Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (7): 2282-2294    DOI: 10.1016/j.jia.2023.05.015
Food Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Understanding changes in volatile compounds and fatty acids of Jincheng orange peel oil at different growth stages using GC–MS
XIE Jiao1, 2#, CAO Qi2 , WANG Wen-jun2, ZHANG Hong-yan2, DENG Bing2

1The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, P.R.China  

2College of Food Science, Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, P.R.China  

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      


Abstract  Jincheng orange (Citrus sinensis Osbeck) is widely grown in Chongqing, China, and is commonly consumed because of its characteristic aroma contributed by the presence of diverse volatile compounds.  The changes in aroma during the development and maturation of fruit are indicators for ripening and harvest time.  However, the influence of growth stages on the volatile compounds in Jincheng orange remains unclear.  In addition, volatiles originate from fatty acids, most of which are the precursors of volatile substances.  On this basis, gas chromatography–mass spectrometry (GC–MS) was performed to elaborate the changes in volatile constituents and fatty acids as precursors.  This study tested proximately 60 volatiles and 8 fatty acids at 9 growth and development stages (AF1–AF9).  Of those compounds, more than 92.00% of total volatiles and 87.50% of fatty acids were terpenoid and saturated fatty acids, respectively.  As shown in the PCA plot, the AF5, AF6, and AF9 stages were confirmed as completely segregated and appeared different.  In addition, most of the volatiles and fatty acids first increased at the beginning of the development stage, then decreased from the AF6 development stage, and finally increased at the AF9 maturity stage.  Moreover, the highest contents of terpenoid, alcohols, aldehydes, ketones, and saturated fatty acids in Jincheng orange peel oil were d-limonene, linalool, octanal, cyclohexanone, and stearic acid during development stages, respectively.  Our results found that the growth stages significantly affected the volatile constituents and precursors in Jincheng orange peel oil.
Keywords:  Jincheng orange        volatile compounds        fatty acids        growth stages  
Received: 11 October 2022   Accepted: 05 May 2023
Fund: This research was supported by the Guizhou Provincial Science and Technology Projects, China (ZK[2022]391), and the Cultivation Project of National Natural Science Foundation of Guizhou Medical University, China (21NSFCP20).
About author:  #Correspondence XIE Jiao, E-mail:

Cite this article: 

XIE Jiao, CAO Qi, WANG Wen-jun, ZHANG Hong-yan, DENG Bing. 2023. Understanding changes in volatile compounds and fatty acids of Jincheng orange peel oil at different growth stages using GC–MS. Journal of Integrative Agriculture, 22(7): 2282-2294.

Al-Juhaimi F, Ozcan M M, Uslu N, Ghafoor K. 2018. The effect of drying temperatures on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol contents in citrus seed and oils. Journal of Food Science & Technology55, 190–197.

Cai H, Cao G, Li L, Liu X, Ma X Q, Tu S C, Lou Y J, Qin K M, Li S L, Cai B C. 2013. Profiling and characterization of volatile components from non-fumigated and sulfur-fumigated Flos Lonicerae Japonicae using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry coupled with chemical group separation. Molecules18, 1368–1382.

Cai L P. 2015. Isolation of mitochondria from pulp and components assay of essential oil from peel of citrus fruit. MSc thesis, Huazhong Agricultural University, China. p. 6. (in Chinese)

Cajka T, Hajslova J, Cochran J, Holadova K, Klimankova E. 2007. Solid phase microextraction-comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the analysis of honey volatiles. Journal of Separation Science30, 534–546.

Casilli A, Decorzant E, Jaquier A, Delort E. 2014. Multidimensional gas chromatography hyphenated to mass spectrometry and olfactometry for the volatile analysis of citrus hybrid peel extract. Journal of Chromatography (A), 1373, 169–178.

Chaudhary P R, Jayaprakasha G K, Patil B S. 2018. Identification of volatile profiles of Rio Red grapefruit at various developmental to maturity stages. Journal of Essential Oil Research30, 77–83.

Cheng H Z, Kyoung H K, Tae H K, Hyong J L. 2005. Analysis and characterization of aroma-active compounds of Schizandra chinensis (omija) leaves. Journal of the Science of Food and Agriculture85, 161–166.

Cui J, Yang X, Dong A J, Cheng D, Wang J, Zhao H T, Xu R, Wang P, Li W J. 2011. Chemical composition and antioxidant activity of Euphorbia fischeriana essential oil from China. Journal of Medicinal Plants Research5, 4794–4797.

Dhandapani S, Jin J, Sridhar V, Sarojam R, Chua N H, Jang I C. 2017. Integrated metabolome and transcriptome analysis of Magnolia champaca identifies biosynthetic pathways for floral volatile organic compounds. BMC Genomics181, 463.

Droby S, Eick A, Macarisin D, Cohen L, Rafael G, Stange R, McColum G, Dudai N, Nasser A, Wisniewski M, Shapira R. 2008. Role of citrus volatiles in host recognition, germination and growth of Penicillium digitatum and Penicillium italicumPostharvest Biology and Technology49, 386–396.

Duan S, Xu Z, Li X Y, Liao P, Qin H K, Mao Y P, Dai W S, Ma H J, Bao M L. 2022. Dodder-transmitted mobile systemic signals activate a salt-stress response characterized by a transcriptome change in Citrus sinensisFrontiers in Plant Science13, 986365.

Espina M, Somolinos L, Loran S, Conchello P, Garcia D, Pagan R. 2011. Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control22, 896–902.

Fan G, Qiao Y, Yao X L, Mo D, Wang K X, Pan S Y. 2009. Free and bound volatile compounds in juice and peel of Jincheng oranges. European Food Research and Technology229, 571–578.

FAO (Food Agricultural Organization). 2020. FAOSTAT: Production crops. [2022-8-24].

Felix J S, Isella F, Bosetti O, Nerin C. 2012. Analytical tools for identification of non-intentionally added substances NIAS coming from polyurethane adhesives in multilayer packaging materials and their migration into food simulants. Analytical and Bioanalytical Chemistry403, 2869–2882.

Guclu G, Polat S, Kelebek H, Capanoglu E, Selli S. 2022. Elucidation of the impact of four different drying methods on the phenolics, volatiles, and color properties of the peels of four types of citrus fruits. Journal of the Science of Food and Agriculture102, 6036–6046

Hou J X, Liang L, Wang Y X. 2020. Volatile composition changes in navel orange at different growth stages by HS-SPM–GC–MS. Food Research International136, 109333.

Huang C L, Hou J, Huang M Z, Hu M, Deng L L, Zeng K F, Yao S X. 2023. A comprehensive review of segment drying (vesicle granulation andcollapse) in citrus fruit: current state and future directions. Scientia Horticulturae309, 111683.

nošková N, Vyviurska O, Špánik I. 2014. Identification of volatile organic compounds in honeydew honeys using comprehensive gas chromatography. Journal of Food and Nutrition Research53, 353–362.

Ji X H, Wang B L, Wang X D, Shi X B, Liu P P, Liu F Z, Wang H B. 2019. Effects of different color paper bags on aroma development of Kyoho grape berries. Journal of Integrative Agriculture18, 70–82.

Kelebek H, Selli S, Gubbuk H, Gunes E. 2015. Comparative evaluation of volatiles, phenolics, sugars, organic acids and antioxidant properties of Sel-42 and Tainung papaya varieties. Food Chemistry173, 912–919.

Letaief H, Zemni H, Mliki A, Chebil S. 2016. Composition of Citrus sinensis L. Osbeck cv «Maltaise demi-sanguine» juice. A comparison between organic and conventional farming. Food Chemistry194, 290–295.

Li B, Wang Y, Hu T, Qiu D W, Francis F, Wang S C, Wang S T. 2022. Root-associated microbiota response to ecological factors: Role of soil acidity in enhancing citrus tolerance to Huanglongbing. Frontiers in Plant Science13, 937414.

Liu C H, Cheng Y J, Zhang H Y, Deng X X, Chen F, Xu J. 2012. Volatile constituents of wild citrus Mangshanyegan (Citrus nobilis Lauriro) peel oil. Journal of Agricultural and Food Chemistry60, 2617–2628.

Liu Y, Liu S, Liu C. 2019. Segmentation and reconstruction of overlapped citrus without blocking by branches and leaves. Jiangsu Journal of Agricultural Sciences35, 1441–1449. (in Chinese)

Lou Z X, Chen J, Yu F H, Wang H X, Kou X G, Ma C Y, Zhu S. 2017. The antioxidant, antibacterial, antibiofilm activity of essential oil from Citrus medica Lvarsarcodactylis and its nanoemulsion. LWT-Food Science and Technology80, 371–377.

Lozano P R, Miracle E R, Krause A J, Drake M, Cadwallader K R. 2007. Effect of cold storage and packaging material on the major aroma components of sweet cream butter. Journal of Agricultural and Food Chemistry55, 7840–7846.

Mastello R B, Capobiango M, Chin S T, Monteiro M, Marriott P J. 2015. Identification of odour-active compounds of pasteurised orange juice using multidimensional gas chromatography techniques. Food Research International75, 281–288.

Mesa-Arango A C, Betancur-Galvis L, Montiel J, Bueno J G, Baena A, Duran D C, Martinez J R, Stashenko E E. 2010. Antifungal activity and chemical composition of the essential oils of Lippia alba (Miller) N.E brown grown in different regions of Colombia. Journal of Essential Oil Research22, 568–574.

Mockutė D, Bernotienė G, Judžentienė A. 2003. Volatile compounds of the aerial parts of wild St. John’s wort Hypericum perforatum L. plants. Chemija143, 108–111.

Nayak B, Dahmoune F, Moussi K, Remini H, Dairi S, Aoun O, Khodir M. 2015. Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chemistry187, 507–516.

Noudogbessi J, Yedomonhan P, Sohounhloue D, Chalchat J, Figueredo G. 2008. Chemical composition of essential oil of Syzygium guineense (Willd.) DC. var. guineense (Myrtaceae) from Beni. Records of Natural Products2, 33–38.

Parastar H, Jalali-Heravi M, Sereshti H, Mani-Varnosfaderani A. 2012. Chromatographic fingerprint analysis of secondary metabolites in citrus fruits peels using gas chromatography–mass spectrometry combined with advanced chemometric methods. Journal of Chromatography (A), 1251, 176–187.

Patil J R, Jayaprakasha G K, Murthy K N C, Tichy S E, Chetti M B, Patil B S. 2009. Apoptosis-mediated proliferation inhibition of human colon cancer cells by volatile principles of Citrus aurantifoliaFood Chemistry114, 1351–1358.

Peng C H, Ker Y B, Weng C F, Peng C C, Huang C N, Lin L Y, Peng R Y. 2009. Insulin secretagogue bioactivity of finger citron fruit (Citrus medica L. var. Sarcodactylis hort, Rutaceae). Journal of Agricultural and Food Chemistry57, 8812–8819.

Ren J, Tai Y, Dong M, Shao J H, Yang S Z, Pan S Y, Fan G. 2015. Characterisation of free and bound volatile compounds from six different varieties of citrus fruits. Food Chemistry185, 25–32.

Rodriguez A, Alquezar B, Pena L. 2013. Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytologist197, 36–48.

Schwab W, Davidovich-Rikanati R, Lewinsohn E. 2008. Biosynthesis of plant-derived flavor compounds. The Plant Journal54, 712–732.

Shin B R, Yang S O, Song H W, Chung M S, Kin Y S. 2015. Effects of adsorbents on benzo(a)pyrene, sesamol, and sesamolin contents and volatile component profiles in sesame oil. Food Science and Biotechnology24, 2017–2022.

Silva D B, Pott A, Oliveira D C R. 2010. Analyses of the headspace volatile constituents of aerial parts leaves and stems, flowers and fruits of Bidens gardneri Bak. and Bidens sulphurea Cav. Sch.Bip. using solid-phase microextraction. Journal of Essential Oil Research22, 560–563.

Stitz M, Hartl M, Baldwin I T, Gaquerel E. 2014. Jasmonoyl-L-isoleucine coordinates metabolic networks required for anthesis and floral attractant emission in wild tobacco Nicotiana attenuataThe Plant Cell26, 3964–3983.

Su Y, Wang C, Guo Y. 2009. Analysis of volatile compounds from Mentha hapioealyx Briq by GC–MS based on accurate mass measurement and retention index. Acta Chimica Sinica, 67, 546–554. (in Chinese)

Tao N, Jia L, Zhou H. 2014. Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatumFood Chemistry153, 265–271.

Tian J P, Ma Z Y, Zhao K G, Zhang J, Xiang L, Chen L Q. 2018. Transcriptomic and proteomic approaches to explore the differences in monoterpene and benzenoid biosynthesis between scented and unscented genotypes of wintersweet. Physiologia Plantarum166, 478–493.

Varlet V, Knockaert C, Prost C, Serot T. 2006. Comparison of odor-active volatile compounds of fresh and smoked salmon. Journal of Agricultural and Food Chemistry54, 3391–3401.

Wang H W, Liu Y Q, Wei S L, Yan Z J, Jin X. 2012. Comparative chemical composition of the essential oils obtained by microwave-assisted hydrodistillation and hydrodistillation from Agrimonia pilosa LEDEB. Collected in three different regions of China. Chemistry and Biodiversity9, 662–668.

Wang L, Baldwin E A, Zhao W, Plotto A, Sun X X, Wang Z, Brecht J K, Bai J H, Yu Z F. 2015. Suppression of volatile production in tomato fruit exposed to chilling temperature and alleviation of chilling injury by a pre-chilling heat treatment. LWT-Food Science and Technology62, 115–121.

Wang Y, Wu J, Sun P, Chen C F, Shen J S. 2022. Community structure of phyllosphere bacteria in different cultivars of fingered citron Citrus medica ‘Fingered’ and their correlations with fragrance. Frontiers in Plant Science13, 936252.

Watanabe A, Ueda Y, Higuchi M, Shiba N. 2008. Analysis of volatile compounds in beef fat by dynamic-headspace solid-phase microextraction combined with gas chromatography-mass spectrometry. Journal of Food Science73, 420–425.

Xia Q, Li Y. 2018. Ultra-high-pressure effects on color, volatile organic compounds and antioxidants of wholegrain brown rice Oryza sativa L. during storage: A comparative study with high-intensity ultrasound and germination pretreatments. Innovative Food Science and Emerging Technologies45, 390–400.

Xie J, Deng L L, Zhou Y H, Yao S X, Zeng K F. 2018. Analysis of changes in volatile constituents and expression of genes involved in terpenoid metabolism in oleocellosis peel. Food Chemistry243, 269–276.

Yu Y, Bai J, Chen C, Plotto A, Baldwin E A, Gmitter F G. 2018. Comparative analysis of juice volatiles in selected mandarins, mandarin relatives and other citrus genotypes. Journal of the Science of Food and Agriculture98, 1124–1131.

Zhang H P, Xie Y X, Liu C H, Chen S L, Hu S S, Xie Z Z, Deng X X, Xu J. 2017. Comprehensive comparative analysis of volatile compounds in citrus fruits of different species. Food Chemistry230, 316–326.

Zheng C H, Kim K H, Kim T H, Lee H J. 2005. Analysis and characterization of aroma-active compounds of Schizandra chinensis (omija) leaves. Journal of the Science of Food and Agriculture85, 161–166.

Zhou Y X, Xu J N, Xie J, Yao S X, Deng L L, Zeng K F. 2017. Involvement of membrane degradation in response to oleocellosis induced by exogenous orange oil in citrus fruit. Acta Physiologiae Plantarum398, 163.

Zhu M, Li E, He H. 2008. Determination of volatile chemical constitutes in tea by simultaneous distillation extraction, vacuum hydrodistillation and thermal desorption. Chromatographia68, 603–610.

[1] WEI Xiao-bao, XUE Jing-qi, WANG Shun-li, XUE Yu-qian, LIN Huan, SHAO Xing-feng, XU Dong-hui, ZHANG Xiu-xin. Fatty acid analysis in the seeds of 50 Paeonia ostii individuals from the same population[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1758-1768.
No Suggested Reading articles found!