Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (13): 2530-2546.doi: 10.3864/j.issn.0578-1752.2023.13.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Origin, Present Situation and Development Trend of Green Fertilizer

WU ZhiJie1,2(), ZHANG LiLi1,2, SHI YuanLiang1,2, WEI ZhanBo1,2, LI DongPo1,2, GONG Ping1,2, LI Jie1,2, ZHANG Lei1,2, WANG LingLi1,2, WU KaiKuo1,2, XUE Yan1,2, SONG YuChao1,2, CUI Lei1,3   

  1. 1 Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016
    2 Engineering Laboratory for Green Fertilizers, Chinese Academy of Sciences, Shenyang 110016
    3 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2022-05-13 Accepted:2022-08-26 Online:2023-07-01 Published:2023-07-06

Abstract:

The new development concept of "innovation, coordination, green, openness and sharing" is the centralized reflection of China's development concept, direction and focus in the 14th Five-Year Plan and even in the longer term. The green development of agriculture is an important part of the implementation of the new development concept, which plays an important role in forming a harmonious coexistence between human beings and nature, ensuring food safety and creating a livable environment. Fertilizer, as the largest exogenous input and production material, plays a significant role and has a profound impact on the quantity and quality of agricultural products and the agricultural ecological environment, and plays a pivotal role in the green development of agriculture. However, the improper application of traditional fertilizers has caused the degradation of soil quality, environmental pollution and degradation of agricultural products, which urgently requires the transformation and upgrading of fertilizer products, and the development of green inputs has come into being. Green fertilizer concept and definition is: the application of quality and safety of raw materials, low-carbon environmental protection process, the use of physical - chemical - biological modification and efficiency technology production and use, with efficient and balanced nutrients, emission reduction and environmental protection, fertilization of fertile soil function of a class of fertilizers. The types of green fertilizers are mainly divided into the following five categories: nutrient-efficient green fertilizers, carbon-fixing and fertilizing green fertilizers, efficiency-enhancing and nutrient conversion efficiency green fertilizers, nutrient-balanced green fertilizers, and value-added green fertilizers. How to realize the green transformation of chemical fertilizers and the efficient and low-cost utilization of organic fertilizer resources? there are four main suggestions: (1) Rely on market mechanisms, strengthen top-level design, and build a new system of green fertilizer manufacturing; (2) Take the integrated management of nutrient resources as the core, and promote the balanced and coordinated development of organic-mass-element-micro-element fertilizers; (3) Fully play the role of scientific research platforms, and greatly develop intelligent green fertilizer products; (4) Integrate modern sensing and information technology to thoroughly promote green and efficient precision fertilization. This paper provided an overview of the background, concept, types and characteristics of green fertilizers proposed, and discussed the future development direction, in order to provide insight into the green transformation of China's fertilizer industry and the green development of agriculture in the future.

Key words: green fertilizer, nutrition balance, soil fertility improving, environmental friendly

[1]
赵玉芬, 尹应武. 我国肥料使用中存在的问题及对策. 科学通报, 2015, 60(36): 3527-3534.
ZHAO Y F, YIN Y W. Key scientific problems on establishing green fertilizer ensurance system. Chinese Science Bulletin, 2015, 60(36): 3527-3534. (in Chinese)
[2]
赵秉强. 传统化肥增效改性提升产品性能与功能. 植物营养与肥料学报, 2016, 22(1): 1-7.
ZHAO B Q. Modification of conventional fertilizers for enhanced property and function. Journal of Plant Nutrition and Fertilizer, 2016, 22(1): 1-7. (in Chinese)
[3]
WU K K, GONG P, BAI W, ZHANG Z, WEI Z B, YU C X, SONG Y C, XUE Y, ZHANG L L. Effect of mixed inhibitor application on N2O production pathways in paddy soil. Journal of Soils and Sediments, 2022, 22(7): 1913-1923.

doi: 10.1007/s11368-022-03183-2
[4]
YU C X, XIE X S, YANG H Z, YANG L J, LI W T, WU K K, ZHANG W M, FENG C, LI D P, WU Z J, ZHANG L L. Effect of straw and inhibitors on the fate of nitrogen applied to paddy soil. Scientific Reports, 2020, 10: 21582. doi:10.1038/s41598-020-78648-w.

doi: 10.1038/s41598-020-78648-w pmid: 33299113
[5]
侯翠红, 许秀成, 王好斌, 赵玉芬. 绿色肥料产业体系构建及其科学问题. 科学通报, 2015, 60(36): 3535-3542.
HOU C H, XU X C, WANG H B, ZHAO Y F. Establishment of green fertilizer industrial system and its scientific problems. Chinese Science Bulletin, 2015, 60(36): 3535-3542. (in Chinese)
[6]
黄立章, 石伟勇, 吴建富. 控释肥料的研究动态与展望. 江西农业大学学报(自然科学), 2002, 24(5): 727-730.
HUANG L Z, SHI W Y, WU J F. Dynamic and prospect on the research of controlled release fertilizers. Acta Agriculturae Universitis Jiangxiensis, 2002, 24(5): 727-730. (in Chinese)
[7]
AMBERGER A. Research on dicyandiamide as a nitrification inhibitor and future outlook. Communications in Soil Science and Plant Analysis, 1989, 20(19/20): 1933-1955.

doi: 10.1080/00103628909368195
[8]
ZERULLA W, BARTH T, DRESSEL J, ERHARDT K, VON LOCQUENGHIEN K H, PASDA G, RÄDLE M, WISSEMEIER A. 3, 4-Dimethylpyrazole phosphate (DMPP) - a new nitrification inhibitor for agriculture and horticulture - An introduction. Biology and Fertility of Soils, 2001, 34(2): 79-84.

doi: 10.1007/s003740100380
[9]
MODOLO L V, DE SOUZA A X, HORTA L P, ARAUJO D P, DE FÁTIMA Â. An overview on the potential of natural products as ureases inhibitors: a review. Journal of Advanced Research, 2015, 6(1): 35-44.

doi: 10.1016/j.jare.2014.09.001 pmid: 25685542
[10]
RECIO J, VALLEJO A, LE-NOË J, GARNIE J, GARCÍA-MARCO S, ÁLVAREZ J M, SANZ-COBENA A. The effect of nitrification inhibitors on NH3 and N2O emissions in highly N fertilized irrigated Mediterranean cropping systems. Science of the Total Environment, 2018, 636: 427-436.

doi: 10.1016/j.scitotenv.2018.04.294
[11]
王小彬, L D Bailey, C A Grallt, K K Klein. 关于几种土壤脲酶抑制剂的作用条件. 植物营养与肥料学报, 1998, 4(3): 211-218.
WANG X B, BAILEY L D, GRALLT C A, KLEIN K K. The acting conditions of some urease inhibitors in soils. Plant Natrition and Fertilizen Science, 1998, 4(3): 211-218. (in Chinese)
[12]
卢婉芳, 陈苇, 王德仁. 脲酶抑制剂(NBPT)对提高尿素氮利用率的研究. 中国农学通报, 1990, 6(2): 23-25.
LU W F, CHEN W, WANG D R. Study on urease inhibitor (NBPT) to improve urea nitrogen utilization rate. Chinese Agricultural Science Bulletin, 1990, 6(2): 23-25. (in Chinese)
[13]
陈苇, 卢婉芳. 稻田脲酶抑制剂对15N-尿素去向的影响. 核农学报, 1997, 11(3): 151-156.
CHEN W, LU W F. Effect of paddy urease inhibitors on fate of 15N urea. Acta Agriculturae Nucleatae Sinica, 1997, 11(3): 151-156. (in Chinese)
[14]
XU X K, ZHOU L K, VAN CLEEMPUT O, WANG Z J. Fate of urea-15N in a soil-wheat system as influenced by urease inhibitor hydroquinone and nitrification inhibitor dicyandiamide. Plant and Soil, 2000, 220: 261-270.

doi: 10.1023/A:1004715827085
[15]
LIU G Y, YANG Z P, DU J, HE A L, YANG H H, XUE G Y, YU C W, ZHANG Y T. Adding NBPT to urea increases N use efficiency of maize and decreases the abundance of N-cycling soil microbes under reduced fertilizer-N rate on the North China Plain. PLoS ONE, 2020, 15(10): e0240925.

doi: 10.1371/journal.pone.0240925
[16]
周旋, 吴良欢, 戴锋, 董春华. 生化抑制剂组合与施肥模式对黄泥田稻季氨挥发的影响. 农业环境科学学报, 2018, 37(2): 399-408.
ZHOU X, WU L H, DAI F, DONG C H. Effects of combined biochemical inhibitors and fertilization models on ammonia volatilization in yellow clayey paddy field. Journal of Agro- Environment Science, 2018, 37(2): 399-408. (in Chinese)
[17]
NING J F, AI S Y, CUI L H. Dicyandiamide has more inhibitory activities on nitrification than thiosulfate. PLoS One, 2018, 13(8): e0200598.

doi: 10.1371/journal.pone.0200598
[18]
俞巧钢, 符建荣. 含DMPP抑制剂尿素的氨挥发特性及阻控对策研究. 农业环境科学学报, 2009, 28(4): 744-748.
YU Q G, FU J R. Ammonia volatilization loss character of urea with DMPP addition and its controlling strategy. Journal of Agro- Environment Science, 2009, 28(4): 744-748. (in Chinese)
[19]
李学红, 李东坡, 武志杰, 崔磊, 肖富容, 张可, 李永华, 郑野, 张金明, 崔永坤. 添加NBPT/DMPP/CP的高效稳定性尿素在黑土和褐土中的施用效应. 植物营养与肥料学报, 2021, 27(6): 957-968.
LI X H, LI D P, WU Z J, CUI L, XIAO F R, ZHANG K, LI Y H, ZHENG Y, ZHANG J M, CUI Y K. Effects of stabilized urea containing NBPT/DMPP/CP on nitrogen use efficiency and maize yield in black and cinnamon soil. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 957-968. (in Chinese)
[20]
王静, 王允青, 张凤芝, 吴萍萍, 叶寅, 万水霞, 吕国安, 郭熙盛. 脲酶/硝化抑制剂对沿淮平原水稻产量、氮肥利用率及稻田氮素的影响. 水土保持学报, 2019, 33(5): 211-216.
WANG J, WANG Y Q, ZHANG F Z, WU P P, YE Y, WAN S X, G A, GUO X S. Effects of urease/nitrification inhibitors on yield and nitrogen utilization efficiency of rice and soil nitrogen of paddy field in plain along the Huaihe River. Journal of Soil and Water Conservation, 2019, 33(5): 211-216. (in Chinese)
[21]
DELGADO J A, MOSIER A R. Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux. Journal of Environmental Quality, 1996, 25(5): 1105-1111.
[22]
武志杰, 石元亮, 李东坡, 卢宗云, 魏占波, 张丽莉, 宫平, 王玲莉, 房娜娜, 李杰, 李忠, 薛妍, 宋玉超. 稳定性肥料发展与展望. 植物营养与肥料学报, 2017, 23(6): 1614-1621.
WU Z J, SHI Y L, LI D P, LU Z Y, WEI Z B, ZHANG L L, GONG P, WANG L L, FANG N N, LI J, LI Z, XUE Y, SONG Y C. The development and outlook of stabilized fertilizers. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1614-1621. (in Chinese)
[23]
QIAO C L, LIU L L, HU S J, COMPTON J E, GREAVER T L, LI Q L. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Global Change Biology, 2015, 21(3): 1249-1257.

doi: 10.1111/gcb.12802 pmid: 25380547
[24]
BYRNE M, TOBIN J, FORRESTAL P, DANAHER M, NKWONTA C, RICHARDS K, CUMMINS E, HOGAN S, O'CALLAGHAN T. Urease and nitrification inhibitors—as mitigation tools for greenhouse gas emissions in sustainable dairy systems: a review. Sustainability, 2020, 12(15): 6018.

doi: 10.3390/su12156018
[25]
孙祥鑫, 李东坡, 武志杰, 崔亚兰, 韩梅, 李永华, 杨德福, 崔永坤. 持续施用缓/控释尿素条件下水田土壤NH3挥发与N2O排放特征. 应用生态学报, 2016, 27(6): 1901-1909.

doi: 10.13287/j.1001-9332.201606.039
SUN X X, LI D P, WU Z J, CUI Y L, HAN M, LI Y H, YANG D F, CUI Y K. Characteristics of ammonia volatilization and nitrous oxide emission from a paddy soil under continuous application of different slow/controlled release urea. Chinese Journal of Applied Ecology, 2016, 27(6): 1901-1909. (in Chinese)
[26]
WU K K, GONG P, ZHANG L L, WU Z J, XIE X S, YANG H Z, LI W T, SONG Y C, LI D P. Yield-scaled N2O and CH4 emissions as affected by combined application of stabilized nitrogen fertilizer and pig manure in rice fields. Plant Soil and Environment, 2019, 65(10): 497-502.

doi: 10.17221/286/2019-PSE
[27]
张蕾, 王玲莉, 房娜娜, 石晓雨, 武志杰, 张丽莉, 石元亮. 稳定性肥料在中国不同区域的施用效果及施用量. 植物营养与肥料学报, 2021, 27(2): 215-230.
ZHANG L, WANG L L, FANG N N, SHI X Y, WU Z J, ZHANG L L, SHI Y L. Effect of stabilized fertilizer in different regions of China and the suitable application rate. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 215-230. (in Chinese)
[28]
柳丽敏, 张思虹, 支云飞, 陕绍云, 贾庆明. 包膜肥料最新研究进展. 现代化工, 2018, 38(7): 26-30.
LIU L M, ZHANG S H, ZHI Y F, SHAN S Y, JIA Q M. Latest research progress of coated fertilizer. Modern Chemical Industry, 2018, 38(7): 26-30. (in Chinese)
[29]
ZHANG S G, YANG Y C, GAO B, LI Y C, LIU Z G. Superhydrophobic controlled-release fertilizers coated with bio-based polymers with organosilicon and nano-silica modifications. Journal of Materials Chemistry A, 2017, 5(37): 19943-19953.

doi: 10.1039/C7TA06014A
[30]
MA X X, CHEN J Q, YANG Y C, SU X R, ZHANG S G, GAO B, LI Y C. Siloxane and polyether dual modification improves hydrophobicity and interpenetrating polymer network of bio-polymer for coated fertilizers with enhanced slow release characteristics. Chemical Engineering Journal, 2018, 350: 1125-1134.

doi: 10.1016/j.cej.2018.06.061
[31]
LIU J L, YANG Y C, GAO B, LI Y C, XIE J Z. Bio-based elastic polyurethane for controlled-release urea fertilizer: Fabrication, properties, swelling and nitrogen release characteristics. Journal of Cleaner Production, 2019, 209: 528-537.

doi: 10.1016/j.jclepro.2018.10.263
[32]
张桥, 樊小林. 我国控释肥料生产应用现状与发展对策. 广东农业科学, 2005, 32(1): 52-53.
ZHANG Q, FAN X L. Status and countermeasures on production and application of Controlled Released Fertilizers. Guangdong Agricultural Science, 2005, 32(1): 52-53. (in Chinese)
[33]
PAN B B, LAM S K, MOSIER A, LUO Y Q, CHEN D L. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agriculture, Ecosystems & Environment, 2016, 232: 283-289.

doi: 10.1016/j.agee.2016.08.019
[34]
奚振邦. 试论缓释氮肥及其农业化学评价. 磷肥与复肥, 2003, 18(5): 1-5.
XI Z B. Approach to slow release nitrogen fertilizer and its agrochemical evaluation. Phosphate & Compound Fertilizer, 2003, 18(5): 1-5. (in Chinese)
[35]
胡迎春, 韩云良, 施成晓, 宋端朴, 李雨泽, 温晓霞, 秦晓梁, 廖允成. 氮肥减量下缓释肥和尿素配施对黄土高原春玉米氮素利用和产量效益的影响. 西北农业学报, 2019, 28(7): 1068-1078.
HU Y C, HAN Y L, SHI C X, SONG D P, LI Y Z, WEN X X, QIN X L, LIAO Y C. Improving nitrogen use efficiencies, yields and profits for spring maize by using mixtures of slow-release fertilizer and normal urea in loess plateau. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(7): 1068-1078. (in Chinese)
[36]
王茂莹, 漆增连, 代兴龙, 贺明荣, 董元杰. 不同缓/控释尿素对小麦生长及氮素利用的影响. 植物营养与肥料学报, 2021, 27(4): 643-653.
WANG M Y, QI Z L, DAI X L, HE M R, DONG Y J. Effects of different slow/controlled release urea on wheat growth and nitrogen utilization. Journal of Plant Nutrition and Fertilizers, 2021, 27(4): 643-653. (in Chinese)
[37]
邵蕾, 张民, 陈学森, 王丽霞. 控释氮肥对土壤和苹果树氮含量及苹果产量的影响. 园艺学报, 2007, 34(1): 43-46.
SHAO L, ZHANG M, CHEN X S, WANG L X. Effects of controlled release nitrogen fertilizer on yield and nitrogen content of soil and apple tree. Acta Horticulturae Sinica, 2007, 34(1): 43-46. (in Chinese)
[38]
张海军, 武志杰, 李荣华, 刘春萍. 控释氮肥对土壤NH4+-N、NO3--N及番茄产量和质量的影响. 土壤通报, 2004, 35(1): 30-34.
ZHANG H J, WU Z J, LI R H, LIU C P. Ammonium and nitrate of soil and yield and quality of tomato as influenced by the application of controlled release nitrogen fertilizer. Chinese Journal of Soil Science, 2004, 35(1): 30-34. (in Chinese)
[39]
于立芝, 李东坡, 俞守能, 邹积华, 马涛, 武志杰. 缓/控释肥料研究进展. 生态学杂志, 2006, 25(12): 1559-1563.
YU L Z, LI D P, YU S N, ZOU J H, MA T, WU Z J. Research advances in slow/controlled release fertilizers. Chinese Journal of Ecology, 2006, 25(12): 1559-1563. (in Chinese)
[40]
关瑞, 张民, 诸葛玉平, 娄燕宏, 王会, 潘红, 韩飞, 何伟. 控释氮肥一次性基施提高谷子产量和氮素利用率. 植物营养与肥料学报, 2019, 25(4): 639-646.
GUAN R, ZHANG M, ZHUGE Y P, LOU Y H, WANG H, PAN H, HAN F, HE W. Single basal application of controlled release nitrogen fertilizer improve yield and nitrogen use efficiency of foxtail millet. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 639-646. (in Chinese)
[41]
许秀成, 李菂萍, 王好斌. 脲甲醛肥料在我国发展的可行性. 磷肥与复肥, 2009, 24(6): 5-7.
XU X C, LI D P, WANG H B. The feasibility of development for urea-formaldehyde fertilizers in China. Phosphate & Compound Fertilizer, 2009, 24(6): 5-7. (in Chinese)
[42]
TLUSTOS P, BLACKMER A M. Release of nitrogen from ureaform fractions as influenced by soil pH. Soil Science Society of America Journal, 1992, 56(6): 1807-1810.

doi: 10.2136/sssaj1992.03615995005600060026x
[43]
FAN X H, LI Y C. Nitrogen release from slow-release fertilizers as affected by soil type and temperature. Soil Science Society of America Journal, 2010, 74: 1635-1641.

doi: 10.2136/sssaj2008.0363
[44]
吕云峰. 脲甲醛缓释肥料. 磷肥与复肥, 2009, 24(6): 8-10.
Y F. Urea-formaldehyde slow release fertilizers. Phosphate & Compound Fertilizer, 2009, 24(6): 8-10. (in Chinese)
[45]
黄丽娜, 魏守兴. 脲甲醛肥料合成及应用研究现状. 农学学报, 2015, 5(7): 76-80.

doi: 10.11923/j.issn.2095-4050.2014-xb0918
HUANG L N, WEI S X. The status research on synthesis and application of urea formaldehyde fertilizer. Journal of Agriculture, 2015, 5(7): 76-80. (in Chinese)

doi: 10.11923/j.issn.2095-4050.2014-xb0918
[46]
FULLER W H, CLARK K G. Microbiological studies on urea-formaldehyde preparations. Soil Science Society of America Journal, 1948, 12(C): 198-202.
[47]
赵秉强. 新型肥料. 北京: 科学出版社, 2013.
ZHAO B Q. New Fertilizers. Beijing: Science Press, 2013. (in Chinese)
[48]
张文辉, 丁巍巍, 张勇, 张峻炜, 梅丹丹. 脲甲醛缓释肥料的研究进展. 化工进展, 2011, 30(S1): 437-441.
ZHANG W H, DING W W, ZHANG Y, ZHANG J W, MEI D D. Research advances on urea-formaldehyde slow-release fertilizer. Chemical Industry and Engineering Progress, 2011, 30(S1): 437-441. (in Chinese)
[49]
TOLLENS B. Ueber einige derivate des formaldehyds. Berichte der Deutschen Chemischen Gesellschaft, 1884, 17: 653-659.
[50]
TOLLENS B. Ueber den methylen-harnstoff. Berichte Der Deutschen Chemischen Gesellschaft, 1896, 29(3): 2751-2752.

doi: 10.1002/cber.v29:3
[51]
TRENKEL M E. Improving Fertilizer Use Efficiency-Controlled- Release and Stabilized Fertilizers in Agriculture. Paris: IFA, 1997.
[52]
朱永绥. 脲醛复合肥的生产方法: CN1138728C. 2004-02-18.
ZHU Y S. Method for producing urea-formaldehyde compound fertilizer: CN1138728C. 2004-02-18. (in Chinese)
[53]
邢礼军, 李亚星, 徐秋明, 王幼珊, 倪小会. 一种脲醛控释肥料的合成方法: CN1218907C. 2005-09-14.
XING L J, LI Y X, XU Q M, WANG Y S, NI X H. Synthesis of urea-formaldehyde controlled releasing fertilizer: CN1218907C. 2005-09-14. (in Chinese)
[54]
宋湛谦, 李建法, 高宏. 改性脲醛土壤稳定剂及其制备方法: CN1257250C. 2006-05-24.
SONG Z Q, LI J F, GAO H. Modified urea formaldehyde soil stabilizer and its preparing method: CN1257250C. 2006-05-24.. (in Chinese)
[55]
谷佳林, 李亚星, 徐秋明, 杨宜斌, 衣文平. 一种脲醛泡沫植物栽培基质及其制备方法: CN101134803B. 2010-12-08.
GU J L, LI Y X, XU Q M, YANG Y B, YI W P. Urea-formaldehyde foam plant cultivation substrate and method for preparing the same: CN101134803B. 2010-12-08. (in Chinese)
[56]
赵福军, 李子芬, 傅送保, 姚光前, 梁明初, 曲均峰, 郭涛, 王亮亮. 一种低醛长效脲醛缓释肥的制备方法: CN101353270B. 2012-07-25.
ZHAO F J, LI Z F, FU S B, YAO G Q, LIANG M C, QU J F, GUO T, WANG L L. Preparation of low aldehyde long-acting urea- formaldehyde slow release fertilizer: CN101353270B. 2012-07-25. (in Chinese)
[57]
SIMSIMAN G V, DEDATTA S K, MOOMAW J C. Sources of nitrogen and methods of application for flooded rice: I. comparison of two methods of applying slow release and standard fertilizer materials. The Journal of Agricultural Science, 1967, 69(2): 189-196.

doi: 10.1017/S002185960001858X
[58]
HADAS A, PELED A, KAFKAFI U. Ureaform as a nitrogen fertilizer for bananas. Experimental Agriculture, 1976, 12: 121-128.

doi: 10.1017/S0014479700007183
[59]
CARTER M F, VLEK P L G, TOUCHTON J T. Agronomic evaluation of new ureaforms for flooded rice. Soil Science Society of America Journal, 1986, 50(4): 1055-1060.

doi: 10.2136/sssaj1986.03615995005000040044x
[60]
ALEXANDER A, HELM H U. Ureaform as a slow release fertilizer: a review. Zeitschrift Für Pflanzenernährung Und Bodenkunde, 1990, 153(4): 249-255.

doi: 10.1002/jpln.v153:4
[61]
ELLIOT J, FOX T. Ammonia volatilization following fertilization with urea or ureaform in a thinned loblolly pine plantation. Soil Science Society of America Journal, 2014, 78: 1469-1473.

doi: 10.2136/sssaj2013.12.0512n
[62]
CHALK P M, CRASWELL E T, POLIDORO J C, CHEN D L. Fate and efficiency of ^15N-labelled slow- and controlled-release fertilizers. Nutrient Cycling in Agroecosystems, 2015, 102(2): 167-178.

doi: 10.1007/s10705-015-9697-2
[63]
黄丽娜, 樊小林. 脲甲醛肥料对小白菜产量和氮肥利用率的影响. 西北农林科技大学学报(自然科学版), 2012, 40(11): 42-46, 52.
HUANG L N, FAN X L. Effects of urea-formaldehyde fertilizer on yield of Chinese cabbage and its nitrogen use efficiency. Journal of Northwest A&F University (Natural Science Edition), 2012, 40(11): 42-46, 52. (in Chinese)
[64]
唐拴虎, 张发宝, 黄旭, 陈建生, 徐培智. 缓/控释肥料对辣椒生长及养分利用率的影响. 应用生态学报, 2008, 19(5): 986-991.
TANG S H, ZHANG F B, HUANG X, CHEN J S, XU P Z. Effects of slow/controlled release fertilizers on the growth and nutrient use efficiency of pepper. Chinese Journal of Applied Ecology, 2008, 19(5): 986-991. (in Chinese)
[65]
刘兵. 脲甲醛缓控释肥料在大田作物上应用效应及产业化发展途径研究[D]. 扬州: 扬州大学, 2006.
LIU B. Effect of the slow-control-released fertilizer urea-formal dehyde on the field crops and further industrial approach[D]. Yangzhou: Yangzhou University, 2006. (in Chinese)
[66]
杨军芳, 黄少辉, 邢素丽, 袁维翰, 刘枫, 颜秀芳, 贾良良, 刘学彤. 脲甲醛缓释肥在冬小麦上的肥料效应研究. 河北农业科学, 2017, 21(5): 47-52.
YANG J F, HUANG S H, XING S L, YUAN W H, LIU F, YAN X F, JIA L L, LIU X T. Study on effect of urea formaldehyde slow-release fertilizer on winter wheat. Journal of Hebei Agricultural Sciences, 2017, 21(5): 47-52. (in Chinese)
[67]
周丽平, 杨俐苹, 白由路, 卢艳丽, 王磊. 夏玉米施用不同缓释化处理氮肥的效果及氮肥去向. 中国农业科学, 2018, 51(8): 1527-1536. doi: 10.3864/j.issn.0578-1752.2018.08.010.

doi: 10.3864/j.issn.0578-1752.2018.08.010
ZHOU L P, YANG L P, BAI Y L, LU Y L, WANG L. Effects of different slow-released nitrogen fertilizers on summer maize and nitrogen fate in the field. Scientia Agricultura Sinica, 2018, 51(8): 1527-1536. doi: 10.3864/j.issn.0578-1752.2018.08.010. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.08.010
[68]
倪露, 白由路, 杨俐苹, 卢艳丽, 王磊, 周丽平. 不同组分脲甲醛缓释肥的夏玉米肥料效应研究. 中国农业科学, 2016, 49(17): 3369-3378. doi:10.3864/j.issn.0578-1752.2016.17.011.

doi: 10.3864/j.issn.0578-1752.2016.17.011
NI L, BAI Y L, YANG L P, LU Y L, WANG L, ZHOU L P. The effect of urea-formaldehyde fertilizer under different components by summer maize. Scientia Agricultura Sinica, 2016, 49(17): 3369-3378. doi:10.3864/j.issn.0578-1752.2016.17.011. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.17.011
[69]
林清火, 刘海林, 杨凯, 华元刚, 茶正早, 罗微. 脲醛缓释肥料棒氮素缓释特性研究. 中国土壤与肥料, 2018(4): 153-158.
LIN Q H, LIU H L, YANG K, HUA Y G, CHA Z Z, LUO W. Study on nitrogen slow release characteristics of urea formaldehyde slow release fertilizer rods. Soil and Fertilizer Sciences in China, 2018(4): 153-158. (in Chinese)
[70]
黄巧义, 张木, 黄旭, 唐拴虎, 张发宝, 逄玉万, 易琼, 李苹, 付弘婷. 聚脲甲醛缓释氮肥一次性基施在双季稻上的应用效果. 中国农业科学, 2018, 51(20): 3996-4006. doi: 10.3864/j.issn.0578-1752. 2018.20.017.

doi: 10.3864/j.issn.0578-1752.2018.20.017
HUANG Q Y, ZHANG M, HUANG X, TANG S H, ZHANG F B, PANG Y W, YI Q, LI P, FU H T. Effect of one-off application of poly urea-formaldehyde fertilizer under reduced N rate on double cropping rice. Scientia Agricultura Sinica, 2018, 51(20): 3996-4006. doi: 10.3864/j.issn.0578-1752.2018.20.017. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.20.017
[71]
范立春, 孙磊, 王丽华, 姬景红, 高中超, 刘双全, 王爽. 聚脲甲醛(MU)缓释氮肥一次性基施在水稻上的应用效果. 黑龙江农业科学, 2019(10): 34-41.
FAN L C, SUN L, WANG L H, JI J H, GAO Z C, LIU S Q, WANG S. Effects of one-off application of poly urea formaldehyde (MU) fertilizer under reduced N rate on rice. Heilongjiang Agricultural Sciences, 2019(10): 34-41. (in Chinese)
[72]
赵蒙, 曾科, 姚元林, 张敏, 杜林岚, 田玉华, 胡建民, 尹斌. 聚脲甲醛缓释肥对太湖稻麦轮作体系氨挥发及产量的影响. 植物营养与肥料学报, 2019, 25(1): 55-63.
ZHAO M, ZENG K, YAO Y L, ZHANG M, DU L L, TIAN Y H, HU J M, YIN B. Effects of polyurea-formaldehyde on ammonia volatilization and yields under rice-wheat rotation in Taihu Region. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 55-63. (in Chinese)
[73]
吕金岭, 王小非, 李太魁, 寇长林. 不同施肥方式下砂姜黑土冬小麦-夏玉米轮作农田氨挥发特征及排放系数. 中国生态农业学报(中英文), 2020, 28(12): 1869-1879.
J L, WANG X F, LI T K, KOU C L. Ammonia emission characteristics and emission coefficients of wheat and corn rotation cropland under different fertilization methods in lime concretion black soil. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1869-1879. (in Chinese)
[74]
吕金岭, 寇长林, 于冬梅. 聚脲甲醛缓释肥与尿素不同配比对潮土小麦产量及氮肥利用率的影响. 磷肥与复肥, 2021, 36(6): 45-48.
J L, KOU C L, YU D M. Effects of different ratios of polyurea formaldehyde slow-release fertilizer and urea on wheat yield and nitrogen utilization efficiency in fluvo-aquic soil. Phosphate & Compound Fertilizer, 2021, 36(6): 45-48. (in Chinese)
[75]
胡建民, 苗俊艳, 许秀成. 脲甲醛缓释肥料的研究进展与聚脲甲醛缓释肥料新工艺介绍. 磷肥与复肥, 2021, 36(11): 18-20.
HU J M, MIAO J Y, XU X C. Research progress of urea formaldehyde slow release fertilizer and new production technology of poly methylene urea slow release fertilizer. Phosphate & Compound Fertilizer, 2021, 36(11): 18-20. (in Chinese)
[76]
席瑶瑶, 赵贵哲, 刘亚青. 磷酸盐改性脲甲醛缓控释肥的制备及性能研究. 广东农业科学, 2022, 49(2): 54-63.
XI Y Y, ZHAO G Z, LIU Y Q. Study on preparation and performance of phosphate modified urea formaldehyde slow-controlled release fertilizer. Guangdong Agricultural Sciences, 2022, 49(2): 54-63. (in Chinese)
[77]
原鲁明, 赵立欣, 沈玉君, 尚书旗, 孟海波. 我国生物炭基肥生产工艺与设备研究进展. 中国农业科技导报, 2015, 17(4): 107-113.
YUAN L M, ZHAO L X, SHEN Y J, SHANG S Q, MENG H B. Progress on biochar-based fertilizer production technology and equipment in China. Journal of Agricultural Science and Technology, 2015, 17(4): 107-113. (in Chinese)

doi: 10.13304/j.nykjdb.2015.199
[78]
LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystems-A review. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 403-427.

doi: 10.1007/s11027-005-9006-5
[79]
孟军, 张伟明, 王绍斌, 徐正进, 陈温福. 农林废弃物炭化还田技术的发展与前景. 沈阳农业大学学报, 2011, 42(4): 387-392.
MENG J, ZHANG W M, WANG S B, XU Z J, CHEN W F. Development and prospect of carbonization and returning technology of agro-forestry residue. Journal of Shenyang Agricultural University, 2011, 42(4): 387-392. (in Chinese)
[80]
MARRIS E. Putting the carbon back: black is the new green. Nature, 2006, 442(7103): 624-626.

doi: 10.1038/442624a
[81]
RENNER R. Rethinking biochar. Environmental Science & Technology, 2007, 41: 5932-5933.

doi: 10.1021/es0726097
[82]
TENENBAUM D J. Biochar: carbon mitigation from the ground up. Environmental Health Perspectives, 2009, 117(2): A70-A73.

doi: 10.1289/ehp.117-a70 pmid: 19270777
[83]
陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景. 中国农业科学, 2013, 46(16): 3324-3333. doi: 10.3864/j.issn.0578-1752.2013.16.003.

doi: 10.3864/j.issn.0578-1752.2013.16.003
CHEN W F, ZHANG W M, MENG J. Advances and prospects in research of biochar utilization in agriculture. Scientia Agricultura Sinica, 2013, 46(16): 3324-3333. doi: 10.3864/j.issn.0578-1752.2013.16.003. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2013.16.003
[84]
陈温福, 张伟明, 孟军, 徐正进. 生物炭应用技术研究. 中国工程科学, 2011, 13(2): 83-89.
CHEN W F, ZHANG W M, MENG J, XU Z J. Researches on biochar application technology. Engineering Sciences, 2011, 13(2): 83-89. (in Chinese)
[85]
孟军, 陈温福. 中国生物炭研究及其产业发展趋势. 沈阳农业大学学报(社会科学版), 2013, 15(1): 1-5.
MENG J, CHEN W F. Biochar in China: status quo of research and trend of industrial development. Journal of Shenyang Agricultural University (Social Sciences Edition), 2013, 15(1): 1-5. (in Chinese)
[86]
CHEN W F, MENG J, HAN X R, LAN Y, ZHANG W M. Past, present, and future of biochar. Biochar, 2019, 1(1): 75-87.

doi: 10.1007/s42773-019-00008-3
[87]
罗松平. 喀斯特黄壤养分化学计量和微生物群落对生物炭添加的响应[D]. 重庆: 西南大学, 2021.
LUO S P. Response of nutrient stoichiometry and microbial community of Karst yellow soil to biochar addition[D]. Chongqing: Southwest University, 2021. (in Chinese)
[88]
ZHANG A, CUI L Q, PAN G, LI L Q, HUSSAIN Q, ZHANG X H, ZHENG J W, CROWLEY D. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems \& Environment, 2010, 139: 469-475.
[89]
SHRESTHA G, TRAINA S, SWANSTON C. Black carbon's properties and role in the environment: a comprehensive review. Sustainability, 2010, 2: 294-320.

doi: 10.3390/su2010294
[90]
ZHANG A F, LIU Y M, PAN G X, HUSSAIN Q, LI L Q, ZHENG J W, ZHANG X H. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil, 2012, 351(1/2): 263-275.

doi: 10.1007/s11104-011-0957-x
[91]
BRASSARD P, GODBOUT S, RAGHAVAN V. Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved. Journal of Environmental Management, 2016, 181: 484-497.

doi: S0301-4797(16)30429-7 pmid: 27420171
[92]
LI Y F, HU S D, CHEN J H, MÜLLER K, LI Y C, FU W J, LIN Z W, WANG H L. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. Journal of Soils and Sediments, 2018, 18(2): 546-563.

doi: 10.1007/s11368-017-1906-y
[93]
何绪生, 张树清, 佘雕, 耿增超, 高海英. 生物炭对土壤肥料的作用及未来研究. 中国农学通报, 2011, 27(15): 16-25.
HE X S, ZHANG S Q, SHE D, GENG Z C, GAO H Y. Effects of biochar on soil and fertilizer and future research. Chinese Agricultural Science Bulletin, 2011, 27(15): 16-25. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2010-3470
[94]
高海英, 陈心想, 张雯, 何绪生, 耿增超. 生物炭和生物炭基氮肥的理化特征及其作物肥效评价. 西北农林科技大学学报(自然科学版), 2013, 41(4): 69-78, 85.
GAO H Y, CHEN X X, ZHANG W, HE X S, GENG Z C. Physicochemical properties and efficiencies of biochar and biochar-based nitrogenous fertilizer. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(4): 69-78, 85. (in Chinese)
[95]
黄庆, 刘忠珍, 朱根发, 魏岚, 黄连喜, 李翔, 黄玉芬, 陈伟盛. 生物质炭基肥料及作物施用技术研究进展. 广东农业科学, 2021, 48(1): 26-34.
HUANG Q, LIU Z Z, ZHU G F, WEI L, HUANG L X, LI X, HUANG Y F, CHEN W S. Research progress in biochar-based fertilizer and its application technology for crops. Guangdong Agricultural Sciences, 2021, 48(1): 26-34. (in Chinese)
[96]
乔志刚. 不同生物质炭基肥对不同作物生长、产量及氮肥利用率的影响研究[D]. 南京: 南京农业大学, 2013.
QIAO Z G. Effects of different biochar fertilizer on growth, yield and nitrogen utilizing rate of different crops[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
[97]
杨芳芳. 盐碱胁迫下炭基有机肥对甜菜生长及其根际土壤特性的影响[D]. 哈尔滨: 东北农业大学, 2019.
YANG F F. Effects of biochar-based organic fertilizer on sugar beet growth and rhizosphere soil property under saline alkali stress[D]. Harbin: Northeast Agricultural University, 2019. (in Chinese)
[98]
金丹丹, 宫亮, 李波, 曲航, 孙文涛, 张文忠. 2种缓/控释肥对滨海盐碱地区水稻产量及氮代谢的影响. 水土保持学报, 2020, 34(4): 334-339.
JIN D D, GONG L, LI B, QU H, SUN W T, ZHANG W Z. The effects of two slow/controlled release fertilizers on the productivity and nitrogen metabolism of rice in coastal saline-alkaline regions. Journal of Soil and Water Conservation, 2020, 34(4): 334-339. (in Chinese)
[99]
陈婧婷. 密度、炭基有机肥、氮肥交互作用对甜菜 (Beta Vulgaris L.)氮素同化代谢的影响[D]. 哈尔滨: 东北农业大学, 2021.
CHEN J T. Effects of density, carbon-based organic fertilizer and nitrogen fertilizer interaction on nitrogen assimilation metabolism in sugar beet (Beta vulgaris L.)[D]. Harbin:Northeast Agricultural University, 2021. (in Chinese)
[100]
张志浩. 生物炭基肥对三种类型植烟土壤微生物多样性及烤烟生长的影响[D]. 郑州: 河南农业大学, 2019.
ZHANG Z H. Effects of biochar based fertilizers on microbial diversity and growth of flue-cured tobacco in three types of tobacco planting solis[D]. Zhengzhou: Henan Agricultural University, 2019. (in Chinese)
[101]
龚雪蛟, 秦琳, 刘飞, 刘东娜, 马伟伟, 张厅, 刘晓, 罗凡. 有机类肥料对土壤养分含量的影响. 应用生态学报, 2020, 31(4): 1403-1416.

doi: 10.13287/j.1001-9332.202004.025
GONG X J, QIN L, LIU F, LIU D N, MA W W, ZHANG T, LIU X, LUO F. Effects of organic manure on soil nutrient content: a review. Chinese Journal of Applied Ecology, 2020, 31(4): 1403-1416. (in Chinese)

doi: 10.13287/j.1001-9332.202004.025
[102]
LATHROP E C. The organic nitrogen compounds of soils and fertilizers. Journal of the Franklin Institute, 1917, 183(2): 169-206.

doi: 10.1016/S0016-0032(17)90622-2
[103]
HUNTLEY E E, BARKER A V, STRATTON M L. Composition and uses of organic fertilizers. Agricultural Uses of By-Products and Wastes, 1997, 668: 120-139.
[104]
杨兴明, 徐阳春, 黄启为, 徐茂, 梁永红, 胡江, 冉炜, 沈其荣. 有机(类)肥料与农业可持续发展和生态环境保护. 土壤学报, 2008, 45(5): 925-932.
YANG X M, XU Y C, HUANG Q W, XU M, LIANG Y H, HU J, RAN W, SHEN Q R. Organic-like fertilizers and its relation to sustainable development of agriculture and protection of eco-environment. Acta Pedologica Sinica, 2008, 45(5): 925-932. (in Chinese)
[105]
卢云峰, 许航, 斯天任, 高凯悦, 沈宗专, 李荣, 沈其荣. SQR9复合微生物液体肥对玉米、白菜促生效果研究. 中国农学通报, 2019, 35(24): 29-35.

doi: 10.11924/j.issn.1000-6850.casb18030090
LU Y F, XU H, SI T R, GAO K Y, SHEN Z Z, LI R, SHEN Q R. Growth promoting effect of sqr9 compound microbial liquid fertilizer on maize and cabbage. Chinese Agricultural Science Bulletin, 2019, 35(24): 29-35. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb18030090
[106]
张奇, 张振华, 陈雅玲, 卢信. 施用生物有机肥对土壤特性、作物品质及产量影响的研究进展. 江苏农业科学, 2020, 48(15): 71-76.
ZHANG Q, ZHANG Z H, CHEN Y L, LU X. Research progress on effects of application of bio-organic fertilizer on soil characteristics, crop quality and yield. Jiangsu Agricultural Sciences, 2020, 48(15): 71-76. (in Chinese)
[107]
刘珊珊, 夏萌, 胡夏茹, 王云舟, 李春雨, 陶成圆, 沈宗专, 张楠, 李荣, 沈其荣. 石灰碳铵熏蒸联合生物有机肥对香蕉枯萎病和细菌群落的影响. 应用生态学报, 2020, 31(12): 4189-4196.

doi: 10.13287/j.1001-9332.202012.032
LIU S S, XIA M, HU X R, WANG Y Z, LI C Y, TAO C Y, SHEN Z Z, ZHANG N, LI R, SHEN Q R. Effects of lime and ammonium carbonate fumigation coupled with bio-organic fertilizer application on banana fusarium wilt and bacterial community. Chinese Journal of Applied Ecology, 2020, 31(12): 4189-4196. (in Chinese)
[108]
安祥瑞, 江尚焘, 李焕苓, 秦献泉, 胡小璇, 陈廷速, 谢昶琰, 徐阳春, 董彩霞, 沈其荣. 减施化肥配施有机肥对荔枝生长、产量品质及肥料利用率的影响. 土壤, 2021, 53(6): 1174-1184.
AN X R, JIANG S T, LI H L, QIN X Q, HU X X, CHEN T S, XIE C Y, XU Y C, DONG C X, SHEN Q R. Effects of reduced chemical fertilizer with organic fertilizer application on growth, yield, quality and fertilizer utilization rate in Litchi. Soils, 2021, 53(6): 1174-1184. (in Chinese)
[109]
安祥瑞, 江尚焘, 谢昶琰, 徐阳春, 董彩霞, 沈其荣. 减施化肥配施有机肥对荔枝园土壤微生物区系的影响. 应用生态学报, 2022, 33(4): 1099-1108.

doi: 10.13287/j.1001-9332.202204.031
AN X R, JIANG S T, XIE C Y, XU Y C, DONG C X, SHEN Q R. Effects of reducing chemical fertilizers combined with organic fertilizers on soil microbial community in litchi orchards. Chinese Journal of Applied Ecology, 2022, 33(4): 1099-1108. (in Chinese)
[110]
王孝芳, 梅新兰, 黄大鹏, 徐大兵, 杨天杰, 韦中, 徐阳春, 沈其荣. 生物质炭载体联合有益菌防控番茄土传青枯病的效果研究. 土壤学报, 2022, 59(2): 536-544.
WANG X F, MEI X L, HUANG D P, XU D B, YANG T J, WEI Z, XU Y C, SHEN Q R. Effects of probiotics with biochar as carrier inhibiting tomato soil-borne bacterial wilt. Acta Pedologica Sinica, 2022, 59(2): 536-544. (in Chinese)
[111]
沈其荣, 史瑞和, 裴保义, 张耀栋. 有机肥氮素的矿化特征及其对水稻生长发育的影响. 江苏农业科学, 1990, 18(6): 34-36, 39.
SHEN Q R, SHI R H, PEI B Y, ZHANG Y D. Mineralization characteristics of organic fertilizer nitrogen and its effect on rice growth and development. Jiangsu Agricultural Sciences, 1990, 18(6): 34-36, 39. (in Chinese)
[112]
沈其荣, 沈振国, 史瑞和. 有机肥氮素的矿化特征及与其化学组成的关系. 南京农业大学学报, 1992, 15(1): 59-64.
SHEN Q R, SHEN Z G, SHI R H. The characteristics of mineralization of nitrogen in organic manure and its relation to chemical composi tion of organic manure. Journal of Nanjing Agricultural University, 1992, 15(1): 59-64. (in Chinese)
[113]
沈其荣, 徐慧, 徐盛荣, 曹翠玉. 有机-无机肥料养分在水田土壤中的转化. 土壤通报, 1994, 25(S1): 11-15, 66.
SHEN Q R, XU H, XU S R, CAO C Y. Transformation of organic-inorganic fertilizer nutrients in paddy soil. Chinese Journal of Soil Science, 1994, 25(S1): 11-15, 66. (in Chinese)
[114]
沈其荣, 余玲, 刘兆普, 茆泽圣. 有机无机肥料配合施用对滨海盐土土壤生物量态氮及土壤供氮特征的影响. 土壤学报, 1994, 31(3): 287-294.
SHEN Q R, YU L, LIU Z P, MAO Z S. Effects of combining application of organic and inorganic nitrogen fertilizers on biomass nitrogen and nitrogen- supplying characteristics of coastal saline soil. Acta Pedologica Sinica, 1994, 31(3): 287-294. (in Chinese)
[115]
沈其荣, 王瑞宝, 王岩, 徐国华, 余玲. 堆肥制作中的生物化学变化特征. 南京农业大学学报, 1997, 20(2): 51-57.
SHEN Q R, WANG R B, WANG Y, XU G H, YU L. Biochemical characteristics of composting. Journal of Nanjing Agricultural University, 1997, 20(2): 51-57. (in Chinese)
[116]
韦中, 沈宗专, 杨天杰, 王孝芳, 李荣, 徐阳春, 沈其荣. 从抑病土壤到根际免疫:概念提出与发展思考. 土壤学报, 2021, 58(4): 814-824.
WEI Z, SHEN Z Z, YANG T J, WANG X F, LI R, XU Y C, SHEN Q R. From suppressive soil to rhizosphere immunity: towards an ecosystem thinking for soil-borne pathogen control. Acta Pedologica Sinica, 2021, 58(4): 814-824. (in Chinese)
[117]
SUN Y M, WANG M, MUR L A J, SHEN Q R, GUO S W. Unravelling the roles of nitrogen nutrition in plant disease defences. International Journal of Molecular Sciences, 2020, 21(2): 572.

doi: 10.3390/ijms21020572
[118]
RAZA W, LING N, ZHANG R F, HUANG Q W, XU Y C, SHEN Q R. Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Critical Reviews in Biotechnology, 2017, 37(2): 202-212.

doi: 10.3109/07388551.2015.1130683
[119]
ZHANG R F, VIVANCO J M, SHEN Q R. The unseen rhizosphere root-soil-microbe interactions for crop production. Current Opinion in Microbiology, 2017, 37: 8-14.

doi: S1369-5274(17)30001-2 pmid: 28433932
[120]
于亚楠, 邬海燕, 王盼星, 丁明月, 马行聪, 姜斯琪, 蔡枫, 沈其荣, 陈巍. 木霉生物有机肥应用于滨海盐土甘蓝种植的生物效应. 土壤学报, 2022, 59(4): 1112-1124.
YU Y N, WU H Y, WANG P X, DING M Y, MA X C, JIANG S Q, CAI F, SHEN Q R, CHEN W. Biological effect of Trichoderma-enriched biofertilizers on cabbage cultivation in coastal saline soil. Acta Pedologica Sinica, 2022, 59(4): 1112-1124. (in Chinese)
[121]
范丙全. 我国生物肥料研究与应用进展. 植物营养与肥料学报, 2017, 23(6): 1602-1613.
FAN B Q. Advances in biofertilizer research and development in China. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1602-1613. (in Chinese)
[122]
宁川川, 王建武, 蔡昆争. 有机肥对土壤肥力和土壤环境质量的影响研究进展. 生态环境学报, 2016, 25(1): 175-181.

doi: 10.16258/j.cnki.1674-5906.2016.01.026
NING C C, WANG J W, CAI K Z. The effects of organic fertilizers on soil fertility and soil environmental quality: a review. Ecology and Environmental Sciences, 2016, 25(1): 175-181. (in Chinese)
[123]
武升, 邢素林, 马凡凡, 甘曼琴, 张俊森, 马友华. 有机肥施用对土壤环境潜在风险研究进展. 生态科学, 2019, 38(2): 219-224.
WU S, XING S L, MA F F, GAN M Q, ZHANG J S, MA Y H. Review on potential risk of soil environment from organic fertilizer application. Ecological Science, 2019, 38(2): 219-224. (in Chinese)
[124]
WALLING E, VANEECKHAUTE C. Greenhouse gas emissions from inorganic and organic fertilizer production and use: a review of emission factors and their variability. Journal of Environmental Management, 2020, 276: 111211.

doi: 10.1016/j.jenvman.2020.111211
[125]
AGUILERA E, LASSALETTA L, SANZ-COBENA A, GARNIER J, VALLEJO A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agriculture, Ecosystems & Environment, 2013, 164: 32-52.

doi: 10.1016/j.agee.2012.09.006
[126]
LAZCANO C, ZHU-BARKER X, DECOCK C. Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: A review. Microorganisms, 2021, 9(5): 983.

doi: 10.3390/microorganisms9050983
陈文新, 汪恩涛. 中国根瘤菌. 北京: 科学出版社, 2011.
CHEN W X, WANG E T. Rhizobia in China. Beijing: Science Press, 2011. (in Chinese)
[128]
刘鹏, 刘训理. 中国微生物肥料的研究现状及前景展望. 农学学报, 2013, 3(3): 26-31.
LIU P, LIU X L. Current research status and prospect of microbial fertilizer in China. Journal of Agriculture, 2013, 3(3): 26-31. (in Chinese)

doi: 10.11924/j.issn.2095-4050.2013-xb0018
[129]
XIONG W, SONG Y Q, YANG K M, GU Y A, WEI Z, KOWALCHUK G A, XU Y C, JOUSSET A, SHEN Q R, GEISEN S. Rhizosphere protists are key determinants of plant health. Microbiome, 2020, 8(1): 27.

doi: 10.1186/s40168-020-00799-9 pmid: 32127034
[130]
杜瑞敏, 朱基琛, 籍婷婷, 侯翠红, 王好斌. 中微量元素肥料的研究现状及展望. 河南化工, 2018, 35(4): 3-6.
DU R M, ZHU J C, JI T T, HOU C H, WANG H B. Research status and prospect of medium and trace element fertilizer. Henan Chemical Industry, 2018, 35(4): 3-6. (in Chinese)
[131]
张丹, 张卫峰, 季玥秀, 肖艳, 陈新平, 张福锁. 我国中微量元素肥料产业发展现状. 现代化工, 2012, 32(5): 1-5.
ZHANG D, ZHANG W F, JI Y X, XIAO Y, CHEN X P, ZHANG F S. Development of medium and trace element fertilizer industry in China. Modern Chemical Industry, 2012, 32(5): 1-5. (in Chinese)
[132]
刘勤, 赖辉比, 曹志洪. 不同供硫水平下烟草硫营养及对N、P、Cl等元素吸收的影响. 植物营养与肥料学报, 2000, 6(1): 63-68.
LIU Q, LAI H B, CAO Z H. Effect of sulphate rates supplied on sulphur metabolism and n, p and cl absorption in tobacco. Plant Natrition and Fertilizen Science, 2000, 6(1): 63-68. (in Chinese)
[133]
王东, 于振文, 樊广华, 潘庆民. 硫素对冬小麦品质和产量的影响. 山东农业科学, 2000, 32(6): 10-12.
WANG D, YU Z W, FAN G H, PAN Q M. Effect of sulfur on quality and yield of winter wheat. Shandong Agricultural Sciences, 2000, 32(6): 10-12. (in Chinese)
[134]
赵秉强. 增值肥料概论. 北京: 中国农业科学技术出版社, 2020.
ZHAO B Q. Overview of Value-Added Fertilizer. Beijing: China Agricultural Science and Technology Press, 2020. (in Chinese)
[135]
袁亮, 赵秉强, 林治安, 温延臣, 李燕婷. 增值尿素对小麦产量、氮肥利用率及肥料氮在土壤剖面中分布的影响. 植物营养与肥料学报, 2014, 20(3): 620-628.
YUAN L, ZHAO B Q, LIN Z A, WEN Y C, LI Y T. Effects of value-added urea on wheat yield and N use efficiency and the distribution of residual N in soil profiles. Journal of Plant Nutrition and Fertilizers, 2014, 20(3): 620-628. (in Chinese)
[136]
张英强, 袁亮, 张水勤, 李燕婷, 王立艳, 赵秉强. 葡萄糖改性尿素的反应特征及其对尿素转化率的影响. 植物营养与肥料学报, 2022, 28(2): 325-333.
ZHANG Y Q, YUAN L, ZHANG S Q, LI Y T, WANG L Y, ZHAO B Q. Reaction characteristics of glucose-modified urea and its effects on the urea conversion rate. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 325-333. (in Chinese)
[137]
张水勤. 不同腐植酸级分的结构特征及其对尿素的调控[D]. 北京: 中国农业大学, 2018.
ZHANG S Q. Structural characteristics of different humic acid fractions and their regulation on urea[D]. Beijing: China Agricultural University, 2018. (in Chinese)
[138]
景建元, 袁亮, 张水勤, 李燕婷, 赵秉强. 腐殖酸磷肥中的腐殖酸对磷迁移的影响及机理. 中国农业科学, 2021, 54(23): 5032-5042. doi: 10.3864/j.issn.0578-1752.2021.23.009.

doi: 10.3864/j.issn.0578-1752.2021.23.009
JING J Y, YUAN L, ZHANG S Q, LI Y T, ZHAO B Q. Effects and mechanism of humic acid in humic acid enhanced phosphate fertilizer on fertilizer-phosphorus migration. Scientia Agricultura Sinica, 2021, 54(23): 5032-5042. doi: 10.3864/j.issn.0578-1752.2021.23.009. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.23.009
[139]
孙凯宁, 袁亮, 李絮花, 林治安, 赵秉强. 增值尿素对氨挥发和土壤脲酶活性的影响. 山东农业科学, 2010, 42(6): 60-62, 71.
SUN K N, YUAN L, LI X H, LIN Z A, ZHAO B Q. Effects of value-added urea on ammonia volatilization and soil urease activity. Shandong Agricultural Sciences, 2010, 42(6): 60-62, 71. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!