Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (6): 1896-1908    DOI: 10.1016/j.jia.2023.04.037
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Increasing nitrogen absorption and assimilation ability under mixed NO3 and NH4+ supply is a driver to promote growth of maize seedlings

WANG Peng1, 2, WANG Cheng-dong1, WANG Xiao-lin1, WU Yuan-hua1, ZHANG Yan1, SUN Yan-guo1, SHI Yi1, MI Guo-hua2#

1 Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, P.R.China

2 Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193,  P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  与单独供硝(NO3-)或者单独供铵(NH4+)相比,混合供氮能够促进苗期玉米的生长。前期研究表明,混合供氮不仅可以提高玉米的光合效率,还可以促进地上部生长素的合成来增强叶片生长,进而为碳和氮的利用构建一个较大的库。然而,该过程是否依赖于氮的吸收还尚不清楚。在此,将玉米幼苗在具有三种供氮形态(单独供硝,75/25硝铵比和单独供铵)的水培实验中进行生长。结果表明,在0-3天,混合供氮下玉米生长速率和地上部含氮量与单独供硝处理间无显著差异,在6-9天,混合供氮下玉米生长速率和地上部含氮量显著高于单独供硝处理。于此同时,虽然混合供氮条件下15NO3-与15NH4+的瞬时吸收速率较单独供硝和单独供铵相比皆有所下降,但混合供氮在6-9天具有最高的总氮吸收速率。QRT-PCR结果表明,长期混合供氮条件下根系N吸收的增加可能与长期处理下NO3-转运蛋白基因(例如ZmNRT1.1AZmNRT1.1BZmNRT1.1CZmNRT1.2ZmNRT1.3)的高表达或铵转运蛋白基因(例如ZmAMT1.1A)的高表达有关,尤其是后者。此外,与单独供硝处理相比,混合供氮处理下植株地上部与根系中具有较高的谷氨酰胺合酶(GS)活性以及氨基酸含量。硝酸还原酶酶(NR)和GS酶抑制剂实验进一步证明了混合供氮情况下氮的同化能力对于玉米生长促进是至关重要的。该研究证明了混合供氮能够促进氮素吸收并进一步促进了氮的同化,而该过程可能是促进玉米上生长的主要驱动力。

Abstract  

Compared with sole nitrate (NO3) or sole ammonium (NH4+) supply, mixed nitrogen (N) supply may promote growth of maize seedlings.  Previous study suggested that mixed N supply not only increased photosynthesis rate, but also enhanced leaf growth by increasing auxin synthesis to build a large sink for C and N utilization.  However, whether this process depends on N absorption is unknown.  Here, maize seedlings were grown hydroponically with three N forms (NO3 only, 75/25 NO3/NH4+ and NH4+ only).  The study results suggested that maize growth rate and N content of shoots under mixed N supply was little different to that under sole NO3 supply at 0–3 d, but was higher than under sole NO3 supply at 6–9 d.  15N influx rate under mixed N supply was greater than under sole NO3 or NH4+ supply at 6–9 d, although NO3 and NH4+ influx under mixed N supply were reduced compared to sole NO3 and NH4+ supply, respectively.  qRT-PCR determination suggested that the increased N absorption under mixed N supply may be related to the higher expression of NO3 transporters in roots, such as ZmNRT1.1A, ZmNRT1.1B, ZmNRT1.1C, ZmNRT1.2 and ZmNRT1.3, or NH4+ absorption transporters, such as ZmAMT1.1A, especially the latter.  Furthermore, plants had higher nitrate reductase (NR) glutamine synthase (GS) activity and amino acid content under mixed N supply than when under sole NO3 supply.  The experiments with inhibitors of NR reductase and GS synthase further confirmed that N assimilation ability under mixed N supply was necessary to promote maize growth, especially for the reduction of NO3 by NR reductase.  This research suggested that the increased processes of NO3 and NH4+ assimilation by improving N-absorption ability of roots under mixed N supply may be the main driving force to increase maize growth.


Keywords:  maize        NO3-/NH4+ ratio        N absorption        N assimilation        plant growth  
Received: 01 September 2022   Online: 01 May 2023   Accepted: 27 November 2022
Fund: The study was supported by the National Basic Research Program of China (2015CB150402), the National Natural Science Foundation of China (31672221 and 31421092) and the Science Foundation for Young Scholars of Tobacco Research Institute of Chinese Academy of Agricultural Sciences (2022C03 and 20211302).
About author:  WANG Peng, Tel: +86-532-88701506, E-mail: wangpeng03@caas.cn; #Correspondence MI Guo-hua, Tel: +86-10-62734554, E-mail: miguohua@cau.edu.cn

Cite this article: 

WANG Peng, WANG Cheng-dong, WANG Xiao-lin, WU Yuan-hua, ZHANG Yan, SUN Yan-guo, SHI Yi, MI Guo-hua. 2023. Increasing nitrogen absorption and assimilation ability under mixed NO3 and NH4+ supply is a driver to promote growth of maize seedlings. Journal of Integrative Agriculture, 22(6): 1896-1908.

Babourina O, Voltchanskii K, Mcgann B, Newman I, Rengel Z. 2007. Nitrate supply affects ammonium transport in canola roots. Journal of Experimental Botany, 58, 651–658.

Cataldo D A, Maroon M, Schrader L E, Youngs V L. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis6, 71–80.

Cerezo M, Tillard P, Muños S, Daniel-Vedele F, Gojon A. 2001. Major alterations of the regulation of root NO3 uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in ArabidopsisPlant Physiology127, 262–271.

Clarkson D T, Hopper M J, Jones L. 1986. The effect of root temperature on the uptake of nitrogen and the relative size of the root system in Lolium perenne. I. Solutions containing both NH4+ and NO3Plant Cell and Environment, 9, 535–545.

Clement C R, Hopper M J, Jones L. 1978. The uptake of nitrate by Lolium perenne from flowing nutrient solution: I. Effect of NO3 concentration. Journal of Experimental Botany29, 453–464.

Crowther J R. 1995. ELISA: Theory and Practice. Humana Press, Totowa.

Garnett T, Conn V, Plett D, Conn S, Zanghellini J, Mackenzie N, Enju A, Francis K, Holtham L, Roessner U. 2013. The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle. New Phytologist198, 82–94.

George J, Holtham L, Sabermanesh K, Heuer S, Tester M, Plett D, Garnett T. 2016. Small amounts of ammonium (NH4+) can increase growth of maize (Zea mays). Journal of Plant Nutrition and Soil Science179, 717–725.

Glass A D, Kotur Z. 2013. A reevaluation of the role of Arabidopsis NRT1. 1 in high-affinity nitrate transport. Plant Physiology163, 1103–1106.

Gorska A, Zwieniecka A, Holbrook N, Zwieniecki M. 2008 Nitrate induction of root hydraulic conductivity in maize is not correlated with aquaporin expression. Planta228, 989–998.

Gu R, Duan F, An X, Zhang F, von Wirén N, Yuan L. 2013. Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.). Plant and Cell Physiology54, 1515–1524.

Guo S, Zhou Y, Shen Q, Zhang F. 2007. Effect of ammonium and nitrate nutrition on some physiological processes in higher plants - Growth, photosynthesis, photorespiration, and water relations. Plant Biology9, 21–29.

Hachiya T, Sakakibara H. 2017. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. Journal of Experimental Botany68, 2501–2512.

Heffer P, Gruère A, Roberts T. 2013. Assessment of Fertilizer use by Crop at the Global Level. International Fertiliser Industry, France.

Ho C, Lin S, Hu H, Tsay Y. 2009. CHL1 functions as a nitrate sensor in plants. Cell138, 1184–1194.

Huang N, Liu K, Lo H, Tsay Y. 1999. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. The Plant Cell, 11, 1381–1392.

Kronzucker H J, Glass A D, Yaeesh S M. 1999a. Inhibition of nitrate uptake by ammonium in barley. Analysis of component fluxes. Plant Physiology, 120, 283–292.

Kronzucker H J, Siddiqi M Y, Glass A D, Kirk G J. 1999b. Nitrate-ammonium synergism in rice. A subcellular flux analysis. Plant Physiology119, 1041–1045.

Lea P J, Morot-Gaudry J F. 2001. Plant Nitrogen. Springer, Berlin Heidelberg.

Li S X, Zhao H, Wang B, Stewart A. 2013. Responses of crop plants to ammonium and nitrate N. Advances in Agronomy118, 205–397.

Li W, Wang Y, Okamoto M, Crawford N M, Siddiqi M Y, Glass A D M. 2007. Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiology143, 425.

Luo J, Qin J, He F, Li H, Liu T, Polle A, Peng C, Luo Z B. 2013. Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus popularisPlanta237, 919–931.

Marschner H. 2011. Marschner’s Mineral Nutrition of Higher Plants. Academic Press, Australia.

Okamoto M, Kumar A, Li W, Wang Y, Siddiqi M Y, Crawford N M, Glass A D. 2006. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1Plant Physiology140, 1036–1046.

Plett D, Toubia J, Garnett T, Tester M, Kaiser B N, Baumann U. 2010. Dichotomy in the NRT gene families of dicots and grass species. PLoS ONE5, e15289.

Raun W R, Johnson G V. 1999. Improving nitrogen use efficiency for cereal production. Agronomy Journal91, 357–363.

Sabermanesh K, Holtham L R, George J, Roessner U, Boughton B A, Heuer S, Tester M, Plett D C, Garnett T P. 2017. Transition from a maternal to external nitrogen source in maize seedlings. Journal of Integrative Plant Biology59, 261–274.

Schrader L E, Domska D, Jung P E, Peterson L A. 1972. Uptake and assimilation of ammonium-N and nitrate-N and their influence on the growth of corn (Zea mays L.). Agronomy Journal64, 690–695.

Sivasankar S, Rothstein S, Oaks A. 1997. Regulation of the accumulation and reduction of nitrate by nitrogen and carbon metabolites in maize seedlings. Plant Physiology114, 583–589.

Sylvester-Bradley R, Kindred D R. 2009. Analyzing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. Journal of Experimental Botany60, 1939–1951.

Wang F, Gao J, Liu Y, Tian Z, Muhammad A, Zhang Y, Jiang D, Cao W, Dai T. 2016. Higher ammonium transamination capacity can alleviate glutamate inhibition on winter wheat (Triticum aestivum L.) root growth under high ammonium stress. PLoS ONE11, 1–17.

Wang P, Wang Z, Pan Q, Sun X, Chen H, Chen F, Yuan L, Mi G. 2019a. Increased biomass accumulation in maize grown in mixed nitrogen supply is mediated by auxin synthesis. Journal of Experimental Botany70, 1859–1873.

Wang P, Wang Z, Sun X, Mu X, Chen F, Yuan L, Mi G. 2019b. Interaction effect of nitrogen form and planting density on plant growth and nutrient uptake in maize seedlings. Journal of Integrative Agriculture17, 60345–60347.

Wirth J, Chopin F, Santoni V, Viennois G, Tillard P, Krapp A, Lejay L, Daniel-Vedele F, Gojon A. 2007. Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thalianaJournal of Biological Chemistry282, 23541–23552.

Xue Y. 1985. Plant Physiology Experiment Manual. Shanghai Science and Technology Press, China. (in Chinese)

Yuan L, Loqué D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wirén N. 2007. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. The Plant Cell19, 2636–2652.

[1] LIU Hong-jun, DUAN Wan-dong, LIU Chao, MENG Ling-xue, LI Hong-xu, LI Rong, SHEN Qi-rong. Spore production in the solid-state fermentation of stevia residue by Trichoderma guizhouense and its effects on corn growth[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1147-1156.
[2] ZHAO Juan, LIU Ting, LIU Wei-cheng, ZHANG Dian-peng, DONG Dan, WU Hui-ling, ZHANG Tao-tao, LIU De-wen. Transcriptomic insights into growth promotion effect of Trichoderma afroharzianum TM2-4 microbial agent on tomato plants[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1266-1276.
[3] ZHANG Jun-hua, HUANG Jing, Sajid HUSSAIN, ZHU Lian-feng, CAO Xiao-chuang, ZHU Chun-quan, JIN Qian-yu, ZHANG Hui. Increased ammonification, nitrogenase, soil respiration and microbial biomass N in the rhizosphere of rice plants inoculated with rhizobacteria[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2781-2796.
[4] LI Peng-cheng, YANG Xiao-yi, WANG Hou-miao, PAN Ting, YANG Ji-yuan, WANG Yun-yun, XU Yang, YANG Ze-feng, XU Chen-wu. Metabolic responses to combined water deficit and salt stress in maize primary roots[J]. >Journal of Integrative Agriculture, 2021, 20(1): 109-119.
[5] Sooyeon Lim, Gibum Yi. Investigating seed mineral composition in Korean landrace maize (Zea mays L.) and its kernel texture specificity[J]. >Journal of Integrative Agriculture, 2019, 18(9): 1996-2005.
[6] LI Xiang-ling, GUO Li-guo, ZHOU Bao-yuan, TANG Xiang-ming, CHEN Cong-cong, ZHANG Lei, ZHANG Shao-yun, LI Chong-feng, XIAO Kai, DONG Wei-xin, YIN Bao-zhong, ZHANG Yue-chen . Characterization of low-N responses in maize (Zea mays L.) cultivars with contrasting nitrogen use efficiency in the North China Plain[J]. >Journal of Integrative Agriculture, 2019, 18(9): 2141-2152.
[7] GU Ri-liang, HUANG Ran, JIA Guang-yao, YUAN Zhi-peng, REN Li-sha, LI Li, WANG Jian-hua. Effect of mechanical threshing on damage and vigor of maize seed threshed at different moisture contents[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1571-1578.
[8] Muhammad Ali, CHENG Zhi-hui, Sikandar Hayat, Husain Ahmad, Muhammad Imran Ghani, LIU Tao. Foliar spraying of aqueous garlic bulb extract stimulates growth and antioxidant enzyme activity in eggplant (Solanum melongena L.)[J]. >Journal of Integrative Agriculture, 2019, 18(5): 1001-1013.
[9] HE An-le, LIU Jia, WANG Xin-hua, ZHANG Quan-guo, SONG Wei, CHEN Jie. Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize[J]. >Journal of Integrative Agriculture, 2019, 18(3): 599-607.
[10] MENG Di, ZHAI Li-xin, TIAN Qiao-peng, GUAN Zheng-bing, CAI Yu-jie, LIAO Xiang-ru. Complete genome sequence of Bacillus amyloliquefaciens YP6, a plant growth rhizobacterium efficiently degrading a wide range of organophosphorus pesticides[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2668-2672.
[11] WANG Li-jun, ZHANG Ping, WANG Ruo-nan, WANG Pu, HUANG Shou-bing. Effects of variety and chemical regulators on cold tolerance during maize germination[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2662-2669.
[12] XU Ling, Faisal Islam, ZHANG Wen-fang, Muhammad A Ghani, Basharat Ali. 5-Aminolevulinic acid alleviates herbicide-induced physiological and ultrastructural changes in Brassica napus[J]. >Journal of Integrative Agriculture, 2018, 17(03): 579-592.
No Suggested Reading articles found!