Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (23): 4966-4978.doi: 10.3864/j.issn.0578-1752.2025.23.012

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Different Organic Materials Combined with Chemical Fertilizer on Soil Fertility and Maize Grain Yield

WU WenQi1,2(), JIAO Yang1,2, XI JiaZhen1,2, WANG XuFeng1,2, GUO BoSen1,2, SHEN YuFang2,*()   

  1. 1 College of Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi
    2 State Key Laboratory of Soil and Water Conservation and Desertification Control, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2024-11-28 Accepted:2025-02-11 Online:2025-12-01 Published:2025-12-09
  • Contact: SHEN YuFang

Abstract:

【Objective】 This study aimed to explore the effects of different organic amendments combined with chemical fertilizers on maize yield and soil fertility in medium and low yield fields, so as to provide a scientific basis for selecting the best organic fertilization measure. 【Method】 The study focused on medium and low yield fields in Loess Plateau, conducting maize field trials in 2022 and 2023 for two consecutive years. Four organic amendment agent treatments were set up: straw return combined with chemical fertilizer (SF), biochar combined with chemical fertilizer (B), organic fertilizer combined with chemical fertilizer (M), and biological organic fertilizer combined with chemical fertilizer (EM), with chemical fertilizer alone (F) as the control. By measuring maize grain yield and various soil physical, chemical and biological indicators under different treatments, correlation analysis and principal component analysis were used to establish the minimum dataset for evaluation indicators. Fuzzy mathematics was then applied to assess soil fertility. 【Result】 Compared with F treatment, the percentage of soil water-stable macroaggregates (R>0.25) significantly increased by 19.8% and 17.8% under SF and B treatment, respectively, while the percentage of soil aggregates <0.053 mm (R<0.053) significantly decreased by 17.2% and 14.0%; soil moisture content significantly increased by 7.6% and 13.0%, respectively. The M and EM treatments similarly improved the percentage of soil water-stable macroaggregates and surface soil moisture, but the differences were not significant. The application of organic amendments combined with fertilizers improved the geometric mean diameter (GMD) and mean weight diameter (MWD) of soil aggregates, with SF treatment showing a significant increase compared with F treatment, but no significant differences were observed under B and M treatments. Compared with the F treatment, different organic amendment treatments significantly increased soil organic matter content by 16.1%-28.5% and available phosphorus content by 23.1%-195.4%. The DOC under SF treatment and the DON under M treatment showed the most significant increases. The MBC and MBP under EM treatment and the MBN under M treatment were the highest, significantly increasing by 36.9%, 216.4% and 63.3% than that under F treatment, respectively. Compared with the F treatment, the activities of β-glucosidase, N-acetyl-glucosaminidase and leucine aminopeptidase under SF, M and EM treatment increased by 13.3%-57.0%, 21.4%-22.0% and 24.3%-35.1%, respectively. While B treatment showed a significant increase in β-glucosidase activity, but not in N-acetyl-glucosidase and leucine aminopeptidase activity. The soil total enzyme activity index (TEI) ranked as EM>M>SF>B>F treatment, with the EM treatment significantly higher than SF, B and F treatment. The application of organic amendments enhanced soil aggregate structure, increased soil organic matter and nutrient content, and boosted soil enzyme activity, thereby improving soil IFI, with increases ranging from 0.6% to 36.9%, where EM, M and B treatments showed significant increases. Over the two-year trials period, the maize yield was increased significantly by 13.4%-18.5% with the application of organic and biological organic fertilizers compared with F treatment, and the maize yields under these treatments were significantly higher than that under SF treatment. 【Conclusion】 The application of organic amendments combined with chemical fertilizers improved the quality of soil fertility and increased the yield of maize, with M and EM treatment being the most effective.

Key words: organic materials, maize yield, soil microbial biomass, soil enzyme activity, soil fertility

Table 1

Carbon, nitrogen and phosphorus content in different organic materials"

有机物料
Organic material
含碳量
Carbon content (%)
全氮含量
Total nitrogen content (%)
全磷含量
Total phosphorus content (%)
玉米秸秆 Maize straw 40.3 0.8 0.2
生物炭 Biochar 59.2 0.8 0.1
牛粪有机肥 Manure organic fertilizer 25.8 1.3 0.3
生物有机肥Biological organic fertilizer 23.2 1.1 1.2

Fig. 1

Effects of different treatments on maize grain yields in 2022 and 2023 F: Chemical fertilizer treatment; SF: Straw returning combined with chemical fertilizer treatment; B: Biochar combined with chemical fertilizer treatment; M: Organic fertilizer combined with chemical fertilizer treatment; EM: Biological organic fertilizer combined with chemical fertilizer treatment. The same as below. Different lowercase letters indicate the significant differences between different treatments at the level of P<0.05"

Table 2

Effects of different treatments on soil physical properties"

处理
Treatment
容重
BD (g·cm-3)
总孔隙度
SP (%)
土壤水分
SWC (%)
>0.25 mm团聚体百分比
R>0.25 (%)
<0.053团聚体百分比
R<0.053 (%)
F 1.35±0.08a 49.14±2.95a 18.45±0.36c 36.68±3.20b 46.86±1.34a
SF 1.35±0.07a 49.20±3.06a 19.86±0.94ab 43.96±3.01a 38.79±0.46c
B 1.30±0.03a 50.84±1.12a 20.84±0.02a 43.21±3.18a 40.30±4.58bc
M 1.33±0.07a 49.73±2.83a 19.02±0.41bc 39.23±2.84ab 45.60±3.91ab
EM 1.30±0.02a 50.89±0.56a 19.37±0.58bc 37.19±1.14b 42.61±1.55abc

Fig. 2

Effects of different treatments on geometric mean diameter and mean weight diameter of soil water stable aggregates"

Table 3

Effects of different treatments on soil chemical properties"

处理
Treatment
pH 土壤有机质
SOM
(g·kg-1)
全氮
TN
(g·kg-1)
全磷
TP
(g·kg-1)
硝态氮
NO3--N (mg·kg-1)
有效磷
Olsen-P (mg·kg-1)
可溶性有机碳DOC
(mg·kg-1)
可溶性有机氮
DON
(mg·kg-1)
F 8.07±0.03a 10.50±0.56c 0.49±0.06a 0.61±0.05a 7.88±0.51a 5.27±0.45e 30.13±1.84c 20.68±0.95c
SF 8.10±0.03a 12.19±0.43b 0.53±0.02a 0.62±0.01a 6.98±0.31b 6.49±0.20d 39.39±0.33a 24.28±2.82bc
B 8.00±0.03a 13.49±0.53a 0.52±0.02a 0.63±0.03a 7.05±0.53ab 11.79±0.58c 36.68±0.72a 23.27±2.61bc
M 8.02±0.06a 12.51±0.72ab 0.55±0.05a 0.62±0.05a 7.85±0.47a 14.04±0.72b 35.62±4.35ab 28.73±1.22a
EM 8.07±0.03a 13.48±0.36a 0.54±0.02a 0.64±0.02a 7.83±0.27a 15.57±0.51a 32.41±0.88bc 24.99±2.50b

Fig. 3

Effects of different treatments on the contents of soil microbial biomass C, N and P"

Fig. 4

Effect of different treatments on soil carbon, nitrogen and phosphorus acquisition enzyme activities BG is β-glucosidase; CBH is cellobiosehydrolase; LAP is leucine aminopeptidase; NAG is N-acetyl-glucosaminidase; AP is phosphatase; TEI is total enzyme activity index"

Table 4

Principal component analysis of soil fertility index"

指标
Index
主成分Principal component 公因子方差
Common factor variance
PC1 PC2 PC3
硝态氮 NO3--N 0.380 0.216 0.691 0.669
可溶性有机氮DON 0.745 0.421 -0.272 0.807
有效磷 Olsen-P 0.864 -0.310 0.099 0.853
微生物量碳 MBC 0.932 -0.327 0.013 0.975
微生物量氮 MBN 0.836 0.432 -0.193 0.922
微生物量磷 MBP 0.791 -0.480 0.252 0.920
碳获取酶活性 Carbon-acquiring enzyme, CAE 0.900 -0.353 0.075 0.941
氮获取酶活性 Nitrogen-acquiring enzyme, NAE 0.745 0.387 -0.397 0.862
磷获取酶活性 Phosphorus-acquiring enzyme, PAE 0.032 0.552 0.692 0.784
总体酶活性参数 TEI 0.928 0.224 0.011 0.912
特征值 Eigenvalue 5.867 1.473 1.304
方差贡献率 Variance contribution rate (%) 58.670 14.733 13.042
累积贡献率 Cumulative contribution rate (%) 58.670 73.403 86.444

Fig. 5

Radar map of each index membership degree of soil"

Fig. 6

Relationship between evaluation of soil fertility and maize grain yield F1, F2, and F3 represent the three biological replicates for the F treatment; SF1, SF2, and SF3 for the SF treatment; B1, B2, and B3 for the B treatment; M1, M2, and M3 for the M treatment; and EM1, EM2, and EM3 for the EM treatment"

[1]
REN W, BANGER K, TAO B, YANG J, HUANG Y W, TIAN H Q. Global pattern and change of cropland soil organic carbon during 1901-2010: Roles of climate, atmospheric chemistry, land use and management. Geography and Sustainability, 2020, 1(1): 59-69.

doi: 10.1016/j.geosus.2020.03.001
[2]
中华人民共和国农业农村部. 2019年全国耕地质量等级情况公报(农业农村部公报[2020]1号).
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Announcement of national arable land quality grading in 2019. (in Chinese)
[3]
可艳军, 张雨萌, 郭艳杰, 张丽娟, 张子涛, 吉艳芝. 生物有机肥配合深松对农田土壤肥力和作物产量的影响. 中国农业科技导报, 2023, 25(4): 157-166.

doi: 10.13304/j.nykjdb.2022.0203
KE Y J, ZHANG Y M, GUO Y J, ZHANG L J, ZHANG Z T, JI Y Z. Effects of bio-organic fertilizer combined with subsoiling on farmland soil fertility and crop yield. Journal of Agricultural Science and Technology, 2023, 25(4): 157-166. (in Chinese)

doi: 10.13304/j.nykjdb.2022.0203
[4]
赵士诚, 魏美艳, 仇少君, 何萍. 氮肥管理对秸秆还田下土壤氮素供应和冬小麦生长的影响. 中国土壤与肥料, 2017(2): 20-25.
ZHAO S C, WEI M Y, QIU S J, HE P. Effects of nitrogen fertilizer managements on soil nitrogen supply and winter wheat growth under straw return. Soil and Fertilizer Sciences in China, 2017(2): 20-25. (in Chinese)
[5]
LI T T, ZHANG J Z, WANG X, HARTLEY I P, ZHANG J L, ZHANG Y L. Fungal necromass contributes more to soil organic carbon and more sensitive to land use intensity than bacterial necromass. Applied Soil Ecology, 2022, 176: 104492.

doi: 10.1016/j.apsoil.2022.104492
[6]
王学敏, 刘兴, 郝丽英, 解宏图, 张广娜, 陈振华, 张玉兰. 秸秆还田结合氮肥减施对玉米产量和土壤性质的影响. 生态学杂志, 2020, 39(2): 507-516.
WANG X M, LIU X, HAO L Y, XIE H T, ZHANG G N, CHEN Z H, ZHANG Y L. Effects of straw returning in conjunction with different nitrogen fertilizer dosages on corn yield and soil properties. Chinese Journal of Ecology, 2020, 39(2): 507-516. (in Chinese)
[7]
丁艳宏. 生物炭及微生物菌剂对果园土壤增碳培肥与产能提升机制研究[D]. 杨凌: 西北农林科技大学, 2024.
DING Y H. Study on the mechanism of biochar and microbial inoculants to increase carbon and improve soil fertility and productivity in orchard[D]. Yangling: Northwest A&F University, 2024. (in Chinese)
[8]
温馨, 红梅, 张月鲜, 裴志福, 赵卉鑫, 陈晨. 有机物添加对碱化土壤有机碳库及土壤质量的影响. 中国草地学报, 2022, 44(1): 39-49.
WEN X, HONG M, ZHANG Y X, PEI Z F, ZHAO H X, CHEN C. Effects of organic materials addition on the organic carbon pool and soil quality of alkalized soil. Chinese Journal of Grassland, 2022, 44(1): 39-49. (in Chinese)
[9]
董博. 有机物料添加对黄土高原新修梯田土壤肥力的影响研究[D]. 兰州: 甘肃农业大学, 2022.
DONG B. Effects of organic materials on soil fertility of newly built terraces in Loess Plateau[D]. Lanzhou: Gansu Agricultural University, 2022. (in Chinese)
[10]
XIAO M, JIANG S G, LI J B, LI W P, FU P X, LIU G M, CHEN J L. Synergistic effects of bio-organic fertilizer and different soil amendments on salt reduction, soil fertility, and yield enhancement in salt-affected coastal soils. Soil and Tillage Research, 2025, 248: 106433.

doi: 10.1016/j.still.2024.106433
[11]
王艺霖, 梁尧, 蔡红光, 徐康宁, 张水梅, 张畅, 范围, 袁静超, 刘剑钊, 任军. 基于最小数据集的不同有机物料还田黑土土壤质量评价. 土壤通报, 2024, 55(1): 68-75.
WANG Y L, LIANG Y, CAI H G, XU K N, ZHANG S M, ZHANG C, FAN W, YUAN J C, LIU J Z, REN J. Soil quality evaluation of black soil under different returning treatments of organic materials based on minimum data set. Chinese Journal of Soil Science, 2024, 55(1): 68-75. (in Chinese)
[12]
曹雪莹, 谭长银, 杨佳, 赵信林, 张培育, 马军. 有机物料对农田土壤肥力及镉有效性的影响. 土壤, 2024, 56(2): 367-374.
CAO X Y, TAN C Y, YANG J, ZHAO X L, ZHANG P Y, MA J. Effects of organic material on farmland soil fertility and Cd availability. Soils, 2024, 56(2): 367-374. (in Chinese)
[13]
TOMCZYK P, WDOWCZYK A, WIATKOWSKA B, SZYMAŃSKA-PULIKOWSKA A, KURIQI A, Fertility and quality of arable soils in Poland: spatial-temporal analysis of long-term monitoring. Ecological Indicators, 2024, 166: 112375.

doi: 10.1016/j.ecolind.2024.112375
[14]
马群, 刘铭, 周玉玲, 王渝庆, 叶成渝, 杨平平, 李绍兴, 王龙昌. 生物炭与有机无机肥配施对土壤质量的影响. 西南大学学报(自然科学版), 2024, 46(7): 115-126.
MA Q, LIU M, ZHOU Y L, WANG Y Q, YE C Y, YANG P P, LI S X, WANG L C. The effect of biochar combined with organic and inorganic fertilizers on soil biological characteristics and quality. Journal of Southwest University (Natural Science Edition), 2024, 46(7): 115-126. (in Chinese)
[15]
朱永官, 彭静静, 韦中, 沈其荣, 张福锁. 土壤微生物组与土壤健康. 中国科学: 生命科学, 2021, 51(1): 1-11.
ZHU Y G, PENG J J, WEI Z, SHEN Q R, ZHANG F S. Linking the soil microbiome to soil health. Scientia Sinica (Vitae), 2021, 51(1): 1-11. (in Chinese)
[16]
GADISA N, WAKGARI T. Nitrogen uptake and use efficiency of wheat (Triticum aestivum L.) varieties as influenced by combined application of vermicompost and nitrogen fertilizer rate. American Journal of Bioscience and Bioengineering, 2021, 9(6): 169.

doi: 10.11648/j.bio.20210906.14
[17]
ZHANG Q, NIU W Q, DU Y D, LI G C, MA L, CUI B J, SUN J, NIU X Y, SIDDIQUE K H M. Sustainable effects of nitrogen reduction combined with biochar on enhancing maize productivity and nitrogen utilization. European Journal of Agronomy, 2025, 162: 127429.

doi: 10.1016/j.eja.2024.127429
[18]
韩紫璇, 房静静, 武雪萍, 姜宇, 宋霄君, 刘晓彤. 长期秸秆配施化肥下土壤团聚体碳氮分布、微生物量与小麦产量的协同效应. 中国农业科学, 2023, 56(8): 1503-1514. doi: 10.3864/j.issn.0578-1752.2023.08.007.
HAN Z X, FANG J J, WU X P, JIANG Y, SONG X J, LIU X T. Synergistic effects of organic carbon and nitrogen content in water-stable aggregates as well as microbial biomass on crop yield under long-term straw combined chemical fertilizers application. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514. doi: 10.3864/j.issn.0578-1752.2023.08.007. (in Chinese)
[19]
RUAN R J, ZHANG P, LAMBERS H, XIE W Y, ZHANG Z B, XIE S Y, WANG Y K, WANG Y S. Biochar application improves maize yield on the Loess Plateau of China by changing soil pore structure and enhancing root growth. Science of the Total Environment, 2024, 956: 177379.

doi: 10.1016/j.scitotenv.2024.177379
[20]
ZHOU Z K, ZHANG S Y, JIANG N, XIU W M, ZHAO J N, YANG D L. Effects of organic fertilizer incorporation practices on crops yield, soil quality, and soil fauna feeding activity in the wheat-maize rotation system. Frontiers in Environmental Science, 2022, 10: 1058071.

doi: 10.3389/fenvs.2022.1058071
[21]
张倩倩, 付增朋, 綦兰兰, 刘珍, 韦青, 梁华, 梁传勤, 张玉, 苏芳芳, 马高升. 生物有机肥对设施番茄产量、品质以及土壤理化性状的影响. 肥料与健康, 2023, 50(5): 23-28, 76.
ZHANG Q Q, FU Z P, QI L L, LIU Z, WEI Q, LIANG H, LIANG C Q, ZHANG Y, SU F F, MA G S. The effect of bio-organic fertilizer on the yield, quality and soil physicochemical properties of greenhouse tomato. Fertilizer & Health, 2023, 50(5): 23-28, 76. (in Chinese)
[22]
芦燕, 魏倩倩, 徐青山, 张耿苗, 赵钰杰, 伍少福, 张均华, 朱春权. 化肥减量配施生物有机肥对水稻产量、土壤结构和土壤固碳增汇能力的影响. 中国土壤与肥料, 2024(11): 114-121.
LU Y, WEI Q Q, XU Q S, ZHANG G M, ZHAO Y J, WU S F, ZHANG J H, ZHU C Q. Effects of chemical fertilizer reduction combined with application of bio-organic fertilizer on rice yield, soil structure and soil carbon sequestration capacity. Soil and Fertilizer Sciences in China, 2024(11): 114-121. (in Chinese)
[23]
SOBOKA M S M D, BEKELE M, NEKIR B. Enhancing the productivity of salt-affected soil through application of integrated organic and inorganic fertilizers: The case of middle awash valley, ethiopia. American Journal of Applied Chemistry, 2022, 10(4): 97-103.
[24]
XUAN K F, LI X P, YU X L, JIANG Y F, JI J C, JIA R H, WANG C, LIU J L. Effects of different organic amendments on soil pore structure acquired by three-dimensional investigation. European Journal of Soil Science, 2022, 73(4): e13264.

doi: 10.1111/ejss.v73.4
[25]
高宏哲, 吴景贵, 李建明, 刘文利, 耿玉辉. 不同有机培肥措施对盐碱土水稳性团聚体组成及特征的影响. 吉林农业大学学报, 2024, 46(5): 878-885.
GAO H Z, WU J G, LI J M, LIU W L, GENG Y H. Effects of different organic fertilization measures on composition and characteristics of water-stable aggregates in saline-alkali soil aggregates. Journal of Jilin Agricultural University, 2024, 46(5): 878-885. (in Chinese)
[26]
SAINJU U M, CAESAR-TONTHAT T, JABRO J D. Carbon and nitrogen fractions in dryland soil aggregates affected by long-term tillage and cropping sequence. Soil Science Society of America Journal, 2009, 73(5): 1488-1495.

doi: 10.2136/sssaj2008.0405
[27]
徐国鑫, 王子芳, 高明, 田冬, 黄容, 刘江, 黎嘉成. 秸秆与生物炭还田对土壤团聚体及固碳特征的影响. 环境科学, 2018, 39(1): 355-362.
XU G X, WANG Z F, GAO M, TIAN D, HUANG R, LIU J, LI J C. Effects of straw and biochar return in soil on soil aggregate and carbon sequestration. Environmental Science, 2018, 39(1): 355-362. (in Chinese)

doi: 10.1021/es035328h
[28]
王超, 姜坤, 卢瑛, 唐贤, 阳洋, 欧锦琼, 黄伟濠. 不同有机物料施用对砖红壤团聚体组成和稳定性的影响. 土壤通报, 2019, 50(6): 1328-1334.
WANG C, JIANG K, LU Y, TANG X, YANG Y, OU J Q, HUANG W H. Effects of different organic material application on aggregate composition and stability of latosol. Chinese Journal of Soil Science, 2019, 50(6): 1328-1334. (in Chinese)
[29]
孙娇, 周涛, 郭鑫年, 梁锦秀. 添加秸秆及生物质炭对风沙土有机碳及其活性组分的影响. 土壤, 2021, 53(4): 802-808.
SUN J, ZHOU T, GUO X N, LIANG J X. Effects of biochar and straw on soil organic carbon and fractions of active carbon in aeolian sandy soil. Soils, 2021, 53(4): 802-808. (in Chinese)
[30]
WANG H X, XU J L, LIU X J, ZHANG D, LI L W, LI W, SHENG L X. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil and Tillage Research, 2019, 195: 104382.

doi: 10.1016/j.still.2019.104382
[31]
梁晓红, 曹雄, 黄敏佳, 张瑞栋, 刘静, 南怀林, 王颂宇. 有机无机肥配施对连作高粱产量、养分利用及土壤理化性状的影响. 干旱地区农业研究, 2024, 42(6): 261-275.
LIANG X H, CAO X, HUANG M J, ZHANG R D, LIU J, NAN H L, WANG S Y. Effects of combined application of organic and inorganic fertilizers on yield, nutrient utilization, and soil physicochemical properties in continuous cropping of Sorghum. Agricultural Research in the Arid Areas, 2024, 42(6): 261-275. (in Chinese)
[32]
BIEDERMAN L A, PHELPS J, ROSS B J, POLZIN M, HARPOLE W S. Biochar and manure alter few aspects of prairie development: A field test. Agriculture, Ecosystems & Environment, 2017, 236: 78-87.

doi: 10.1016/j.agee.2016.11.016
[33]
SARMA B, FAROOQ M, GOGOI N, BORKOTOKI B, KATAKI R, GARG A. Soil organic carbon dynamics in wheat-green gram crop rotation amended with vermicompost and biochar in combination with inorganic fertilizers: A comparative study. Journal of Cleaner Production, 2018, 201: 471-480.

doi: 10.1016/j.jclepro.2018.08.004
[34]
张东旭, 胡丹珠, 闫金龙, 冯丽云, 邬志远, 李岩华, 闫海丽, 程永明, 张俊灵. 有机肥替代化肥对小麦生长及土壤养分的影响. 生态学杂志, 2024, 43(11): 3383-3393.
ZHANG D X, HU D Z, YAN J L, FENG L Y, WU Z Y, LI Y H, YAN H L, CHENG Y M, ZHANG J L. Effect of organic fertilizer replacing chemical fertilizer on wheat growth and soil nutrients. Chinese Journal of Ecology, 2024, 43(11): 3383-3393. (in Chinese)

doi: 10.13292/j.1000-4890.202411.004
[35]
CHEN Y L, SUN K, YANG Y, GAO B, ZHENG H. Effects of biochar on the accumulation of necromass-derived carbon, the physical protection and microbial mineralization of soil organic carbon. Critical Reviews in Environmental Science and Technology, 2024, 54(1): 39-67.

doi: 10.1080/10643389.2023.2221155
[36]
XU X F, THORNTON P E, POST W M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 2013, 22(6): 737-749.

doi: 10.1111/geb.12029
[37]
FENG L K, GAO Z L, MA H, HE S F, LIU Y, JIANG J Q, ZHAO Q L, WEI L L. Carbonate-bound Pb percentage distribution in agricultural soil and its toxicity: Impact on plant growth, nutrient cycling, soil enzymes, and functional genes. Journal of Hazardous Materials, 2023, 451: 131205.

doi: 10.1016/j.jhazmat.2023.131205
[38]
邓亚琴, 徐智, 张勇, 王宇蕴. 土壤微生物生物量氮对不同腐熟度有机肥的响应及对土壤矿质氮的调控作用. 应用生态学报, 2023, 34(1): 137-144.

doi: 10.13287/j.1001-9332.202301.018
DENG Y Q, XU Z, ZHANG Y, WANG Y Y. Responses of soil microbial biomass nitrogen to organic fertilizer with different degrees of maturity and regulation to soil mineral nitrogen. Chinese Journal of Applied Ecology, 2023, 34(1): 137-144. (in Chinese)
[39]
OLESZCZUK P, JOŚKO I, FUTA B, PASIECZNA-PATKOWSKA S, PAŁYS E, KRASKA P. Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil. Geoderma, 2014, 214: 10-18.
[40]
王静, 王磊, 刘耀斌, 章欢, 张辉, 汪吉东, 吴建燕, 张永春. 长期施氮肥对黄棕壤微生物生物性状的影响及其调控因素. 中国生态农业学报(中英文), 2021, 29(5): 833-843.
WANG J, WANG L, LIU Y B, ZHANG H, ZHANG H, WANG J D, WU J Y, ZHANG Y C. Effects and associated regulatory factors of the microbial characteristics of yellow-brown soils following long-term nitrogen fertilization. Chinese Journal of Eco-Agriculture, 2021, 29(5): 833-843. (in Chinese)
[41]
RAO D P, SRIVASTAVA A. Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. European Chemical Bulletin, 2014, 3(5): 502-504.
[42]
李俊杰, 邹洪琴, 许发辉, 张水清, 岳克, 徐明岗, 段英华. 土壤微生物量氮对小麦各生育期氮素形态的调控. 植物营养与肥料学报, 2021, 27(8): 1321-1329.
LI J J, ZOU H Q, XU F H, ZHANG S Q, YUE K, XU M G, DUAN Y H. Regulation of soil microbial biomass nitrogen on nitrogen forms in different growth stages of wheat. Journal of Plant Nutrition and Fertilizers, 2021, 27(8): 1321-1329. (in Chinese)
[43]
POKHAREL P, KWAK J H, OK Y S, CHANG S X. Pine sawdust biochar reduces GHG emission by decreasing microbial and enzyme activities in forest and grassland soils in a laboratory experiment. Science of the Total Environment, 2018, 625: 1247-1256.

doi: 10.1016/j.scitotenv.2017.12.343
[44]
李雨晨, 熊翱宇, 平原, 澹腾辉, 曾建辉, 陈新, 郭忠录. 基于最小数据集的宁都县不同整地方式下果园土壤质量评价. 水土保持学报, 2023, 37(4): 342-350.
LI Y C, XIONG A Y, PING Y, TAN T H, ZENG J H, CHEN X, GUO Z L. Soil quality assessment of orchards under different land preparation measures in Ningdu County based on minimum data set. Journal of Soil and Water Conservation, 2023, 37(4): 342-350. (in Chinese)
[45]
HE H, PENG M W, HOU Z N, LI J H. Unlike chemical fertilizer reduction, organic fertilizer substitution increases soil organic carbon stock and soil fertility in wheat fields. Journal of the Science of Food and Agriculture, 2024, 104(5): 2798-2808.

doi: 10.1002/jsfa.v104.5
[46]
徐洁章, 韩科峰, 吴良欢. 长期外源有机物料添加对双季稻产量、土壤肥力及土壤质量的影响. 中国农业大学学报, 2024, 29(12): 23-32.
XU J Z, HAN K F, WU L H. Effects of exogenous organic materials on the yield of double cropping rice, soil fertility and soil quality. Journal of China Agricultural University, 2024, 29(12): 23-32. (in Chinese)
[47]
HUO R X, WANG J L, WANG K K, ZHANG Y K, REN T, LI X K, CONG R H, LU J W. Long-term straw return enhanced crop yield by improving ecosystem multifunctionality and soil quality under triple rotation system: An evidence from a 15 years study. Field Crops Research, 2024, 312: 109395.

doi: 10.1016/j.fcr.2024.109395
[48]
ZHANG G B, YU H Y, FAN X F, LIU G, MA J, XU H. Effect of rice straw application on stable carbon isotopes, methanogenic pathway, and fraction of CH4 oxidized in a continuously flooded rice field in winter season. Soil Biology and Biochemistry, 2015, 84: 75-82.

doi: 10.1016/j.soilbio.2015.02.008
[49]
宋佳杰, 徐郗阳, 白金泽, 于琦, 程伯豪, 冯永忠, 任广鑫. 秸秆还田配施化肥对土壤养分及冬小麦产量的影响. 环境科学, 2022, 43(9): 4839-4847.
SONG J J, XU X Y, BAI J Z, YU Q, CHENG B H, FENG Y Z, REN G X. Effects of straw returning and fertilizer application on soil nutrients and winter wheat yield. Environmental Science, 2022, 43(9): 4839-4847. (in Chinese)
[1] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[2] ZHANG FangFang, SONG QiLong, GAO Na, BAI Ju, LI Yang, YUE ShanChao, LI ShiQing. Effects of Long-Term Mulching Practices on Maize Yield, Soil Organic Carbon and Nitrogen Fractions and Indexes Related to Carbon and Nitrogen Pool on the Loess Plateau [J]. Scientia Agricultura Sinica, 2025, 58(3): 507-519.
[3] ZHANG HaiRui, JIA AngYuan, GAO QiQi, HAN ZheQun, NAN ShanShan, DUAN BiHua, WU XuePing. The Effects of Biochar Combined with Fulvic Acid on the Physical and Chemical Properties, Enzyme Activities and Multifunctionality of Soil in Coastal Saline-Alkali Land [J]. Scientia Agricultura Sinica, 2025, 58(20): 4178-4188.
[4] WU Yong, WEN Xue, WANG TianShu, HUANG YanYan, MENG YiLi, JIANG HongYu, BI LiDong, WU HuiJun, YAO ShuiHong. The Influence of Topographic Factors and Ridge Tillage Methods on Soil Nutrients and Fertility Index of Sloping Arable Land in the Black Soil Region [J]. Scientia Agricultura Sinica, 2025, 58(18): 3676-3689.
[5] DONG YunQi, HUANG Jian, CHAI YiXiao, YANG ShiChao, WANG Min, MENG XuSheng, GUO ShiWei. Changes in Annual Yield and Soil Fertility of Rice-Rapeseed Rotation Under Different Fertilization Modes [J]. Scientia Agricultura Sinica, 2025, 58(16): 3201-3219.
[6] HUO RunXia, FANG YaTing, ZHANG YanKe, WU HaiYa, LIU GuiSheng, LI XiaoKun, REN Tao, LU ZhiFeng, CONG RiHuan, LU JianWei. Effects of Fertilizer Reduction on Crop Yield and Soil Fertility Under Long-Term Straw-Return Conditions in Rice-Rice-Rapeseed Rotations [J]. Scientia Agricultura Sinica, 2025, 58(16): 3267-3279.
[7] XUAN ZePeng, FENG HuiYao, CHEN MeiQi, XU JiSheng, LIU MengXuan, ZHAO BingZi, ZHANG JiaBao. Effects of Straw Returning Combined with Chemical Fertilizer on Soil Ecosystem Multifunctionality [J]. Scientia Agricultura Sinica, 2025, 58(14): 2821-2837.
[8] GAO YaFei, ZHAO YuanBo, XU Lin, SUN JiaYue, XIA YuXuan, XUE Dan, WU HaiWen, NING Hang, WU AnChi, WU Lin. Long-Term Sphagnum Cultivation in Cold Waterlogged Paddy Fields Increases Organic Carbon Content and Decreases Soil Extracellular Enzyme Activities [J]. Scientia Agricultura Sinica, 2024, 57(8): 1533-1546.
[9] LIU YaJie, ZHANG TianJiao, ZHANG XiangQian, LU ZhanYuan, LIU ZhanYong, CHENG YuChen, WU Di, LI JinLong. Effects of Tillage Methods Under Straw Returning on the Labile Organic Carbon Fractions and Carbon Pool Management Index in Black Soil Farmland [J]. Scientia Agricultura Sinica, 2024, 57(17): 3408-3423.
[10] LI HaiPeng, DU WuYan, WU HanQian, ZHANG Jie, MENG HuiSheng, HONG JianPing, XU MingGang, HAO XianJun, GAO WenJun. Different Manures Affect Soil Nutrients and Bacterial Community Structure in Mining Reclamation Area [J]. Scientia Agricultura Sinica, 2024, 57(16): 3207-3219.
[11] DONG Xiu, ZHANG Yan, MUNYAMPIRWA Tito, TAO HaiNing, SHEN YuYing. Effects of Long-Term Conservation Tillage on Soil Carbon Content and Invertase Activity in Dry Farmland on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(5): 907-919.
[12] SHEN Tong, WANG HengFei, DU WenBo, ZHOU HuaiPing, WANG Rui, ZHANG JianJie, JIN DongSheng, XU MingGang. Spatial-Temporal Variability Characteristics and Main Controlling Factors of Soil Fertility in Shouyang County of Cinnamon Soil Area [J]. Scientia Agricultura Sinica, 2023, 56(21): 4259-4271.
[13] LI Jin, REN LiJun, LI XiaoYu, BI RunXue, JIN XinXin, YU Na, ZHANG YuLing, ZOU HongTao, ZHANG YuLong. Effects of Different Straw Returning Patterns on Soil CO2 Emission and Carbon Balance in Maize Field [J]. Scientia Agricultura Sinica, 2023, 56(14): 2738-2750.
[14] WU ZhiJie, ZHANG LiLi, SHI YuanLiang, WEI ZhanBo, LI DongPo, GONG Ping, LI Jie, ZHANG Lei, WANG LingLi, WU KaiKuo, XUE Yan, SONG YuChao, CUI Lei. Origin, Present Situation and Development Trend of Green Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(13): 2530-2546.
[15] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!