Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (21): 4482-4496.doi: 10.3864/j.issn.0578-1752.2025.21.017

• EXPLORATION OF SALT-ALKALI AND DROUGHT RESISTANT GENES FOR ALFALFA BREEDING • Previous Articles     Next Articles

Physiological Effects of 5-AzaC on Alleviating Salt‑Alkali Stress in Alfalfa and Its Impact on the Expression of DNA Methylation Enzyme Genes

GAO Rong(), LI HengYu, CHEN LiJuan, MA HuiLing()   

  1. College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070
  • Received:2024-12-10 Accepted:2025-09-22 Online:2025-11-01 Published:2025-11-06
  • Contact: MA HuiLing

Abstract:

【Background】Soil salinization is one of the major ecological challenges threatening global agricultural production, severely restricting crop growth, yield formation, and quality improvement. Alfalfa (Medicago sativa), as an important perennial legume forage, is particularly constrained by salt-alkali stress, while the epigenetic regulatory mechanisms underlying its response remain largely unknown. DNA methylation, as a key epigenetic modification, plays an essential role in plant adaptation to abiotic stresses. 【Objective】This study aimed to systematically identify DNA methylation-related gene families in alfalfa, characterize their expression patterns under salt-alkali stress, and further explore the role of DNA methylation in salt-alkali tolerance by applying the DNA methylation inhibitor 5-azacytidine (5-AzaC), thereby providing the theoretical insights for the genetic improvement of salt-alkali-tolerant alfalfa. 【Method】Based on the reference genome of alfalfa, DNA methyltransferase and demethylase genes were identified genome-wide, and their functions were inferred through phylogenetic analysis and conserved domain annotation. RT-qPCR was employed to analyze the expression patterns of these genes under salt-alkali stress. Using the cultivar Gannong No. 3 as plant material, a hydroponic salt-alkali stress system was established. Different concentrations of 5-AzaC were applied as pretreatments, and the optimal concentration was selected for subsequent assays. Plant growth, physiological, and photosynthetic parameters were then measured to evaluate the regulatory role of 5-AzaC in alfalfa salt-alkali tolerance. 【Result】A total of 13 DNA methyltransferase genes and 4 DNA demethylase genes were identified in alfalfa, all of which were localized to the nucleus with complete conserved domains. Expression analysis revealed that MsCMT4, MsCMT6, MsCMT8, and MsDML2 were significantly upregulated under salt-alkali stress, indicating the involvement of both methylation and demethylation processes in stress responses. Physiological analyses showed that 100 μmol·L-1 5-AzaC significantly alleviated growth inhibition caused by salt-alkali stress, so plant height, fresh weight, and dry weight increased by 12.62%, 23.50%, and 18.67%, respectively, compared with the control. Regarding chlorophyll metabolism, 5-AzaC suppressed the expression of chlorophyll degradation-related genes (PAO, CAO, NYC), thereby delaying pigment degradation. Photosynthetic analysis indicated that 5-AzaC treatment markedly increased net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr), as well as the quantum efficiency of photosystem II (YII) and photochemical quenching (qP), suggesting enhanced stability and efficiency of the photosynthetic system. In terms of osmotic adjustment, 5-AzaC promoted soluble sugar accumulation (+37.21%) but had no significant effect on soluble protein. Reactive oxygen species (ROS) measurements showed that 5-AzaC reduced H2O2 and O2-·levels by 22.8% and 35.8%, respectively, while superoxide dismutase (SOD) and catalase (CAT) activities increased by 13.58% and 21.82%, respectively, indicating that 5-AzaC enhanced antioxidant capacity and alleviated oxidative damage. 【Conclusion】This study systematically characterized DNA methylation-related gene families in alfalfa and their responses to salt-alkali stress, revealing the pivotal role of DNA methylation in shaping salt-alkali tolerance. Exogenous application of 5-AzaC improved alfalfa tolerance by maintaining photosystem stability, enhancing photosynthetic efficiency, promoting osmolyte accumulation, and strengthening ROS scavenging capacity. These findings provided the new experimental evidence for understanding the epigenetic mechanisms of forage adaptation to abiotic stress and offer theoretical guidance for the improvement and utilization of salt-alkali-tolerant alfalfa germplasm.

Key words: salt-alkali stress, Medicago sativa, epigenetics, photosynthetic pigments

Table 1

Primers used for RT-PCR"

基因名称 Gene name 正向引物 Forward primer(5′-3′) 反向引物 Reverse primer(5′-3′)
MsActin GACAATGGAACTGGAATGG CAATACCGTGCTCAATGG
MsCMT1 CGCCTGAGTTTGAGCGCA TGGCATTTCGTCCCGAGT
MsCMT2 CCCCAGCGTTGTACCTGG TCAGTATGAGGAGTGGTCCCA
MsCMT3 GCTGACTCTCAAAGTGCACC GCACTCCCTTGAGGTCCC
MsCMT4 GACATACTGCCCAGCTGCA GTCAAAGGAGGTCCGCCA
MsCMT5 AGGTTCTTCTCCACCCGGA ACGGGAACAGCAACTGCA
MsCMT6 AGCTACGGGGCTTCTCCT GCATTCCACTTGGTGCGC
MsCMT7 TGGCCTCAACGTTACGCA TCCCTTCCTCGCCCTTGA
MsCMT8 GGACCTGGGCCCTTTGAA GTCCACTGGGGTGAGTGC
MsCMT9 GCTGTTCCTGTGGCCCTT CGGGCTAGACAACTTGGGT
MsDNMT1 TTCACCGAAGCTTGGCGT CACTCGATCAACGGCGGA
MsMET1 GCTGCCGTCCGTAGTACC CCATTGCCTACAGCTGGGA
MsMET2 CGTCCGCAGTACCGCAAA CCATTGCCTACAGCTGGGA
MsMET3 CAGTCCGCAGTACCGCAA CCATTGCCTACAGCTGGGA
MsDML1 TCTGGCAGAGATTTGTCCTGT GCTGTTTGGCATTACTGTGGC
MsDML2 AACGAACGGTGCATGGGT TGGTCTGCTTGCCAGTCTG
MsDML3 CAGGACTGGAGCAGAAGAACA TCAGGGAGAGACAAGGGCA
MsDML4 TGGGATTGTACCTGCGGC CCGAAGCCGCCTCTGTC
MsCAO CCGGCATCTGGTCTGCAA CCGGGCTTCGAAATCCCA
MsCLH AGCTGCAATAACAAGTTGGCT TTTCCGCCGCGACTATGG
MsNYC GTTCCACGAATGCGAGTCG GACCTCGCCGTACCCAAG
MsPAO CCGAGAATGGCGGTGACA CGTGTCGCCTCAGCCAAT

Fig. 1

Identification and expression analysis of DNA (de)methyltransferase genes in alfalfa A: Evolutionary analysis of DNA (de)methyltransferase systems in Medicago sativa (Ms) and Arabidopsis thaliana (At). B: Conserved domain analysis of DNA (de)methyltransferase genes. C: Expression level changes of DNA (de)methyltransferase genes under salt-alkali stress. Asterisks indicate significant differences (*P < 0.05, **P < 0.01, Student’s t-test)"

Table 2

Basic information of DNA methyltransferase/demethyltransferase genes in alfalfa"

基因名称
Gene name
基因ID
Gene ID
染色体
Chromosome
氨基酸数
Number of
amino acids
分子量Molecular
weigh
等电点
Point
isoelectric
不稳定系数Instability index 亲水性
GRAVY
value
亚细胞定位
Subcellular
localization
MsMET1 MS.gene071054.t1 chr4.1 1653 185714.22 5.53 44.39 -0.498 Nuclear
MsMET2 MS.gene043208.t1 chr4.2 1506 169133.86 5.98 44.2 -0.492 Nuclear
MsMET3 MS.gene010135.t1 chr5.2 1311 146538.82 5.95 43.9 -0.381 Nuclear
MsCMT1 MS.gene056526.t1 chr8.3 1124 126873.89 5.78 42.68 -0.576 Nuclear
MsCMT2 MS.gene010674.t1 chr4.4 850 96315.79 5.22 43.52 -0.563 Nuclear
MsCMT3 MS.gene64852.t1 chr5.1 835 94196.68 5.36 41.38 -0.549 Nuclear
MsCMT4 MS.gene72088.t1 chr6.3 931 103979.18 5.67 44.82 -0.548 Nuclear
MsCMT5 MS.gene51465.t1 chr3.4 894 100820.99 6.28 36.94 -0.427 Nuclear
MsCMT6 MS.gene92341.t1 chr5.1 859 96724.01 7.93 38.79 -0.526 Nuclear
MsCMT7 MS.gene50806.t1 chr4.1 550 62072.73 4.67 37.23 -0.488 Nuclear
MsCMT8 MS.gene009335.t1 chr3.1 481 53450.93 5.99 36.33 -0.28 Nuclear
MsCMT9 MS.gene89792.t1 chr4.4 652 74165.94 5.85 42.92 -0.54 Nuclear
MsDNMT1 MS.gene002215.t1 chr2.3 427 48313.21 4.89 40.8 -0.397 Nuclear
MsDML1 MS.gene050207.t1 chr1.1 1497 168803.93 6.07 44.77 -0.732 Nuclear
MsDML2 MS.gene60556.t1 chr1.2 1795 202529.87 6.28 43.97 -0.776 Nuclear
MsDML3 MS.gene020552.t1 chr7.2 1798 201809.19 6.06 47.28 -0.747 Nuclear
MsDML4 MS.gene47350.t1 chr1.1 2232 247919.17 5.88 52.08 -0.776 Nuclear

Fig. 2

Effects of DNA methylation inhibitor in alfalfa on growth under saline-alkali stress A: Phenotypes of 1-month-old alfalfa seedlings under salt-alkali stress treated with 0, 15, 50, 100, 200, and 300 μmol·L-1 5-AzaC for 5 days. B-D: Effects of 5-AzaC on plant height (B), fresh weight (C), and dry weight (D) of alfalfa under salt-alkali stress. Different letters indicate significant differences (P < 0.05, Duncan’s test). The same as below"

Fig. 3

Effects of 5-AzaC on the expression patterns of DNA methyltransferase gene family in alfalfa under salt-alkali stress"

Fig. 4

Effects of 5-AzaC on photosynthetic pigment content and related gene expression in alfalfa under saline-alkali stress A: Effects of 5-AzaC on photosynthetic pigment content in alfalfa under salt-alkali stress; B: Effects of 5-AzaC on the expression levels of chlorophyll degradation-related genes in alfalfa under salt-alkali stress"

Fig. 5

Effects of 5-AzaC on photosynthetic capacity in alfalfa under saline-alkali stress A: Net photosynthetic rate (Pn); B: Intercellular carbon dioxide concentration (Ci); C: Transpiration rate (Tr); D: Stomatal conductance (Gs)"

Fig. 6

Effects of 5-AzaC on photosynthetic fluorescence parameters in alfalfa under saline-alkali stress A: Photosynthetic fluorescence image; B: Maximum photochemical efficiency of photosystem II (Fv/Fm); C: Quantum yield of photosystem II (YII); D: Non-photochemical quenching (NPQ); E: Photochemical quenching coefficient (qP)"

Fig. 7

The effect of 5-AzaC on soluble sugar and soluble protein content in alfalfa under salt-alkali stress"

Fig. 8

Effects of 5-AzaC on reactive oxygen metabolism in alfalfa under saline-alkali stress A: DAB and NBT staining schematic; B, C: The effect of 5-AzaC on the changes in O2-· and H2O2 content in alfalfa under salt-alkali stress; D, E: The effect of 5-AzaC on the changes in catalase (CAT) and superoxide dismutase (SOD) activities in alfalfa under salt-alkali stress"

Fig. 9

The regulatory diagram of 5-AzaC treatment enhancing salt-alkali tolerance in alfalfa"

[1]
WAADT R, SELLER C A, HSU P K, TAKAHASHI Y, MUNEMASA S, SCHROEDER J I. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology, 2022, 23(10): 680-694.
[2]
CHEN X Y, CHEN G L, GUO S R, WANG Y, SUN J. SlSAMS1 enhances salt tolerance through regulation DNA methylation of SlGI in tomato. Plant Science, 2023, 335: 111808.
[3]
LI R S, GAO Q Q, MAO L P, LIU W Y, SUN L L, ZHANG P, LIU F, JIANG X W, XU J. Molecular mechanism of saline-alkali stress tolerance in the green manure crop Sophora alopecuroides. Environmental and Experimental Botany, 2023, 210: 105321.
[4]
XUN H W, WANG Y D, YUAN J, LIAN L J, FENG W J, LIU S H, HONG J H, LIU B, MA J X, WANG X T. Non-CG DNA hypomethylation promotes photosynthesis and nitrogen fixation in soybean. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(36): e2402946121.
[5]
SHI M M, WANG C L, WANG P, ZHANG M L, LIAO W B. Methylation in DNA, histone, and RNA during flowering under stress condition: A review. Plant Science, 2022, 324: 111431.
[6]
LIU Z Y, WU X T, LIU H W, ZHANG M L, LIAO W B. DNA methylation in tomato fruit ripening. Physiologia Plantarum, 2022, 174(1): e13627.
[7]
SAKAI Y, SURIYASAK C, INOUE M, HAMAOKA N, ISHIBASHI Y. Heat stress during grain filling regulates seed germination through alterations of DNA methylation in barley (Hordeum vulgare L.). Plant Molecular Biology, 2022, 110(4): 325-332.
[8]
SUN M H, YANG Z, LIU L, DUAN L. DNA methylation in plant responses and adaption to abiotic stresses. International Journal of Molecular Sciences, 2022, 23(13): 6910.
[9]
WEN Y X, WANG J Y, ZHU H H, HAN G H, HUANG R N, HUANG L, HONG Y G, ZHENG S J, YANG J L, CHEN W W. Potential role of domains rearranged Methyltransferase7 in starch and chlorophyll metabolism to regulate leaf senescence in tomato. Frontiers in Plant Science, 2022, 13: 836015.
[10]
LONGFEI WANG S C. DNA hypomethylation in tetraploid rice potentiates stress-responsive gene expression for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(13): 1-10.
[11]
GAO H Y, XIA X Y, AN L J. Critical roles of the activation of ethylene pathway genes mediated by DNA demethylation in Arabidopsis hyperhydricity. The Plant Genome, 2022, 15(2): e20202.
[12]
LI Z Q, HU Y L, CHANG M M, KASHIF M H, TANG M Q, LUO D J, CAO S, LU H, ZHANG W X, HUANG Z, YUE J, CHEN P. 5-azacytidine pre-treatment alters DNA methylation levels and induces genes responsive to salt stress in kenaf (Hibiscus cannabinus L.). Chemosphere, 2021, 271: 129562.
[13]
WANG Y Q, SONG J N, YANG H B. DNA methylation regulates the expression of salt tolerance gene FtNHX1 in Tartary buckwheat. Theoretical and Experimental Plant Physiology, 2022, 34(2): 185-195.
[14]
GUO K W, XU Z S, HUO Y Z, SUN Q, WANG Y, CHE Y H, WANG J C, LI W, ZHANG H H. Effects of salt concentration, pH, and their interaction on plant growth, nutrient uptake, and photochemistry of alfalfa (Medicago sativa) leaves. Plant Signaling & Behavior, 2020, 15(12): 1832373.
[15]
LI Y Q, GUO D J. Transcriptome and DNA methylome analysis of two contrasting rice genotypes under salt stress during germination. International Journal of Molecular Sciences, 2023, 24(4): 3978.
[16]
HOSSAIN M S, KAWAKATSU T, KIM K D, ZHANG N, NGUYEN C T, KHAN S M, BATEK J M, JOSHI T, SCHMUTZ J, GRIMWOOD J, et al. Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs. New Phytologist, 2017, 214(2): 808-819.

doi: 10.1111/nph.14421 pmid: 28106918
[17]
WANG Q, XU J, PU X M, LV H Z, LIU Y J, MA H L, WU F K, WANG Q J, FENG X J, LIU T H, et al. Maize DNA methylation in response to drought stress is involved in target gene expression and alternative splicing. International Journal of Molecular Sciences, 2021, 22(15): 8285.
[18]
CHEN H T, ZENG Y, YANG Y Z, HUANG L L, TANG B L, ZHANG H, HAO F, LIU W, LI Y H, LIU Y B, et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications, 2020, 11: 2494.

doi: 10.1038/s41467-020-16338-x pmid: 32427850
[19]
LI M N, YU A D, SUN Y, HU Q N, KANG J M, CHEN L, ZHU X X, YANG Q C, LONG R C. Lipid composition remodeling and storage lipid conversion play a critical role in salt tolerance in alfalfa (Medicago sativa L.) leaves. Environmental and Experimental Botany, 2023, 205: 105144.
[20]
ARNON D I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant Physiology, 1949, 24(1): 1-15.

doi: 10.1104/pp.24.1.1 pmid: 16654194
[21]
WANG J W, ZHANG J, LI J, DAWUDA M M, ALI B, WU Y, YU J H, TANG Z Q, LYU J, XIAO X M, HU L L, XIE J M. Exogenous application of 5-aminolevulinic acid promotes coloration and improves the quality of tomato fruit by regulating carotenoid metabolism. Frontiers in Plant Science, 2021, 12: 683868.
[22]
LIN Y X, ZHANG H, LI P R, JIN J, LI Z F. The bacterial consortia promote plant growth and secondary metabolite accumulation in Astragalus mongholicus under drought stress. BMC Plant Biology, 2022, 22(1): 475.
[23]
SHI Y, ZHANG Y, YAO H J, WU J W, SUN H, GONG H J. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiology and Biochemistry, 2014, 78: 27-36.

doi: 10.1016/j.plaphy.2014.02.009 pmid: 24607576
[24]
DARQUI F S, RADONIC L M, TROTZ P M, LÓPEZ N, VÁZQUEZ ROVERE C, HOPP H E, LÓPEZ BILBAO M. Potato snakin-1 gene enhances tolerance to Rhizoctonia solani and Sclerotinia sclerotiorum in transgenic lettuce plants. Journal of Biotechnology, 2018, 283: 62-69.
[25]
SHEIKH MOHAMMADI M H, ETEMADI N, ARAB M M, AALIFAR M, ARAB M, PESSARAKLI M. Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress. Plant Physiology and Biochemistry, 2017, 111: 129-143.

doi: S0981-9428(16)30445-4 pmid: 27915174
[26]
LU X F, LIU Y Z, XU J R, LIU X J, CHI Y Z, LI R X, MO L J, SHI L Y, LIANG S J, YU W J, LI C X. Recent progress of molecular mechanisms of DNA methylation in plant response to abiotic stress. Environmental and Experimental Botany, 2024, 218: 105599.
[27]
ARORA H, SINGH R K, SHARMA S, SHARMA N, PANCHAL A, DAS T, PRASAD A, PRASAD M. DNA methylation dynamics in response to abiotic and pathogen stress in plants. Plant Cell Reports, 2022, 41(10): 1931-1944.

doi: 10.1007/s00299-022-02901-x pmid: 35833989
[28]
LIU P P, LIU R E, XU Y P, ZHANG C X, NIU Q F, LANG Z B. DNA cytosine methylation dynamics and functional roles in horticultural crops. Horticulture Research, 2023, 10(10): uhad170.
[29]
LÓPEZ M E, ROQUIS D, BECKER C, DENOYES B, BUCHER E. DNA methylation dynamics during stress response in woodland strawberry (Fragaria vesca). Horticulture Research, 2022, 910. 1093: hr.
[30]
高晨曦, 郝陆洋, 胡悦, 李永祥, 张登峰, 李春辉, 宋燕春, 石云素, 王天宇, 黎裕, 刘旭洋. 干旱条件下玉米转座子插入关联的表观调控分析. 中国农业科学, 2024, 57(6): 1034-1049. doi: 10.3864/j.issn.0578-1752.2024.06.002.
GAO C X, HAO L Y, HU Y, LI Y X, ZHANG D F, LI C H, SONG Y C, SHI Y S, WANG T Y, LI Y, LIU X Y. Analysis of transposable element associated epigenetic regulation under drought in maize. Scientia Agricultura Sinica, 2024, 57(6): 1034-1049. doi: 10.3864/j.issn.0578-1752.2024.06.002. (in Chinese)
[31]
FAN S K, YE J Y, ZHANG L L, CHEN H S, ZHANG H H, ZHU Y X, LIU X X, JIN C W. Inhibition of DNA demethylation enhances plant tolerance to cadmium toxicity by improving iron nutrition. Plant, Cell & Environment, 2020, 43(1): 275-291.
[32]
HE L, HUANG H, BRADAI M, ZHAO C, YOU Y, MA J, ZHAO L, LOZANO-DURÁN R, ZHU J K. DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development. Nature Communications, 2022, 13: 1335.
[33]
LIU Z S, LIU C, WANG C L, PAN X J, ZHANG H S, YAO Y D, HUANG D J, LIAO W B. The involvement of DNA methylation in plant growth regulators-mediated growth in tomato (Solanum lycopersicum) seedlings. Journal of Plant Growth Regulation, 2024, 43(4): 1287-1303.
[34]
FENG S J, LIU X S, TAO H, TAN S K, CHU S S, OONO Y, ZHANG X D, CHEN J, YANG Z M. Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium. Plant, Cell & Environment, 2016, 39(12): 2629-2649.
[35]
FAN S H, LIU H F, LIU J, HUA W, XU S M, LI J. Systematic analysis of the DNA methylase and demethylase gene families in rapeseed (Brassica napus L.) and their expression variations after salt and heat stresses. International Journal of Molecular Sciences, 2020, 21(3): 953.
[36]
LI H Y, CHEN Z, WANG F, XIANG H L, LIU S R, GOU C J, FANG C, CHEN L Y, BU T T, KONG F J, et al. J-family genes redundantly regulate flowering time and increase yield in soybean. The Crop Journal, 2024, 12(3): 944-949.
[37]
LI Z Q, LUO D J, CAO S, MUBEEN S, REHMAN M, WANG C J, JIN G, LI R, CHEN T, CHEN P. DNA methylome provide new insights into the physiological-molecular regulation of salt stress in kenaf using 5-azaC pretreatment. Journal of Soil Science and Plant Nutrition, 2024, 24(2): 3889-3907.
[38]
WU Y Q, HOU J Q, REN R F, CHEN Z F, YUE M X, LI L, HOU H L, ZHENG X K, LI L J. DNA methylation and lipid metabolism are involved in GA-induced maize aleurone layers PCD as revealed by transcriptome analysis. BMC Plant Biology, 2023, 23(1): 584.

doi: 10.1186/s12870-023-04565-5 pmid: 37993774
[39]
HUANG S, ZHENG X, YAO L R, LUO L X, ZUO T, HOU Q, NI W Z. Glycinebetaine facilitates the photosynthesis of albino tea under low temperature by regulating related gene methylation. Scientia Horticulturae, 2022, 303: 111235.
[40]
SHI Y, ZHANG X T, CHANG X J, YAN M K, ZHAO H M, QIN Y, WANG H F. Integrated analysis of DNA methylome and transcriptome reveals epigenetic regulation of CAM photosynthesis in pineapple. BMC Plant Biology, 2021, 21(1): 19.

doi: 10.1186/s12870-020-02814-5 pmid: 33407144
[41]
XIONG B, LI L, LI Q, MAO H Q, WANG L, BIE Y H, ZENG X, LIAO L, WANG X, DENG H H, et al. Identification of photosynthesis characteristics and chlorophyll metabolism in leaves of Citrus cultivar (harumi) with varying degrees of chlorosis. International Journal of Molecular Sciences, 2023, 24(9): 8394.
[42]
王萍, 郑晨飞, 王娇, 胡璋健, 邵淑君, 师恺. 番茄转录因子SlNAC29在调控植株衰老中的作用及机理. 中国农业科学, 2021, 54(24): 5266-5276. doi: 10.3864/j.issn.0578-1752.2021.24.009.
WANG P, ZHENG C F, WANG J, HU Z J, SHAO S J, SHI K. The role and mechanism of tomato SlNAC29 transcription factor in regulating plant senescence. Scientia Agricultura Sinica, 2021, 54(24): 5266-5276. doi: 10.3864/j.issn.0578-1752.2021.24.009. (in Chinese)
[43]
WANG Y, WANG J C, GUO D D, ZHANG H B, CHE Y H, LI Y Y, TIAN B, WANG Z H, SUN G Y, ZHANG H H. Physiological and comparative transcriptome analysis of leaf response and physiological adaption to saline alkali stress across pH values in alfalfa (Medicago sativa). Plant Physiology and Biochemistry, 2021, 167: 140-152.

doi: 10.1016/j.plaphy.2021.07.040 pmid: 34352517
[44]
SONG L L, YU Y L, CHEN H Z, FENG Y W, CHEN S, ZHANG H H, ZHOU H J, MENG L, WANG Y. Response of photosynthetic characteristics and antioxidant system in the leaves of safflower to NaCl and NaHCO3. Plant Cell Reports, 2024, 43(6): 146.

doi: 10.1007/s00299-024-03234-7 pmid: 38764051
[45]
WANG H, ZHOU Q P, MAO P S. Ultrastructural and photosynthetic responses of pod walls in alfalfa to drought stress. International Journal of Molecular Sciences, 2020, 21(12): 4457.
[46]
ZHOU J H, CHENG K, HUANG G M, CHEN G C, ZHOU S B, HUANG Y J, ZHANG J, DUAN H L, FAN H B. Effects of exogenous 3-indoleacetic acid and cadmium stress on the physiological and biochemical characteristics of Cinnamomum camphora. Ecotoxicology and Environmental Safety, 2020, 191: 109998.
[47]
FOYER C H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, 2018, 154: 134-142.

doi: 10.1016/j.envexpbot.2018.05.003 pmid: 30283160
[48]
FAN Z Q, TAN X L, CHEN J W, LIU Z L, KUANG J F, LU W J, SHAN W, CHEN J Y. BrNAC055, a novel transcriptional activator, regulates leaf senescence in Chinese flowering cabbage by modulating reactive oxygen species production and chlorophyll degradation. Journal of Agricultural and Food Chemistry, 2018, 66(36): 9399-9408.
[49]
苗童童, 王隆金, 杨瑞婷, 代成成, 刘世超, 李楠, 李东晓. 外源褪黑素通过调控ABA-H2O2含量提高小麦幼苗抗旱性. 中国农业科学, 2025, 58(17): 3400-3417. doi: 10.3864/j.issn.0578-1752.2025.17.004.
MIAO T T, WANG L J, YANG R T, DAI C C, LIU S C, LI N, LI D X.Exogenous melatonin enhances drought resistance of wheat seedlings by regulating abscisic acid and hydrogen peroxide content. Scientia Agricultura Sinica, 2025, 58(17): 3400-3417. doi: 10.3864/j.issn.0578-1752.2025.17.004. (in Chinese)
[50]
PENG M M, CHEN Z S, ZHANG L, WANG Y J, ZHU S J, WANG G. Preharvest application of sodium nitroprusside alleviates yellowing of Chinese flowering cabbage via modulating chlorophyll metabolism and suppressing ROS accumulation. Journal of Agricultural and Food Chemistry, 2023, 71(24): 9280-9290.
[51]
LIU R E, LANG Z B. The mechanism and function of active DNA demethylation in plants. Journal of Integrative Plant Biology, 2020, 62(1): 148-159.

doi: 10.1111/jipb.12879
[1] YANG YongNian, ZENG XiangCui, LIU QingSong, LI RuYue, LONG RuiCai, CHEN Lin, WANG Xue, HE Fei, KANG JunMei, LI MingNa. Differential Proteomic Analysis of Alfalfa Seedlings Under Salt- Alkaline Stress [J]. Scientia Agricultura Sinica, 2025, 58(21): 4512-4527.
[2] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[3] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[4] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[5] LI Qiang, HUANG YingXin, ZHONG RongZhen, SUN HaiXia, ZHOU DaoWei. Influence of Medicago sativa Proportion on Its Individual Nitrogen Fixation Efficiency and Underlying Physiological Mechanism in Legume-Grass Mixture Grassland [J]. Scientia Agricultura Sinica, 2020, 53(13): 2647-2656.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!