Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (4): 981-998    DOI: 10.1016/j.jia.2022.08.016
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
The miR164-TaNAC14 module regulates root development and abiotic-stress tolerance in wheat seedlings
CHI Qing*, DU Lin-ying*, MA Wen*, NIU Ruo-yu, WU Bao-wei, GUO Li-jian, MA Meng, LIU Xiang-li, ZHAO Hui-xian#

College of Life Sciences, Northwest A & F University, Yangling 712100, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

前人研究已经揭示出水稻和拟南芥中 miR164家族和mir164靶向的转录因子基因在发育过程和胁迫应答中扮演着多种角色。我们在小麦中发现的9tae-miR164遗传位点(tae-mir164a to i)能生成两个miR164成熟序列,它们通过切割各自靶标mRNA的方式使新鉴定的靶基因TaNACs (TaNAC1, TaNAC7, TaNAC11, and TaNAC14)下调表达。小麦tae-miR164或其调控靶基因TaNAC14过表达表明,miR164-TaNAC14模块对小麦幼苗的根系生长发育和非生物胁迫 (干旱和盐碱)耐性有显著影响,TaNAC14促进小麦幼苗根系生长发育,增强耐旱性;而miR164通过下调TaNAC14的表达抑制小麦幼苗根系发育,降低耐旱性和耐盐性。我们研究发现的miR164-TaNAC14模块以及其它tae-miR164调控靶基因,为抗旱小麦育种提供了新的遗传资源。



Abstract  

Previous studies have revealed the miR164 family and the miR164-targeted NAC transcription factor genes in rice (Oryza sativa) and Arabidopsis that play versatile roles in developmental processes and stress responses.  In wheat (Triticum aestivum L.), we found nine genetic loci of tae-miR164 (tae-MIR164 a to i) producing two mature sequences that down-regulate the expression of three newly identified target genes of TaNACs (TaNAC1, TaNAC11, and TaNAC14) by the cleavage of the respective mRNAs.  Overexpression of tae-miR164 or one of its target genes (TaNAC14) demonstrated that the miR164-TaNAC14 module greatly affects root growth and development and stress (drought and salinity) tolerance in wheat seedlings, and TaNAC14 promotes root growth and development in wheat seedlings and enhances drought tolerance, while tae-miR164 inhibits root development and reduces drought and salinity tolerance by down-regulating the expression of TaNAC14.  These findings identify the miR164-TaNAC14 module as well as other tae-miR164-regulated genes which can serve as new genetic resources for stress-resistance wheat breeding.

Keywords:  Triticum aestivum        tae-miR164       miR164-targeted TaNACs       miR164-TaNAC14 module       growth and development       abiotic-stress tolerance  
Received: 10 January 2022   Accepted: 04 March 2022
Fund: 

 This study was financially supported by the National Natural Science Foundation of China (32072003 and 32072059) and the Key Research and Development Program of Shaanxi Province, China (2021NY-079).

About author:  #Correspondence ZHAO Hui-xian, Tel: +86-29-87092843, Fax: +86-29-87092262, E-mail: hxzhao212@nwafu.edu.cn * These authors contributed equally to this study.

Cite this article: 

CHI Qing, DU Lin-ying, MA Wen, NIU Ruo-yu, WU Bao-wei, GUO Li-jian, MA Meng, LIU Xiang-li, ZHAO Hui-xian. 2023. The miR164-TaNAC14 module regulates root development and abiotic-stress tolerance in wheat seedlings. Journal of Integrative Agriculture, 22(4): 981-998.

Bartel D. 2009. MicroRNA target recognition and regulatory functions. Cell, 136, 215–233.
Borrill P, Harrington S A, Uauy C. 2017. Genome-wide sequence and expression analysis of the NAC transcription factor family in polyploid wheat. G3 - Genes Genomes Genetics, 7, 3019–3029.
Chen C F, Ridzon D A, Broomer A J, Zhou Z H, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J, Guegler K J. 2005. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33, 20:e179.
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13, 1194–1202.
Chen X M. 2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303, 2022–2025.
Chen X M. 2009. Small RNAs and their roles in plant development. Annual Review of Cell and Developmental Biology, 25, 21–44.
Chi Q, Guo L J, Ma M, Zhang L J, Mao H D, Wu B W, Liu X L, Ramirez-Gonzalez R H, Uauy C, Appels R, Zhao H X. 2019. Global transcriptome analysis uncovers the gene co-expression regulation network and key genes involved in grain development of wheat (Triticum aestivum L.). Functional & Integrative Genomics, 19, 853–866. (in Chinese)
Cuperus J T, Fahlgren N, Carrington J C. 2011. Evolution and functional diversification of miRNA genes. Plant Cell, 23, 431–442.
Curaba J, Spriggs A, Taylor J, Li Z, Helliwell C. 2012. miRNA regulation in the early development of barley seed. BMC Plant Biology, 12, 120.
Fang Y J, Xie K B, Xiong L Z. 2014. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. Journal of Experimental Botany, 65, 2119–2135.
Feng H, Duan X Y, Zhang Q, Li X R, Wang B, Huang L L, Wang X J, Kang Z S. 2014. The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Molecular Plant Pathology, 15, 284–296.
Geng Y, Jian C, Xu W, Liu H, Hao C, Hou J, Liu H, Zhang X, Li T. 2020. miR164-targeted TaPSK5 encodes a phytosulfokine precursor that regulates root growth and yield traits in common wheat (Triticum aestivum L.). Plant Molecular Biology, 104, 615–628.
Gietz R D, Schiestl R H. 2007. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols, 2, 35–37.
Guo C K, Xu Y M, Shi M, Lai Y M, Wu X, Wang H S, Zhu Z J, Poethig R S, Wu G. 2017. Repression of miR156 by miR159 regulates the timing of the juvenile-to-adult transition in Arabidopsis. Plant Cell, 29, 1293–1304.
Guo H S, Xie Q, Fei J F, Chua N H. 2005. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell, 17, 1376–1386.
Han R, Jian C, Lv J Y, Yan Y, Chi Q, Li Z J, Wang Q, Zhang J, Liu X L, Zhao H X. 2014. Identification and c haracterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.). BMC Genomics, 15, 289.
Ho S N, Hunt H D, Horton R M, Pullen J K, Pease L R. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 77, 51–59.
Hoagland D R, Arnon D I. 1937. The water-culture method for growing plants without soil. California Agricultural Experimental Station Bulletin, 347, 1–32.
Hu C H, Zeng Q D, Tai L, Li B B, Zhang P P, Nie X M, Wang P Q, Liu W T, Li W Q, Kang Z S, Han D J, Chen K M. 2020. Interaction between TaNOX7 and TaCDPK13 contributes to plant fertility and drought tolerance by regulating ROS production. Journal of Agricultural and Food Chemistry, 68, 7333–7347.
Ishida Y, Tsunashima M, Hiei Y, Komari T. 2015. Wheat (Triticum aestivum L.) transformation using immature embryos. In: Wang K, ed., Agrobacterium Protocols. Springer New York, New York. pp. 189–198.
Jefferson R A, Kavanagh T A, Bevan M W. 1987. GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6, 3901–3907.
Jeong J S, Kim Y S, Redillas M C F R, Jang G, Jung H, Bang S W, Choi Y D, Ha S H, Reuzeau C, Kim J K. 2013. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnology Journal, 11, 101–114.
Jian C, Han R, Chi Q, Wang S J, Ma M, Liu X L, Zhao H X. 2017. Virus-based microRNA silencing and overexpressing in common wheat (Triticum aestivum L.). Frontiers in Plant Science, 8, 500.
Kantar M, Lucas S J, Budak H. 2011. miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta, 233, 471–484.
Kim J H, Woo H R, Kim J, Lim P O, Lee I C, Choi S H, Hwang D, Nam H G. 2009. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science, 323, 1053–1057.
Laufs P, Peaucelle A, Morin H, Traas J. 2004. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 131, 4311–4322.
Lauter N, Kampani A, Carlson S, Goebel M, Moose S P. 2005. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proceedings of the National Academy of Sciences of the United States of America, 102, 9412–9417.
Lee D K, Chung P J, Jeong J S, Jang G, Bang S W, Jung H, Kim Y S, Ha S H, Choi Y D, Kim J K. 2017. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnology Journal, 15, 754–764.
Lee Y, Kim M, Han J J, Yeom K H, Lee S, Baek S H, Kim V N. 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO Journal, 23, 4051–4060.
Li S C, Gao F Y, Xie K L, Zeng X H, Cao Y, Zeng J, He Z S, Ren Y, Li W B, Deng Q M, Wang S Q, Zheng A P, Zhu J, Liu H N, Wang L X, Li P. 2016. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grainsize and yield in rice. Plant Biotechnology Journal, 14, 2134–2146. 
Li T, Ma L, Geng Y K, Hao C Y, Chen X H, Zhang X Y. 2015. Small RNA and degradome sequencing reveal complex roles of miRNAs and their targets in developing wheat grains. PLoS ONE, 10, e0139658.
Li Y F, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell M J, Zhang W X, Sunkar R. 2010. Transcriptome-wide identification of microRNA targets in rice. Plant Journal, 62, 742–759. 
Liu Q, Axtell M J. 2015. Quantitating plant microRNA-mediated target repression using a dual-luciferase transient expression system. In: Alonso J M, Stepanova A N, eds., Plant Functional Genomics: Methods and Protocols. Springer New York, New York. pp. 287–303.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods, 25, 402–408.
Lobell D B, Schlenker W, Costa-Roberts J. 2011. Climate trends and global crop production since 1980. Science, 333, 616–620.
Lu S, Su W, Li H, Guo Z. 2009. Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiology and Biochemistry, 47, 132–138.
Ma C, Burd S, Lers A. 2015. miR408 is involved in abiotic stress responses in Arabidopsis. Plant Journal, 84, 169–187.
Mallory A C, Dugas D V, Bartel D P, Bartel B. 2004. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Current Biology, 14, 1035–1046.
Mao H, Li S, Chen B, Jian C, Mei F, Zhang Y, Li F, Chen N, Li T, Du L, Ding L, Wang Z, Cheng X, Wang X, Kang Z. 2021. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Molecular Plant, 15, 276–293.
Mao H D, Li S M, Wang Z X, Cheng X X, Li F F, Mei F M, Chen N, Kang Z S. 2020. Regulatory changes in TaSNAC8–6A are associated with drought tolerance in wheat seedlings. Plant Biotechnology Journal, 18, 1078–1092.
Pan J W, Huang D H, Guo Z L, Kuang Z, Zhang H, Xie X Y, Ma Z F, Gao S P, Lerdau M T, Chu C C, Li L. 2018. Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants. Journal of Integrative Plant Biology, 60, 323–340.
Peng T, Teotia S, Tang G L, Zhao Q Z. 2019. MicroRNAs meet with quantitative trait loci: Small powerful players in regulating quantitative yield traits in rice. Wiley Interdisciplinary Reviews - RNA, 10, e1556.
Porebski S, Bailey L G, Baum B R. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15, 8–15.
Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P. 2002. Prediction of plant microRNA targets. Cell, 110, 513–520.
Shen H, Yin Y B, Chen F, Xu Y, Dixon R A. 2009. A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. Bioenergy Research, 2, 217–232.
Shi G Q, Fu J Y, Rong L J, Zhang P Y, Guo C J, Xiao K. 2018. TaMIR1119, a miRNA family member of wheat (Triticum aestivum), is essential in the regulation of plant drought tolerance. Journal of Integrative Agriculture, 17, 2369–2378.
Wang B, Song N, Zhang Q, Wang N, Kang Z S. 2018. TaMAPK4 acts as a positive regulator in defense of wheat stripe-rust infection. Frontiers in Plant Science, 9, 152.
Wang L, Gu X L, Xu D Y, Wang W, Wang H, Zeng M H, Chang Z Y, Huang H, Cui X F. 2011. miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. Journal of Experimental Botany, 62, 761–773.
Wang L, Sun S Y, Jin J Y, Fu D B, Yang X F, Weng X Y, Xu C G, Li X H, Xiao J H, Zhang Q F. 2015. Coordinated regulation of vegetative and reproductive branching in rice. Proceedings of the National Academy of Sciences of the United States of America, 112, 15504–15509.
Xin M M, Wang Y, Yao Y Y, Xie C J, Peng H R, Ni Z F, Sun Q X. 2010. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biology, 10, 123–133.
Yan J, Gu Y Y, Jia X Y, Kang W J, Pan S J, Tang X Q, Chen X M, Tang G L. 2012. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell, 24, 415–427.
Yoo S D, Cho Y H, Sheen J. 2007. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565–1572.
Zhang L J, Chi Q, Du L Y, Guo L J, Li Y L, Liu X L, Ma M, Zhao H X. 2020. Analysis of copy number and genetic stability of the transgene TaNAC14 in transgenic wheat (Triticum aestivum). Journal of Triticeae Crops, 40, 135–143. (in Chinese)
Zhang X Q, Li K C, Xing R G, Liu S, Chen X L, Yang H Y, Li P C. 2018. miRNA and mRNA expression profiles reveal insight into chitosan-mediated regulation of plant growth. Journal of Agricultural and Food Chemistry, 66, 3810–3822.
Zhou M, Gu L, Li P, Song X, Wei L, Chen Z, Cao X. 2010. Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Frontiers in Biology, 5, 67–90.
Zhu Q H, Spriggs A, Matthew L, Fan L J, Kennedy G, Gubler F, Helliwell C. 2008. A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Research, 18, 1456–1465.
[1] LI Yu-dong, BAI Xue, LIU Xin , WANG Wei-jia, LI Zi-wei, WANG Ning, XIAO Fan, GAO Hai-he, GUO Huai-shun, LI Hui, WANG Shou-zhi. Integration of genome-wide association study and selection signatures reveals genetic determinants for skeletal muscle production traits in an F2 chicken population[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2065-2075.
[2] ZHAO Ying-jia, ZHANG Yan-yang, BAI Xin-yang, LIN Rui-ze, SHI Gui-qing, DU Ping-ping, XIAO Kai. TaNF-YB11, a gene of NF-Y transcription factor family in Triticum aestivum, confers drought tolerance on plants via modulating osmolyte accumulation and reactive oxygen species homeostasis[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3114-3130.
[3] GONG Xiao-dong, LIU Yu-wei, BI Huan-huan, YANG Xiao-rong, HAN Jian-min, DONG Jin-gao, GU Shou-qin. StKU80, a component in the NHEJ repair pathway, is involved in mycelial morphogenesis, conidiation, appressorium development, and oxidative stress reactions in Exserohilum turcicum[J]. >Journal of Integrative Agriculture, 2021, 20(1): 147-158.
[4] ZHANG Yong-sheng, LU Dan, LIU Yu-wen, YI Guo-qiang, TANG Zhong-lin . The untold story between enhancers and skeletal muscle development[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2137-2149.
[5] XU Jun, WANG Xin-yu, GUO Wang-zhen. The cytochrome P450 superfamily: Key players in plant development and defense[J]. >Journal of Integrative Agriculture, 2015, 14(9): 1673-1686.
[6] WANG Chun-ling, SHEN Shuang-he, ZHANG Shu-yu, LI Qiao-zhen, YAO Yu-bi. Adaptation of potato production to climate change by optimizing sowing date in the Loess Plateau of central Gansu, China[J]. >Journal of Integrative Agriculture, 2015, 14(2): 398-409.
[7] YANG Xiu-rong, JIANG He-sheng, ZHENG Jiang-xia, QU Lu-jiang, CHEN Si-rui, LI Jun-ying, XU Guiyun, YANG Ning. Dosage Effects of Fadrozole on Growth and Development of Sex-Reversed Genetic Female Chickens[J]. >Journal of Integrative Agriculture, 2013, 12(6): 1049-1053.
No Suggested Reading articles found!