional Characterization of a NEM1-Like Gene in Magnaporthe oryzae
WANG Ying, JIAO Tian-lei, LIU Xiao-hong, LIN Fu-cheng , WU Wei-ren
1. Department of Agronomy, College of Agriculture & Biotechnology
2. Institute of Biotechnology, College of Agriculture & Biotechnology
3. School of Life Sciences, Fujian Agriculture & Forestry University
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Magnaporthe oryzae, a filamentous ascomycete fungus, is well known as the causal agent of rice blast. With thetechnology of suppression subtractive hybridization (SSH), it was previously found that MGG_06001 (or named MoNEM1),a gene of M. oryzae homologous to the NEM1 (nuclear envelope morphology protein 1) gene of baker’s yeast(Saccharomyces cerevisiae), is differentially expressed between the mature appressium and the conidium and mycelium.This study aimed to characterize the function of MoNEM1 gene by knocking it out using the method of target genereplacement. The ΔMonem1 mutants exhibited reduced mycelial growth and conidiation. However, disruption of MoNEM1gene does not affect the pathogenicity of M. oryzae on barley and rice.

Abstract  Magnaporthe oryzae, a filamentous ascomycete fungus, is well known as the causal agent of rice blast. With thetechnology of suppression subtractive hybridization (SSH), it was previously found that MGG_06001 (or named MoNEM1),a gene of M. oryzae homologous to the NEM1 (nuclear envelope morphology protein 1) gene of baker’s yeast(Saccharomyces cerevisiae), is differentially expressed between the mature appressium and the conidium and mycelium.This study aimed to characterize the function of MoNEM1 gene by knocking it out using the method of target genereplacement. The ΔMonem1 mutants exhibited reduced mycelial growth and conidiation. However, disruption of MoNEM1gene does not affect the pathogenicity of M. oryzae on barley and rice.
Keywords:    
Received: 08 December 2010   Accepted:
Fund: 

the National Natural Science Foundation of China (30671123 and 31000077).

Corresponding Authors:  Correspondence WU Wei-ren, Professor, Tel/Fax: +86-571-86971910, E-mail: wuwr@zju.edu.cn; LIN Fu-cheng, Professor,Tel/Fax: +86-571-86971185, E-mail: fuchenglin@zju.edu.cn     E-mail:  wuwr@zju.edu.cn
About author:  WANG Ying, Ph D, E-mail: wyhrx@126.com

Cite this article: 

WANG Ying, JIAO Tian-lei, LIU Xiao-hong, LIN Fu-cheng , WU Wei-ren. 2011. Functional Characterization of a NEM1-Like Gene in Magnaporthe oryzae. Journal of Integrative Agriculture, 10(9): 1385-1390.

[1]Bonman J M, Vergel D D T, Khin M M. 1986. Physiologicspecialization of Pyricularia oryzae in the Philippines. PlantDisease, 70, 767-769.

[2]Choi W, Dean R A. 1997. The adenylate cyclase gene MAC1 ofMagnaporthe grisea controls appressorium formation andother aspects of growth and development. The Plant Cell, 9,1973-1983.

[3]Jeon J, Park S Y, Chi M H, Choi J, Park J, Rho H S, Kim S, GohJ, Yoo S, Choi J, et al. 2007. Genome-wide functional analysisof pathogenicity genes in the rice blast fungus. NatureGenetics, 39, 561-565.

[4]Kadotani N, Nakayashiki H, Tosa Y, Mayama S. 2003. RNAsilencing in the phytopathogenic fungus Magnaporthe oryzae.Molecular Plant-Microbe Interactions, 16, 769-766.

[5]Lau G W, Hamer J E. 1996. Regulatory genes controlling MPG1expression and pathogenicity in the rice blast fungusMagnaporthe grisea. The Plant Cell, 8, 771-781.

[6]Li Y, Yan X, Wang H, Liang S, Ma W B, Fang M Y, Talbot N J,Wang Z Y. 2010. MoRic8 is a novel component of G-proteinsignaling during plant infection by the rice blast fungusMagnaporthe oryzae. Molecular Plant-Microbe Interactions,23, 317-331.

[7]Liu T B, Chen G Q, Min H, Lin F C. 2009. MoFLP1, encoding anovel fungal fasciclin-like protein, is involved in conidiationand pathogenicity in Magnaporthe oryzae. Journal ofZhejiang University (Science B), 10, 434-444.

[8]Liu S, Dean R A. 1997. G protein α-subunit genes control growth,development and pathogenicity of Magnaporthe grisea.Molecular Plant-Microbe Interactions, 10, 1075-1086.

[9]Liu X H, Lu J P, Zhang L, Dong B, Min H, Lin F C. 2007.Involvement of a Magnaporthe grisea serine/threonine kinasegene, MgATG1, in appressorium turgor and pathogenesis.Eukaryotic Cell, 6, 997-1005.

[10]Lu J P, Feng X X, Liu X H, Lu Q, Wang H K, Lin F C. 2007.Mnh6, a nonhistone protein, is required for fungaldevelopment and pathogenicity of Magnaporthe grisea.Fungal Genetics and Biology, 44, 819-829.

[11]Oh Y, Donofrio N, Pan H Q, Coughlan S, Brown D E, Meng S,Mitchell T, Dean R A. 2008. Transcriptome analysis revealsnew insight into appressorium formation and function in therice blast fungus Magnaporthe oryzae. Genome Biology, 9,R85. http://genomebiology.com/content/9/5/R85Siniossoglou S, Santos-Rosa H, Rappsilber J, Mann M, Hurt E.1998. A novel complex of membrane proteins required forformation of a spherical nucleus. The EMBO Journal, 17,6449-6464.

[12]Son S, Osmani S A. 2009. Analysis of all protein phosphatasegenes in Aspergillus nidulans identifies a new mitoticregulator, Fcp1. Eukaryotic Cell, 8, 573-585.

[13]Talbot N J, Ebbole D J, Hamer J E. 1993. Identification andcharacterization of MPG1, a gene involved in pathogenicityfrom the rice blast fungus Magnaporthe grisea. The PlantCell, 5, 1575-1590.

[14]Talbot N J, Kershaw M J, Wakley G E, de Vries O, Wessels J,Hamer J E. 1996. MPG1 encodes a fungal hydrophobininvolved in surface interactions during infection-relateddevelopment of Magnaporthe grisea. The Plant Cell, 8, 985-999.

[15]Viaud M C, Balhadere P V, Talbot N J. 2002. A Magnaporthegrisea cyclophilin acts as a virulence determinant during plantinfection. The Plant Cell, 14, 917-930.

[16]Xu J R, Hamer J E. 1996. MAP kinase and cAMP signalingregulate infection structure formation and pathogenic growthin the rice blast fungus Magnaporthe grisea. Genes &Development, 10, 2696-2706.

[17]Xue C Y, Park G, Choi W, Zheng L, Dean R A, Xu J R. 2002.Two novel fungal virulence genes specifically expressed inappressoria of the rice blast fungus. The Plant Cell, 14, 2107-2119.

[18]Yang J, Zhao X Y, Sun J, Kang Z S, Ding S L, Xu J R, Peng Y L.2010. A novel protein Com1 is required for normal conidiummorphology and full virulence in Magnaporthe oryzae.Molecular Plant-Microbe Interactions, 23, 112-123.
[1] WANG Li-xin, WANG Lin-xia, ZHANG Meng-ling, QU Ying-yue, YUAN Ye, Ehsan SADEGHNEZHAD, GAO Meng-jiao, ZHAO Ruo-yu, QI Chao-feng, GUO Xiao-xue, ZHU Wen-hui, LI Rui-mei, DAI Li, LIU Meng-jun, LIU Zhi-guo. A cyclic effect of cAMP and calcium signaling contributes to jujube growth and development[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2094-2110.
[2] XIE Jiao, CAO Qi, WANG Wen-jun, ZHANG Hong-yan, DENG Bing. Understanding changes in volatile compounds and fatty acids of Jincheng orange peel oil at different growth stages using GC–MS[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2282-2294.
[3] GUO Yun-xia, YANG Ruo-chen, DUAN Chun-hui, WANG Yong, HAO Qing-hong, JI Shou-kun, YAN Hui, ZHANG Ying-jie, LIU Yue-qin. Effect of dioscorea opposite waste on growth performance, blood parameters, rumen fermentation and rumen bacterial community in weaned lambs[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1833-1846.
[4] WANG Peng, WANG Cheng-dong, WANG Xiao-lin, WU Yuan-hua, ZHANG Yan, SUN Yan-guo, SHI Yi, MI Guo-hua. Increasing nitrogen absorption and assimilation ability under mixed NO3 and NH4+ supply is a driver to promote growth of maize seedlings[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1896-1908.
[5] LIAO Zhen-qi, ZHENG Jing, FAN Jun-liang, PEI Sheng-zhao, DAI Yu-long, ZHANG Fu-cang, LI Zhi-jun.

Novel models for simulating maize growth based on thermal time and photothermal units: Applications under various mulching practices [J]. >Journal of Integrative Agriculture, 2023, 22(5): 1381-1395.

[6] LI Min, ZHU Da-wei, JIANG Ming-jin, LUO De-qiang, JIANG Xue-hai, JI Guang-mei, LI Li-jiang, ZHOU Wei-jia. Dry matter production and panicle characteristics of high yield and good taste indica hybrid rice varieties[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1338-1350.
[7] CHI Qing, DU Lin-ying, MA Wen, NIU Ruo-yu, WU Bao-wei, GUO Li-jian, MA Meng, LIU Xiang-li, ZHAO Hui-xian. The miR164-TaNAC14 module regulates root development and abiotic-stress tolerance in wheat seedlings[J]. >Journal of Integrative Agriculture, 2023, 22(4): 981-998.
[8] ZHANG Yan-mei, AO De, LEI Kai-wen, XI Lin, Jerry W SPEARS, SHI Hai-tao, HUANG Yan-ling, YANG Fa-long. Dietary copper supplementation modulates performance and lipid metabolism in meat goat kids[J]. >Journal of Integrative Agriculture, 2023, 22(1): 214-221.
[9] LI Teng, ZHANG Xue-peng, LIU Qing, LIU Jin, CHEN Yuan-quan, SUI Peng. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2465-2476.
[10] Oluwaseyi Samuel OLANREWAJU, Olubukola Oluranti BABALOLA. The rhizosphere microbial complex in plant health: A review of interaction dynamics[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2168-2182.
[11] WANG Le, LIU Yang, WEN Ming, LI Ming-hua, DONG Zhi-qiang, CUI Jing, MA Fu-yu. Growth and yield responses to simulated hail damage in drip-irrigated cotton[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2241-2252.
[12] LI Yu-dong, BAI Xue, LIU Xin , WANG Wei-jia, LI Zi-wei, WANG Ning, XIAO Fan, GAO Hai-he, GUO Huai-shun, LI Hui, WANG Shou-zhi. Integration of genome-wide association study and selection signatures reveals genetic determinants for skeletal muscle production traits in an F2 chicken population[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2065-2075.
[13] LI Si-ping, ZENG Lu-sheng, SU Zhong-liang. Wheat growth, photosynthesis and physiological characteristics under different soil Zn levels[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1927-1940.
[14] HUANG Wen-qin, CUI Kai, HAN Yong, CHAI Jian-min, WANG Shi-qin, LÜ Xiao-kang, DIAO Qi-yu, ZHANG Nai-feng. Long term effects of artificial rearing before weaning on the growth performance, ruminal microbiota and fermentation of fattening lambs[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1146-1160.
[15] JIANG Xue-qian, ZHANG Fan, WANG Zhen, LONG Rui-cai, LI Ming-na, HE Fei, YANG Xi-jiang, YANG Chang-fu, JIANG Xu, YANG Qing-chuan, WANG Quan-zhen, KANG Jun-mei. Detection of quantitative trait loci (QTL) associated with spring regrowth in alfalfa (Medicago sativa L.)[J]. >Journal of Integrative Agriculture, 2022, 21(3): 812-818.
No Suggested Reading articles found!