Scientia Agricultura Sinica ›› 2009, Vol. 42 ›› Issue (2): 388-397 .doi: 10.3864/j.issn.0578-1752.2009.02.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Mapping for Adult-Plant Resistance to Leaf Rust in CIMMYT Wheat Cultivar Saar

  

  1. 河北农业大学植物保护学院植物病理系/河北省农作物病虫害生物防治工程技术研究中心

  • Received:2008-01-19 Revised:1900-01-01 Online:2009-02-10 Published:2009-02-10
  • Contact: LIU Da-qun,LI Zai-feng

Abstract:

【Objective】 The CIMMYT wheat cultivar Saar has exhibited a high level of adult-plant resistance to leaf rust, stripe rust and powdery mildew in Europe, Asia, and South America, and identification of its QTL for leaf rust resistance will play an important role in breeding wheat cultivars for durable resistance. 【Method】 A total of 142 SSR and 209 DArT markers were used to map QTL for resistance to leaf rust in a recombinant inbred line (RIL) population with 109 F6 families derived from the cross Avocet/Saar. The field trials were conducted in Baoding, Hebei province and Xinxiang, Henan province in 2006-2007 cropping season. 【Result】 Linkage analysis indicated that the genetic map consisting of 142 SSR markers and 209 DArT markers covered 21 wheat linkage group with a total genetic distance of 3083 cM. Using composite interval mapping (CIM), five QTLs for resistance to leaf rust were detected on chromosomes 1BL, 2DS, 5BL, 6AL and 7DS, explaining 4.5%-6.4%, 12.2%-12.5%, 4.9%-11.2%, 4.9%-7.8%, and 14.0%-67.6% of phenotypic variance, respectively. 【Conclusion】 The QTLs and their closely linked molecular markers identified in this study will benefit to marker-assisted selections and wheat germplasm enhancement in breeding wheat cultivars for leaf rust resistance.

Key words: common wheat (Triticum aestivum L.), leaf rust, adult-plant resistance, QTL mapping

[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[3] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[4] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[5] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[6] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
[7] QU KeXin,HAN Lu,XIE JianGuo,PAN WenJing,ZHANG ZeXin,XIN DaWei,LIU ChunYan,CHEN QingShan,QI ZhaoMing. Mapping QTL for Soybean Fatty Acid Composition Based on RIL and CSSL Population [J]. Scientia Agricultura Sinica, 2021, 54(15): 3168-3182.
[8] ZHANG Jian,YANG Jing,WANG Hao,LI DongXiu,YANG GuiLi,HUANG CuiHong,ZHOU DanHua,GUO Tao,CHEN ZhiQiang,WANG Hui. QTL Mapping for Grain Size Related Traits Based on a High-Density Map in Rice [J]. Scientia Agricultura Sinica, 2020, 53(2): 225-238.
[9] WANG Qin,LIU ZeHou,WAN HongShen,WEI HuiTing,LONG Hai,LI Tao,DENG GuangBing,LI Jun,YANG WuYun. Identification and Pyramiding of QTLs for Traits Associated with Pre-Harvest Sprouting Resistance in Two Wheat Cultivars Chuanmai 42 and Chuannong 16 [J]. Scientia Agricultura Sinica, 2020, 53(17): 3421-3431.
[10] QI Yue,LÜ JunYuan,ZHANG Yue,WEI Jie,ZHANG Na,YANG WenXiang,LIU DaQun. Puccinia triticina Effector Protein Pt18906 Triggered Two-Layer Defense Reaction in TcLr27+31 [J]. Scientia Agricultura Sinica, 2020, 53(12): 2371-2384.
[11] ZhiHong NIU,XiaoFei SONG,XiaoLi LI,XiaoYu GUO,ShuQiang HE,LuanJingZhi HE,ZhiHong FENG,ChengZhen SUN,LiYing YAN. Inheritance and QTL Mapping for Parthenocarpy in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(1): 160-171.
[12] CHEN JingJing, LIU XieXiang, YU LiLi, LU YiPeng, ZHANG SiTian, ZHANG HaoChen, GUAN RongXia, QIU LiJuan. QTL Mapping of Hard Seededness in Wild Soybean Using BSA Method [J]. Scientia Agricultura Sinica, 2019, 52(13): 2208-2219.
[13] WANG BingWei, QIN JiaMing, SHI ChengQiao, ZHENG JiaXing, QIN YongAi, HUANG AnXia. QTL Mapping and Genetic Analysis of a Gene with High Resistance to Southern Corn Rust [J]. Scientia Agricultura Sinica, 2019, 52(12): 2033-2041.
[14] YingBin DING, LiZhen ZHANG, Rui XU, YanYan WANG, XiaoMing ZHENG, LiFang ZHANG, YunLian CHENG, Fan WU, QingWen YANG, WeiHua QIAO, JinHao LAN. Fine Mapping of Grain Length Associated QTL, qGL12 in Wild Rice (Oryza sativa L.) Using a Chromosome Segment Substitution Line [J]. Scientia Agricultura Sinica, 2018, 51(18): 3435-3444.
[15] MA YaRu, FENG JianCan, LIU ChongHuai, FAN XiuCai, SUN HaiSheng, JIANG JianFu, ZHANG Ying. Development and Application of SSR New Molecular Marker for Seedless Traits in Grape [J]. Scientia Agricultura Sinica, 2018, 51(13): 2622-2630.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!