Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Spectral purification improves monitoring accuracy of the comprehensive growth evaluation index for film-mulched winter wheat
CHENG Zhi-kai, GU Xiao-bo, DU Ya-dan, ZHOU Zhi-hui, LI Wen-long, ZHENG Xiao-bo, CAI Wen-jing, CHANG Tian

Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

为提高无人机遥感快速准确监测膜下冬小麦长势状况精度,本研究利用垄覆膜、垄沟全覆膜和平作全覆膜冬小麦样区,基于模糊综合评价法(FCE),采用四种农艺参数(叶面积指数、地上生物量、株高、叶片叶绿素含量)计算冬小麦的综合长势评价指数(CGEI),使用光谱净化技术处理无人机多光谱遥感图像,并计算14种可见光和近红外光谱指数采用偏最小二乘法、支持向量机、随机森林和人工神经网络(ANN)四种机器学习算法,构建了地膜覆盖冬小麦的长势监测模型,进行精度评价,绘制冬小麦长势状况的时空分布图。结果表明,基于FCE方法构建的地膜覆盖冬小麦CGEI能够客观、全面地评价作物长势状况,ANN模型对CGEI反演精度高于单一农艺参数,决定系数为0.75,均方根误差为8.40,平均绝对值误差为6.53。光谱净化可以消除地膜和土壤造成的背景效应干扰,有效提高地膜覆盖冬小麦长势的遥感反演精度,在光谱净化后的垄沟覆膜区域反演效果最佳。该成果为无人机遥感监测地膜覆盖冬小麦长势状况提供了理论依据



Abstract  

In order to further improve the ability of unmanned aerial vehicle (UAV) remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this research used treatments of ridge mulching, ridge–furrow full mulching, and flat cropping full mulching winter wheat.  Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, aboveground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.   Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks (ANN), were used to build the winter wheat growth monitoring model under film mulching, with accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status.  The results showed that the CGEI of winter wheat under film mulching constructed based on the FCE method could objectively and comprehensively evaluate crop growth status, and the accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for single agronomic parameters, with coefficient of determination of 0.75, root mean square error of 8.40, and mean absolute value error of 6.53.  Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of remote-sensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.  The results provided a theoretical reference for UAV remote-sensing to monitor the growth status of winter wheat with film mulching.

Keywords:  mulched winter wheat              machine learning              fuzzy comprehensive evaluation              comprehensive growth evaluation index              unmanned aerial vehicle  
Received: 20 February 2023   Online: 25 May 2023  
Fund: 

This study was funded by the National Key R&D Program of China (2021YFD1900700), the National Natural Science Foundation of China (51909221), the China Postdoctoral Science Foundation (2020T130541 and 2019M650277).

About author:  CHENG Zhi-kai, E-mail: 15385927992@163.com, Mobile: +86-15385927992; #Correspondence GU Xiao-bo, E-mail: guxiaobo@nwafu.edu.cn; DU Ya-dan, E-mail: dyd123027@163.com

Cite this article: 

CHENG Zhi-kai, GU Xiao-bo, DU Ya-dan, ZHOU Zhi-hui, LI Wen-long, ZHENG Xiao-bo, CAI Wen-jing, CHANG Tian. 2023. Spectral purification improves monitoring accuracy of the comprehensive growth evaluation index for film-mulched winter wheat. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2023.05.036

Carlson T N, Ripley D A. 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62, 241–252.

Chen P F, Wang F Y. 2022. Effect of crop spectra purification on plant nitrogen concentration estimations performed using high-spatial-resolution images obtained with unmanned aerial vehicles. Field Crops Research, 288, 108708.

Cheng M H, Jiao X Y, Liu Y D, Shao M C, Yu X, Bai Y, Wang Z X, Wang S Y, Tuohuti N, Liu S B, Shi L, Yin D M, Huang X, Nie C W, Jin X L. 2022. Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning. Agricultural Water Management, 264, 107530.

Cui B, Zhao Q J, Huang W J, Song X Y, Ye H C, Zhou X F. 2019. A new integrated vegetation index for the estimation of winter wheat leaf chlorophyll content. Remote Sensing, 11, 974.

Daughtry C S T, Walthall C L, Kim M S, De Colstoum E B, McMurtrey J E. 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74, 229–239.

Ding J L, Wu J C, Ding D Y, Yang Y H, Gao C M, Hu W. 2021. Effects of tillage and straw mulching on the crop productivity and hydrothermal resource utilization in a winter wheat-summer maize rotation system. Agricultural Water Management, 254, 106933.

Fang H, Liu F L, Gu X B, Chen P P, Li Y P, Li Y N. 2022. The effect of source–sink on yield and water use of winter wheat under ridge-furrow with film mulching and nitrogen fertilization. Agricultural Water Management, 267, 107616.

Gao D H, Qiao L, Song D, Li M Z, Sun H, An L L, Zhao R M, Tang W J, Qiao J B. 2022. In-field chlorophyll estimation based on hyperspectral images segmentation and pixel-wise spectra clustering of wheat canopy. Biosystems Engineering, 217, 41–55.

Gao H H, Yan C R, Liu Q, Ding W L, Chen B Q, Li Z. 2019. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Science of the Total Environment, 651, 484–492.

Gilabert M A, González-Piqueras J, Garcı́a-Haro F J, Meliá J. 2002. A generalized soil-adjusted vegetation index. Remote Sensing of Environment, 82, 303–310.

Gitelson A A, Gritz Y, Merzlyak M N. 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160, 271–282.

Goh B B, King P, Whetton R L, Sattari S Z, Holden N M. 2022. Monitoring winter wheat growth performance at sub-field scale using multitemporal Sentinel-2 imagery. International Journal of Applied Earth Observation and Geoinformation, 115, 103124.

Gu X B, Cai H J, Chen P P, Li Y P, Fang H, Li Y N. 2021. Ridge-furrow film mulching improves water and nitrogen use efficiencies under reduced irrigation and nitrogen applications in wheat field. Field Crops Research, 270, 108214.

Guo Y H, Fu Y H, Chen S Z, Bryant C R, Li X X, Senthilnath J, Sun H Y, Wang S X, Wu Z F, De Beurs K. 2021. Integrating spectral and textural information for identifying the tasseling date of summer maize using UAV based RGB images. International Journal of Applied Earth Observation and Geoinformation, 102, 102435.

Guo Y H, Xiao Y, Li M W, Hao F H, Zhang X, Sun H Y, De Beurs K, Fu Y H, He Y H. 2022. Identifying crop phenology using maize height constructed from multi-sources images. International Journal of Applied Earth Observation and Geoinformation, 115, 103121.

Han L, Yang G J, Dai H Y, Xu B, Yang H, Feng H K, Li Z H, Yang X D. 2019. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods, 15, 10.

Hasituya, Chen Z X, Wang L M, Wu W B, Jiang Z W, Li H. 2016. Monitoring plastic-mulched farmland by landsat-8 OLI imagery using spectral and textural features. Remote Sensing, 8, 353.

He S, Xu H L, Zhang J X, Xue P Q. 2023. Risk assessment of oil and gas pipelines hot work based on AHP-FCE. Petroleum. Petroleum, 9, 94-100,

Jay S, Baret F, Dutartre D, Malatesta G, Héno S, Comar A, Weiss M, Maupas F. 2019. Exploiting the centimeter resolution of UAV multispectral imagery to improve remote-sensing estimates of canopy structure and biochemistry in sugar beet crops. Remote Sensing of Environment, 231, 110898.

Jay S, Gorretta N, Morel J, Maupas F, Bendoula R, Rabatel G, Dutartre D, Comar A, Baret F. 2017. Estimating leaf chlorophyll content in sugar beet canopies using millimeter- to centimeter-scale reflectance imagery. Remote Sensing of Environment, 198, 173–186.

Jin X L, Liu S Y, Baret F, Hemerlé M, Comar A. 2017. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sensing of Environment, 198, 105–114.

Lee H, Wang J F, Leblon B. 2020. Using linear regression, random forests, and support vector machine with unmanned aerial vehicle multispectral images to predict canopy nitrogen weight in corn. Remote Sensing, 12, 2071.

Li D, Shang Y F, He W, Chen C J. 2015. EXR: Greening data center network with software defined exclusive routing. IEEE Transactions on Computers, 64, 2534–2544.

Li R Y, Xu M Q, Chen Z Y, Gao B B, Cai J, Shen F X, He X L, Zhuang Y, Chen D L. 2021. Phenology-based classification of crop species and rotation types using fused MODIS and Landsat data: The comparison of a random-forest-based model and a decision-rule-based model. Soil and Tillage Research, 206, 104838.

Li Z H, Zhao Y, Taylor J, Gaulton R, Jin X L, Song X Y, Li Z H, Meng Y, Chen P F, Feng H K, Wang C, Guo W, Xu X G, Chen L P, Yang G J. 2022. Comparison and transferability of thermal, temporal and phenological-based in-season predictions of above-ground biomass in wheat crops from proximal crop reflectance data. Remote Sensing of Environment, 273, 112967.

Liu K, Zhou Q B, Wu W B, Xia T, Tang H J. 2016. Estimating the crop leaf area index using hyperspectral remote sensing. Journal of Integrative Agriculture, 15, 475-491.

Luo L C, Wang Z H, Huang M, Hui X L, Wang S, Zhao Y, He H X, Zhang X, Diao C P, Cao H B, Ma Q X, Liu J S. 2018. Plastic film mulch increased winter wheat grain yield but reduced its protein content in dryland of northwest China. Field Crops Research, 218, 69–77.

Mao Z H, Deng L, Duan F Z, Li X J, Qiao D Y. 2020. Angle effects of vegetation indices and the influence on prediction of SPAD values in soybean and maize. International Journal of Applied Earth Observation and Geoinformation, 93, 102198.

Narmilan A, Gonzalez F, Salgadoe S, Kumarasiri U W L, Weerasinghe H A S, Kulasekara B. 2022. Predicting canopy chlorophyll content in sugarcane crops using machine learning algorithms and spectral vegetation indices derived from UAV multispectral imagery. Remote Sensing, 14, 1–22.

Qi H X, Wu Z Y, Zhang L, Li J W, Zhou J K, Jun Z, Zhu B Y. 2021. Monitoring of peanut leaves chlorophyll content based on drone-based multispectral image feature extraction. Computers and Electronics in Agriculture, 187, 106292.

Qiao L, Gao D H, Zhao R M, Tang W J, An L L, Li M Z, Sun H. 2022a. Improving estimation of LAI dynamic by fusion of morphological and vegetation indices based on UAV imagery. Computers and Electronics in Agriculture, 192, 106603.

Qiao L, Zhao R M, Tang W J, An L L, Sun H, Li M Z, Wang N, Liu Y, Liu G H. 2022b. Estimating maize LAI by exploring deep features of vegetation index map from UAV multispectral images. Field Crops Research, 289, 108739.

Reyniers M, Walvoort D J J, De Baardemaaker J. 2006. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat. International Journal of Remote Sensing, 27, 4159–4179.

Rodriguez-Galiano V F, Chica-Olmo M, Abarca-Hernandez F, Atkinson P M, Jeganathan C. 2012. Random forest classification of mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sensing of Environment, 121, 93–107.

Rondeaux G, Steven M, Baret F. 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95–107.

Schneider P, Roberts D A, Kyriakidis P C. 2008. A VARI-based relative greenness from MODIS data for computing the Fire Potential Index. Remote Sensing of Environment, 112, 1151–1167. 

Shao G M, Han W T, Zhang H H, Liu S Y, Wang Y, Zhang L Y, Cui X. 2021. Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices. Agricultural Water Management, 252, 106906.

Sun H H, Gao S, Liu J F. 2022a. Vulnerability assessment and impact factor analysis of marine economic system based on fuzzy comprehensive evaluation model. Acta Ecologica Sinica, 42, 374–382.

Sun Q, Chen L P, Xu X B, Gu X H, Hu X Q, Yang F T, Pan Y C. 2022b. A new comprehensive index for monitoring maize lodging severity using UAV-based multi-spectral imagery. Computers and Electronics in Agriculture, 202, 107362.

Tao H L, Feng H K, Xu L J, Miao M K, Yang G J, Yang X D, Fan L L. 2020. Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images. Sensors, 20, 1231.

Wang F L, Yang M, Ma L F, Zhang T, Qin W L, Li W, Zhang Y H, Sun Z C, Wang Z M, Li F, Yu K. 2022a. Estimation of above-ground biomass of winter wheat based on consumer-grade multi-spectral UAV. Remote Sensing, 14, 1251.

Wang W H, Wu Y P, Zhang Q F, Zheng H B, Yao X, Zhu Y, Cao W X, Cheng T. 2021. AAVI: A novel approach to estimating leaf nitrogen concentration in rice from unmanned aerial vehicle multispectral imagery at early and middle growth stages. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 6716–6728.

Wang W H, Zheng H B, Wu Y P, Yao X, Zhu Y, Cao W X, Cheng T. 2022b. An assessment of background removal approaches for improved estimation of rice leaf nitrogen concentration with unmanned aerial vehicle multispectral imagery at various observation times. Field Crops Research, 283, 108543.

Wittstruck L, Jarmer T, Trautz D, Waske B. 2022. Estimating LAI from winter wheat using UAV data and CNNs. IEEE Geoscience and Remote Sensing Letters, 19, 2503405.

Xu X B, Nie C W, Jin X L, Li Z H, Zhu H C, Xu H G, Wang J W, Zhao Y, Feng H K. 2021. A comprehensive yield evaluation indicator based on an improved fuzzy comprehensive evaluation method and hyperspectral data. Field Crops Research, 270, 108204.

Xue J R, Su B F. 2017. Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017, 1353691.

Yan S C, Wu Y, Fan J L, Zhang F C, Zheng J, Guo J J, Lu J S, Wu L F, Qiang S C, Xiang Y Z. 2022. Source-sink relationship and yield stability of two maize cultivars in response to water and fertilizer inputs in northwest China. Agricultural Water Management, 262, 107332.

Zhang P, Du P J, Guo S C, Zhang W, Tang P F, Chen J K, Zheng H R. 2022. A novel index for robust and large-scale mapping of plastic greenhouse from Sentinel-2 images. Remote Sensing of Environment, 276, 113042.

Zhang P P, Ye Q Q, Yu Y. 2021a. Research on farmers’ satisfaction with ecological restoration performance in coal mining areas based on fuzzy comprehensive evaluation. Global Ecology and Conservation, 32, e01934.

Zhang Y, Hui J, Qin Q M, Sun Y H, Zhang T Y, Sun H, Li M Z. 2021b. Transfer-learning-based approach for leaf chlorophyll content estimation of winter wheat from hyperspectral data. Remote Sensing of Environment, 267, 112724.

Zhao X, Gu X B, Yang Z C, Li Y N, Zhang L, Zhou J M. 2022. Effects of soil preparation and mulching practices together with different urea applications on the water and nitrogen use of winter wheat in semi-humid and drought-prone areas. Agricultural Water Management, 263, 107484.

Zheng H B, Ma J F, Zhou M, Li D, Yao X, Cao W X, Zhu Y, Cheng T. 2020. Enhancing the nitrogen signals of rice canopies across critical growth stages through the integration of textural and spectral information from unmanned aerial vehicle (UAV) multispectral imagery. Remote Sensing, 12, 957.

Zhu W X, Rezaei E E, Nouri H, Sun Z G, Li J, Yu D Y, Siebert S. 2022. UAV-based indicators of crop growth are robust for distinct water and nutrient management but vary between crop development phases. Field Crops Research, 284, 108582. 

No related articles found!
No Suggested Reading articles found!