Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (21): 4497-4511.doi: 10.3864/j.issn.0578-1752.2025.21.018

• EXPLORATION OF SALT-ALKALI AND DROUGHT RESISTANT GENES FOR ALFALFA BREEDING • Previous Articles     Next Articles

Cloning and Salt Tolerance Function Analysis of MsKTI3 Gene in Alfalfa

LÜ HuanHuan1,2(), LI RuYue1,2, LIU QingSong3, XU Lei1, XU YanRan1, YU HaoJie1, GUO ChangHong2, LONG RuiCai1()   

  1. 1 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193
    2 College of Life Science and Technology, Harbin Normal University/Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin 150025
    3 Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, Hebei
  • Received:2025-02-11 Accepted:2025-05-30 Online:2025-11-01 Published:2025-11-06
  • Contact: LONG RuiCai

Abstract:

【Objective】Salt stress can severely damage plant cells, inhibit plant growth and development, and consequently lead to a substantial reduction in yield. Kunitz trypsin inhibitor (KTI), a representative type of serine protease inhibitors, is primarily involved in regulating physiological processes in plants, such as growth and development, pest and disease resistance, and responses to abiotic stress. Exploring and analyzing the molecular mechanisms underlying the regulation of salt stress by the alfalfa KTI would contribute to the provision of novel candidate genes for molecular breeding of salt-tolerant alfalfa. 【Method】In this study, a salt stress induced KTI was cloned from Medicago sativa ‘Zhongmu No. 4’, which was named MsKTI3. Through bioinformatics methods, the structural characteristics of the MsKTI3 and its encoded protein were deeply analyzed. Sequence alignment and evolutionary analysis were carried out with homologous genes of other species. The real-time fluorescence quantitative PCR (RT-qPCR) method was used to analyze the expression patterns of the MsKTI3 in different tissues and under different stress conditions. With the aid of the tobacco transient expression system, the subcellular localization of the MsKTI3 protein was analyzed. An MsKTI3 overexpression vector was constructed, and the MsKTI3 overexpressing lines of Arabidopsis thaliana were successfully obtained by the Agrobacterium tumefaciens-mediated method. Meanwhile, the Medicago sativa plants with MsKTI3 overexpression in roots were obtained by the Agrobacterium rhizogenes-mediated method. Phenotypic analysis and physiological index determination of the related lines were carried out under salt stress conditions. 【Result】Bioinformatics analysis indicated that the coding sequence (CDS) of the MsKTI3 gene was 627 bp, encoding 208 amino acids. The relative molecular weight was 23 220.81 Da, and the theoretical isoelectric point was 8.57. Phylogenetic tree analysis revealed that the amino acid sequence of MsKTI3 shared a high homology with that of MtKTI3 of Medicago truncatula, reaching 97%. RT-qPCR was employed to analyze the expression pattern of the MsKTI3. The results demonstrated that the expression level of the MsKTI3 was the highest in roots. Moreover, during the initial stage of NaCl (200 mmol·L-1) and ABA (150 μmol·L-1) stress, the expression level generally exhibited an up-regulation trend. Subcellular localization results showed that the MsKTI3 protein was located in the plasma membrane. Twelve overexpressing Arabidopsis lines were generated via the Agrobacterium-mediated method. Under salt-stress conditions, the germination rate of the Arabidopsis lines overexpressing the MsKTI3 was higher than that of the wild type, and the damage degree of the overexpressing seedlings was lower than that of the wild type. The relative electrolyte leakage (IEL) and malondialdehyde (MDA) content of the overexpressing plants were significantly lower than those of the wild type (P<0.05), while the chlorophyll (Chl) content and catalase (CAT) activity were significantly higher than those of the wild type (P<0.05). MsKTI3 was transferred into the roots of alfalfa using Agrobacterium rhizogenes. Phenotypic analysis indicated that overexpression of MsKTI3 in roots enhanced the salt tolerance of alfalfa. Additionally, the CAT activity of the overexpressing plant roots was higher than that of the control plants. 【Conclusion】The MsKTI3 gene played a positive regulatory role in responding to salt stress, and overexpression of MsKTI3 could improve the salt tolerance of plant.

Key words: alfalfa, trypsin inhibitor, overexpression, salt stress, physiological indexes

Table 1

The primer list"

引物名称Primer name 引物序列Primer sequence(5'-3') 用途Application
MsKTI3-F ATGCTAGCATTTCTTCTTCTCTTT 基因克隆Gene cloning
MsKTI3-R TCAAACCTTCTGAAACTTACTTTAAA 基因克隆Gene cloning
Y-MsKTI3-F CAGGCCTGGCGCGCCACTAGT ATGCTAGCAT TTCTTCTTCTCTTT 载体构建Vector construction
Y-MsKTI3-R TTGCTCCATCCCGGGACTAGTTCAAACCTTCTGAAACTTACTTTAAA 载体构建Vector construction
q-MsKTI3-F CGTCGGAGAATCTTGCCCTC 实时荧光定量RT-qPCR
q-MsKTI3-R GTGGAGACACGAATAACGCC 实时荧光定量RT-qPCR
Atactin-F GAAATCACAGCACTTGCACC 实时荧光定量RT-qPCR
Atactin-R AAGCCTTTGATCTTGAGAGC 实时荧光定量RT-qPCR
E-MsKTI3-F GGACTCTAGAGGATCCCCGGGATGCTAGCATTTCTTCTTCTCTTT 亚细胞定位Subcellular localization
E-MsKTI3-R GCTCACCATGGTACCCCCGGGTCAAACCTTCTGAAACTTACTTTAAA 亚细胞定位Subcellular localization
Msactin-F CAAAAGATGGCAGATGCTGAGGAT RT-qPCR
Msactin-R CATGCACCAGTATGACGAGGTCG RT-qPCR

Table 2

Bioinformatics tools"

生物信息学工具
Bioinformatics tool
网址
Website
用途
Application
ExPASy http://web.expasy.org/protparam/ 蛋白理化性质分析
Physicochemical property analysis of protein
TMHMM Server 2. 0 http://www.cbs.dtu.dk/services/TMHMM 蛋白质跨膜结构域预测
Transmembrane domain prediction of protein
DNAMAN https://npsa-prabi. ibcp. fr/cgi-bin/npsa_automat. pl?page=npsa_sopma.html 多序列比对 Multiple sequence alignment
MEGA 6 https://www. megasoftware.net/ 进化树构建 Construction of evolutionary tree
SMART https://smart.embl.de/ 蛋白质保守结构域分析
Conserved domain analysis of protein
Plant CARE https://bioinformatics. psb. ugent. be/webtools/plantcare/html/ 顺式作用元件分析 Cis-acting element analysis
PRABI https://npsa-prabi. ibcp. fr/cgi-bin/npsa_automat.pl?page=npsa%20_sopma.html 蛋白质二级结构分析
Secondary structure analysis of protein
Cell-PLoc 2.0 http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/ 亚细胞定位预测
Subcellular localization prediction
Blast https://blast. ncbi. nlm. nih. gov/Blast. cgi 同源序列比对分析
Homologous sequence alignment analysis

Fig. 1

Cloning and bioinformatics analysis of MsKTI3 A:The bands for full-length amplification of the MsKTI3 cDNA; B: Hydrophilicity analysis of MsKTI3 protein; C: Prediction of the conserved domains of MsKTI3 protein, pink region: low complexity domain; Blue region: STI (Soybean trypsin inhibitor) conserved domain); D: Some cis-acting elements are contained in the upstream promoter sequence of the MsKTI3 gene"

Fig. 2

Construction of the phylogenetic tree of alfalfa MsKTI3 protein and its orthologs in other species Numbers at node indicates bootstrap value derived from 1000 replicates. The numbers on the scale represent the genetic distances between different species"

Fig. 3

Subcellular localization analysis of MsKTI3 in tobacco (Nicotiana benthamiana) leaves A-C: Results of the empty vector (GFP); D-F: Results of the fusion vector (MsKTI3 - GFP). Bar=50 µm"

Fig. 4

The expression analysis of MsKTI3 in alfalfa tissues, under abiotic stress conditions, and in Arabidopsis thaliana transgenic lines A: Expression levels of MsKTI3 gene in various tissues of alfalfa; B, C: Expression levels of MsKTI3 in roots and leaves under 150 μmol·L-1 ABA stress; D, E: Expression levels of MsKTI3 in roots and leaves under 200 mmol·L-1 NaCl stress; F: The expression level of MsKTI3 gene in Arabidopsis thaliana transgenic lines and WT lines. Different lowercase letters represent significant differences at the P<0.05 level"

Fig. 5

Comparison of the germination and growth of wild-type (WT) and MsKTI3 overexpressing lines of Arabidopsis thaliana A-D: The growth status of wild-type (WT) Arabidopsis thaliana and Arabidopsis thaliana overexpressing the MsKTI3 under different sodium chloride concentrations. E, F: Germination rates of wild-type (WT) Arabidopsis thaliana and Arabidopsis thaliana overexpressing the MsKTI3 on NaCl media with concentrations of 0 (A), 100 (B), 150 (C), and 200 mmol·L-1 (D)"

Fig. 6

Phenotypes of vertically cultured wild-type (WT)and MsKTI3 overexpressing Arabidopsis thaliana under different NaCl stresses A-C: Phenotypes of vertically cultured wild-type (WT) and MsKTI3 overexpressing Arabidopsis thaliana seedlings with different salt concentrations (0、150、200 mmol·L-1 NaCl). Bar=1 cm;D-F:Phenotypes of plant fresh weight (D), root length (E) and the number of lateral roots (F) of wild-type and MsKTI3 overexpressing Arabidopsis thaliana seedlings under different salt concentrations on vertical culture plates"

Fig. 7

Phenotypes comparison of transgenic and WT Arabidopsis thaliana in soil before and after salt stress A, B: Phenotypes of WT and overexpressing Arabidopsis thaliana before NaCl stress; C, D: Phenotypes of WT and overexpressing plants after 17 days of NaCl stress with 0 (C) and 250 mmol·L-1 (D); E, F: Plant height phenotypes of WT and overexpressing plants after 17 days of NaCl stress with 0 (E) and 250 mmol·L-1 (F) (E: Before cutting off the flowers and stems; F: Before cutting off the flowers and stems). Bar=1 cm"

Fig. 8

Determination of physiological indexes of Arabidopsis thaliana under salt stress A: plant height; B: the number of rosette leaves; C: Relative electrical conductivity; D: MDA content; E: Chlorophyll content; F: CAT activity detection"

Fig. 9

Detection of oxidative damage in Arabidopsis thaliana leaves under different salt stresses A: DAB staining, NBT staining; B: The darker the color, the higher the degree of oxidative damage"

Fig. 10

Phenotypic analysis of salt tolerance in plants overexpressing the MsKTI3 gene in alfalfa hairy roots A: Phenotype of normally growing plants. B: Phenotype of plants after 200 mmol·L-1 NaCl treatment for 4 days, scale bar = 1 cm. C: Electrophoretogram of genomic PCR products. WT: non-transgenic plants, —: negative control, +: positive control, K: MsKTI3 gene overexpression in hairy root of alfalfa; D: Expression analysis of MsKTI3 in roots of WT and transgenic alfalfa seedlings; E: Root length before and after treatment; F: Detection of CAT (catalase) activity. Lowercase letters indicate significant differences (P<0.05)"

[1]
杨青川, 康俊梅, 张铁军, 刘凤歧, 龙瑞才, 孙彦. 苜蓿种质资源的分布、育种与利用. 科学通报, 2016, 61(2): 261-270.
YANG Q C, KANG J M, ZHANG T J, LIU F Q, LONG R C, SUN Y. Distribution, breeding and utilization of alfalfa germplasm resources. Chinese Science Bulletin, 2016, 61(2): 261-270. (in Chinese)
[2]
丑敏霞, 魏新元. 豆科植物共生结瘤的分子基础和调控研究进展. 植物生态学报, 2010, 34(7): 876-888.

doi: 10.3773/j.issn.1005-264x.2010.07.013
CHOU M X, WEI X Y. Review of research advancements on the molecular basis and regulation of symbiotic nodulation of legumes. Chinese Journal of Plant Ecology, 2010, 34(7): 876-888. (in Chinese)
[3]
杨青川, 孙彦. 中国苜蓿育种的历史、现状与发展趋势. 中国草地学报, 2011, 33(6): 95-101.
YANG Q C, SUN Y. The history, current situation and development of alfalfa breeding in China. Chinese Journal of Grassland, 2011, 33(6): 95-101. (in Chinese)
[4]
LASKOWSKI M Jr, KATO I. Protein inhibitors of proteinases. Annual Review of Biochemistry, 1980, 49: 593-626.

pmid: 6996568
[5]
KONAREV A V, GRIFFIN J, KONECHNAYA G Y, SHEWRY P R. The distribution of serine proteinase inhibitors in seeds of the Asteridae. Phytochemistry, 2004, 65(22): 3003-3020.

pmid: 15504435
[6]
姚梦瑶, 李娟, 刘志刚, 游敏, 陈果, 蔡大润, 李晓荣, 陈勋基. 植物蛋白酶抑制剂研究进展. 分子植物育种, 2024: 1-16.
YAO M Y, LI J, LIU Z G, YOU M, CHEN G, CAI D R, LI X R, CHEN X J. Advances in research on plant protease inhibitors. Molecular Plant Breeding, 2024: 1-16. (in Chinese)
[7]
李树红, 陈恩, 蒋光阳, 陈治光, 李冉, 杨娟, 钟海霞. 小麦Bowman-Birk型蛋白酶抑制因子的克隆表达及其抑制鱼糜凝胶软化的效果研究. 麦类作物学报, 2016, 36(9): 1241-1248.
LI S H, CHEN E, JIANG G Y, CHEN Z G, LI R, YANG J, ZHONG H X. Cloning, expression and purification of wheat Bowman-Birk inhibitor and the inhibitory effect on surimi gel softening. Journal of Triticeae Crops, 2016, 36(9): 1241-1248. (in Chinese)
[8]
ASCENZI P, BOCEDI A, BOLOGNESI M, SPALLAROSSA A, COLETTA M, DE CRISTOFARO R, MENEGATTI E. The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): A milestone protein. Current Protein & Peptide Science, 2003, 4(3): 231-251.
[9]
袁春华, 梁宋平. Kunitz型丝氨酸蛋白酶抑制剂结构与功能研究. 生命科学研究, 2003, 7(2): 110-115.
YUAN C H, LIANG S P. Research on the structure-function relationship of kunitz-type serine protease inhibitors. Life Science Research, 2003, 7(2): 110-115. (in Chinese)
[10]
KUNITZ M, NORTHROP J H. Isolation from beef pancreas of crystalline trypsinogen, trypsin, a trypsin inhibitor, and an inhibitor- trypsin compound. The Journal of General Physiology, 1936, 19(6): 991-1007.
[11]
STRUTHERS B J, MACDONALD J R. Comparative inhibition of trypsins from several species by soybean trypsin inhibitors. The Journal of Nutrition, 1983, 113(4): 800-804.
[12]
BUDIČ M, CIGIĆ B, ŠOŠTARIČ M, SABOTIČ J, MEGLIČ V, KOS J, KIDRIČ M. The response of aminopeptidases of Phaseolus vulgaris to drought depends on the developmental stage of the leaves. Plant Physiology and Biochemistry, 2016, 109: 326-336.
[13]
GUR E, BIRAN D, RON E Z. Regulated proteolysis in gram-negative bacteria: how and when? Nature Reviews Microbiology, 2011, 9(12): 839-848.
[14]
SRINIVASAN T, KUMAR K R R, KIRTI P B. Constitutive expression of a trypsin protease inhibitor confers multiple stress tolerance in transgenic tobacco. Plant and Cell Physiology, 2009, 50(3): 541-553.

doi: 10.1093/pcp/pcp014 pmid: 19179349
[15]
ZHANG Y X, GUO W, CAO D, CHEN L M, YANG H L, CHEN H F, CHEN S L, HAO Q N, QIU D Z, SHAN Z H, et al. Heterologous expression of the Glycine soja Kunitz-type protease inhibitor GsKTI improves resistance to drought stress and Helicoverpa armigera in transgenic Arabidopsis lines. Plant Physiology and Biochemistry, 2023, 202: 107915.
[16]
TIWARI L D, MITTAL D, CHANDRA MISHRA R, GROVER A. Constitutive over-expression of rice chymotrypsin protease inhibitor gene OCPI2 results in enhanced growth, salinity and osmotic stress tolerance of the transgenic Arabidopsis plants. Plant Physiology and Biochemistry, 2015, 92: 48-55.
[17]
李娟娟. 决明Kunitz型胰蛋白酶抑制剂基因(CoTI2)的克隆、表达与分析[D]. 成都: 西南交通大学, 2016.
LI J J. Cloning, expression, and analysis of the Kunitz-type trypsin inhibitor gene (CoTI2) in Cassia obtusifolia[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
[18]
LI J, BRADER G, PALVA E T. Kunitz trypsin inhibitor: An antagonist of cell death triggered by phytopathogens and fumonisin B1 in Arabidopsis. Molecular Plant, 2008, 1(3): 482-495.
[19]
MYAT A A. GhKT112提高转基因植物的种子产量、生物学产量和耐盐/抗旱性[D]. 北京: 中国农业科学院, 2021.
MYAT A A. GhKT112 improves seed yield, biomass production, and salt/drought tolerance in transgenic plants[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
[20]
缑绪卓, 严子成, 况玉, 曹锐, 陈巧灵, 杨雅丽, 周嘉裕, 廖海. 大豆与蒺藜苜蓿Kunitz蛋白酶抑制剂的全基因组分析. 河南农业科学, 2019, 48(7): 38-47.
GOU X Z, YAN Z C, KUANG Y, CAO R, CHEN Q L, YANG Y L, ZHOU J Y, LIAO H. Genome-wide analysis of kunitz protease inhibitors from Glycine max and Medicago truncatula. Journal of Henan Agricultural Sciences, 2019, 48(7): 38-47. (in Chinese)
[21]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.
[22]
旦真措, 郭雨寒, 李聪, 李赫, 贾磊, 刘信, 于爱灵, 张佳怡, 丛丽丽. 紫花苜蓿毛状根高效转化体系的建立. 中国草地学报, 2024, 46(6): 95-102.
DAN Z C, GUO Y H, LI C, LI H, JIA L, LIU X, YU A L, ZHANG J Y, CONG L L. Developing a hairy root transformation system for alfalfa. Chinese Journal of Grassland, 2024, 46(6): 95-102. (in Chinese)
[23]
TAO X L, ZHAO Y H, MA L, WU J Y, ZENG R, JIAO J T, LI R, MA W M, LIAN Y T, WANG W T, PU Y Y, YANG G, LIU L J, LI X C, SUN W C. Cloning and functional analysis of the BrCUC2 gene in Brassica rapa L.. Frontiers in Plant Science, 2023, 14: 1274567.
[24]
DAHRO B, WANG F, PENG T, LIU J H. PtrA/NINV an alkaline/ neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC Plant Biology, 2016, 16: 76.
[25]
TANAN T T, DO NASCIMENTO M N, DA SILVA LEITE R, GUIMARÃES D S. Spectrophotometric determinations of chloroplastidic pigments in Physalis angulata L. leaves using different methodologies. Journal of Agricultural Science, 2017, 9(11): 117.
[26]
MAJOR I T, CONSTABEL C P. Functional analysis of the kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores. Plant Physiology, 2008, 146(3): 888-903.

doi: 10.1104/pp.107.106229 pmid: 18024557
[27]
LIN P, NG T B. A stable trypsin inhibitor from Chinese dull black soybeans with potentially exploitable activities. Process Biochemistry, 2008, 43(9): 992-998.

doi: 10.1016/j.procbio.2008.05.005 pmid: 32288592
[28]
HUANG H, QI S D, QI F, WU C G, YANG G D, ZHENG C C. NtKTI1, a Kunitz trypsin inhibitor with antifungal activity from Nicotiana tabacum, plays an important role in tobacco’s defense response. The FEBS Journal, 2010, 277(19): 4076-4088.
[29]
WANG B S, WANG Y Q, HE W F, HUANG M S, YU L, CHENG D, DU J, SONG B T, CHEN H L. StMLP1, as a Kunitz trypsin inhibitor, enhances potato resistance and specifically expresses in vascular bundles during Ralstonia solanacearum infection. The Plant Journal, 2023, 116(5): 1342-1354.
[30]
王学峰, 李记园, 李连国, 张锋, 王茅雁. 蒙古沙冬青胰蛋白酶抑制剂基因AmTI的克隆及其功能分析. 内蒙古农业大学学报(自然科学版), 2012, 33(2): 103-108.
WANG X F, LI J Y, LI L G, ZHANG F, WANG M Y. Cloning and expression analysis of a trypsin inhibitor gene AmTI from Ammopiptanthus mongolicus. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2012, 33(2): 103-108. (in Chinese)
[31]
赵艳, 王珏, 刘阔成, 孙天国. 大豆KTI1基因表达方式分析及其启动子预测. 分子植物育种, 2021, 19(2): 380-384.
ZHAO Y, WANG J, LIU K C, SUN T G. Analysis of expression patterns of KTI1 gene in soybean and its promoter prediction. Molecular Plant Breeding, 2021, 19(2): 380-384. (in Chinese)
[32]
向缅. 决明COTI1COTI2在抗虫、干旱及盐胁迫的功能研究[D]. 成都: 西南交通大学, 2018.
XIANG M. Functional studies of COTI1and COTI2 genes in Cassia obtusifolia under insect, drought, and salt stress[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
[1] TENG MengXin, XU Ya, HE Jing, WANG Qi, QIAO Fei, LI JingYang, LI XinGuo. Identification and Functional Analysis of Ca2+-ATPase Gene Family in Banana [J]. Scientia Agricultura Sinica, 2025, 58(7): 1418-1433.
[2] WANG WenJuan, SHI ShangLi, KANG WenJuan, DU YuanYuan, YIN Chen. The Physiological Response of Longzhong Alfalfa to Exogenous Spermine Under Drought Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 676-691.
[3] GUO AoLin, LIN JunXuan, LAI GongTi, HE LiYuan, CHE JianMei, PAN Ruo, YANG FangXue, HUANG YuJi, CHEN GuiXin, LAI ChengChun. Effect of VdF3′5′H2 Overexpression on the Accumulation of Anthocyanin Composition in Spine Grape Cells [J]. Scientia Agricultura Sinica, 2025, 58(4): 802-818.
[4] XU XiuYuan, ZHANG HongZhi, XU LiJun, XUE Wei, NIE YingYing, GUO MingYing, LI JinXia, ZHAO YaRu, SHI MingJiang. Effects of Nitrogen Fertilization on Photosynthetic Carbon Allocation in Pasture Based on 13C Pulse-Labeling Experiments [J]. Scientia Agricultura Sinica, 2025, 58(21): 4346-4356.
[5] ZHANG Fan, YANG QingChuan. The Breeding History, Current Status and Prospects of Alfalfa [J]. Scientia Agricultura Sinica, 2025, 58(21): 4471-4481.
[6] YANG YongNian, ZENG XiangCui, LIU QingSong, LI RuYue, LONG RuiCai, CHEN Lin, WANG Xue, HE Fei, KANG JunMei, LI MingNa. Differential Proteomic Analysis of Alfalfa Seedlings Under Salt- Alkaline Stress [J]. Scientia Agricultura Sinica, 2025, 58(21): 4512-4527.
[7] HUANG HongMei, WANG SiQi, YANG QingChuan, GUO ChangHong, WANG Xue. Phosphate Transporter MsPT5 Regulates Phosphate Uptake and Utilization in Alfalfa [J]. Scientia Agricultura Sinica, 2025, 58(21): 4544-4556.
[8] BAO MingFang, QIN Yan, CHEN CaiJin, ZHANG ShangPei, ZHANG GuoHui, SHA XiaoDi. Evaluation of 111 Alfalfa Germplasm Resources for Seedling Phenotypic Drought Tolerance Characterization [J]. Scientia Agricultura Sinica, 2025, 58(19): 3825-3836.
[9] LI RuoHong, MA Wen, ZHAO ShiQiang, MAO PeiSheng. Antioxidant Physiology and Hormonal Response Pattern of Embryonic Root Mitochondria During Imbibition of Aging Seeds of Alfalfa [J]. Scientia Agricultura Sinica, 2025, 58(19): 4014-4025.
[10] YANG WenJuan, GAO JiaCheng, WANG YanTing, LI Yan, GUO Ming, WANG JunCheng, MENG YaXiong, WANG HuaJun, SI ErJing. Function of Effector Pg00778 Regulation on the Pathogenicity of Pyrenophora graminea to Barley [J]. Scientia Agricultura Sinica, 2025, 58(15): 3020-3035.
[11] DENG LiCheng, LI Cheng, HE Lei, AN HongQiang, WANG CaiLin, ZHANG YaDong, ZHAO ChangJiang, LU Kai. Physiological Characteristics in Response to Salt Stress and Allelic Variation and Expression of Salt-Responsive Genes in Seedling Stage of Nangeng Rice Varieties with Salt-Tolerance Ability [J]. Scientia Agricultura Sinica, 2025, 58(12): 2275-2290.
[12] PANG QiangQiang, SUN XiaoDong, CHEN YiSong, ZHOU Man, WANG YaQiang, SHI GuoBin. Heat Resistance Analysis of Meiosis Related Gene BrASY2 in Chinese Flowering Cabbage [J]. Scientia Agricultura Sinica, 2025, 58(11): 2239-2252.
[13] ZENG XiangCui, YANG YongNian, LI RuYue, JIANG XueQian, JIANG Xu, XU YanRan, LIU ZhongKuan, LONG RuiCai, KANG JunMei, YANG QingChuan, LI MingNa. Identification of Alfalfa (Medicago sativa) MsCEP Genes and Functional Analysis of Its Regulation in Root Growth and Development [J]. Scientia Agricultura Sinica, 2024, 57(24): 4839-4853.
[14] SHAO JiaZhu, LÜ Wen, LIAO XinLin, YUAN XinYu, SONG Zhen, JIANG DongHua. Isolation and Identification of Soybean Rhizosphere Growth-Promoting Bacteria and Their Salt Tolerance and Growth-Promoting Effects [J]. Scientia Agricultura Sinica, 2024, 57(21): 4248-4263.
[15] DAI YingZi, GUO HongYang, YANG ZhiFeng, WANG XianPu, XU LiLi. Identification of Salt Resistance Functional of Grape Transcription Factor VvERF2 [J]. Scientia Agricultura Sinica, 2024, 57(2): 336-348.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!