Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (20): 4117-4130.doi: 10.3864/j.issn.0578-1752.2025.20.007

• BREEDING OF SALT-ALKALI TOLERANT VARIETIES • Previous Articles     Next Articles

Genetic Variation Analysis of New Germplasm with Combined High Yield and Salt Tolerance Developed from Derivative Materials of Pokkali

LIU ChunLei1(), WANG Juan1,2()   

  1. 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081
    2 National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, Shandong
  • Received:2025-07-15 Accepted:2025-09-24 Online:2025-10-16 Published:2025-10-14
  • Contact: WANG Juan

Abstract:

【Objective】This study aimed to elucidate the genetic basis of high yield and salt tolerance in rice through comparative genomic analysis of the salt-tolerant paternal parent Pokkali-D (Pokkali-Dwarf), the high-yielding maternal parent Huazhan, and their derived line Zhongyandao 16. The findings provide a theoretical foundation and genetic resources for the molecular breeding of salt-tolerant rice. 【Method】A new germplasm named Zhongyandao 16, which combines salt tolerance and high yield, was developed by crossing the salt-tolerant parent Pokkali-D with the high-yielding parent Huazhan. The salt tolerance of Zhongyandao 16 was evaluated based on seedling survival rate under salt stress (120 mmol·L-¹ NaCl) and yield performance in a saline field (0.4% salinity). To further investigate the genetic basis of its superior traits, whole-genome resequencing of Pokkali-D, Huazhan and Zhongyandao 16 was conducted. Genetic variants inherited from both parents, as well as unique variants present in Zhongyandao 16, were screened through variant detection. High-impact variants (causing frameshifts or premature termination of translation) and moderate-impact variants (resulting in amino acid changes) were annotated for the affected genes. 【Result】Under 120 mmol·L-1 NaCl stress, the seedling survival rate of Zhongyandao 16 was similar to that of Pokkali-D and significantly higher than that of Huazhan. Under normal field conditions, the yield of Zhongyandao 16 was comparable to Huazhan and significantly higher than Pokkali-D. Under 0.4% salinity field conditions, Zhongyandao 16 exhibited significantly higher yield than both parents, demonstrating a combination of salt tolerance and high yield. Comparative genomic analysis against the Nipponbare reference genome showed that Zhongyandao 16 shared 86 716 identical variants with Huazhan, among which high- and moderate-impact variants were annotated to 1 629 genes. It also shared 21 623 identical variants with Pokkali-D, with high- and moderate-impact variants annotated to 443 genes. Additionally, Zhongyandao 16 carried 372 unique variants, with high- and moderate-impact variants annotated to 11 genes. Functional screening of these 2 083 genes identified 16 involved in salt stress regulation (12 derived from Huazhan, 4 from Pokkali-D), 48 associated with yield-related traits (36 from Huazhan, 12 from Pokkali-D), and 3 modulated both yield and salt tolerance (2 from Huazhan, 1 from Pokkali-D). Notably, salt-tolerance alleles from Pokkali-D including OsPRPL18, OsSTLK, STH1, OsLPR2, and OsLPR5, as well as those from Huazhan, such as OsSAP4, OsY3IP1, OsABI5 and OsHKT1;5, were pyramided in Zhongyandao 16. 【Conclusion】By pyramiding yield-related genes from Huazhan and salt-tolerance alleles from Pokkali-D, Zhongyandao 16 combines high yield and salt tolerance. This demonstrates that introducing key salt-tolerant alleles from Pokkali-D into the high-yielding Huazhan background can effectively enhance salt tolerance without compromising yield.

Key words: rice, new germplasm, salt tolerance, high yield, genetic variants, gene pyramiding

Fig. 1

Identification of salt tolerance in rice at the seedling stage A: Phenotype of Pokkali-D after salt treatment; B: Phenotype of Huazhan after salt treatment; C: Phenotype of Zhongyandao 16 after salt treatment; D: Statistical analysis of seedling survival rate. Different lowercase letters indicate significant differences at P<0.01"

Fig. 2

Identification and statistics of phenotype in rice at the mature stage A: Phenotype of Huazhan, Pokkali-D and Zhongyandao 16 under normal conditions at the mature stage; B: Phenotype of Huazhan, Pokkali-D and Zhongyandao 16 under 0.4 % salt stress at the mature stage; C-E: Plant height (C), tiller number (D) and panicle length (E) of Huazhan, Pokkali-D and Zhongyandao 16 under normal and salt-stress conditions. Different lowercase letters indicate significant differences at P<0.05. The same as below"

Fig. 3

Yield performance of Pokkali-D, Huazhan, and Zhongyandao 16 at the mature stage A: Normal conditions; B: 0.4% salt stress"

Table 1

Statistics of variant sites on each chromosome"

染色体
Chromosome
长度
Length (bp)
Pokkali-D-中盐稻16
Pokkali-D-Zhongyandao 16
华占-中盐稻16
Huazhan-Zhongyandao 16
中盐稻16
Zhongyandao 16
变异位点数
Number of variants
变异间隔
Distance between variants (bp/variant)
变异位点数
Number of variants
变异间隔
Distance between variants (bp/variant)
变异位点数
Number of variants
变异间隔
Distance between variants (bp/variant)
1 43270923 1522 28430 12945 3342 34 1272674
2 35937250 531 67678 6094 5897 23 1562489
3 36413819 2664 13668 8092 4499 28 1300493
4 35502694 2330 15237 7796 4553 26 1365488
5 29958434 4152 7215 7914 3785 24 1248268
6 31248787 435 71836 2274 13741 27 1157362
7 29697621 136 218364 8331 3564 41 724332
8 28443022 169 168301 8706 3267 27 1053445
9 23012720 72 319621 8414 2735 28 821882
10 23207287 3463 6701 812 28580 31 748622
11 29021106 6034 4809 1709 16981 37 784354
12 27531856 115 239407 13629 2020 46 598518
总计Total 373245519 21623 17261 86716 4304 372 1003348

Table 2

Statistics of variant types"

类型
Type
Pokkali-D-中盐稻16
Pokkali-D-Zhongyandao 16
华占-中盐稻16
Huazhan-Zhongyandao 16
中盐稻16
Zhongyandao 16
单碱基变异SNP 19500 78394 281
插入INS 836 3110 44
缺失DEL 1287 5212 47
总计Total 21623 86716 372

Table 3

Statistics of effect sites at different levels"

类型
Type
Pokkali-D-中盐稻16
Pokkali-D-Zhongyandao 16
华占-中盐稻16
Huazhan-Zhongyandao 16
中盐稻16
Zhongyandao 16
数量Count 百分比Percent (%) 数量Count 百分比Percent (%) 数量Count 百分比Percent (%)
HIGH 46 0.08 208 0.10 5 0.60
MODERATE 895 1.60 3143 1.46 11 1.33
LOW 955 1.71 3761 1.75 4 0.48
MODIFIER 54068 96.61 208187 96.70 810 97.59

Table 4

Genes annotated from variant sites unique to Huazhan but shared with Zhongyandao16"

基因编号 Gene ID 基因 Gene 具体表型 Phenotype 性状分类 Trait 参考文献 References
Os01g0871700 qSBM1 每穗粒数Grains per panicle(-) 产量性状Yield traits [8]
Os03g0224200 OsRR21; ORR1 每穗粒数Grains per panicle(+) 产量性状Yield traits [9]
Os04g0545000 OsWRKY36; sgsd3 每穗粒数Grains per panicle(+) 产量性状Yield traits [10]
Os05g0141050 WLS5 每穗粒数Grains per panicle(+) 产量性状Yield traits [11]
Os05g0406100 OsCPN1 每穗粒数Grains per panicle(+) 产量性状Yield traits [12]
Os11g0157600 OsCCT38; OsPRR59 每穗粒数Grains per panicle(+) 产量性状Yield traits [13]
Os12g0428600 OsUPL2; LARGE2 每穗粒数Grains per panicle(-) 产量性状Yield traits [14]
Os12g0553200 GNP12 每穗粒数Grains per panicle(+) 产量性状Yield traits [15]
Os01g0229300 DFO1; CCP1 结实率Seed-setting rate(+) 产量性状Yield traits [16]
Os05g0402800 OsPDR2 结实率Seed-setting rate(+) 产量性状Yield traits [17]
Os09g0551900 OsMLH3; fsv1 结实率Seed-setting rate(+) 产量性状Yield traits [18]
Os01g0872500 OsNPF5.16 分蘖数Tiller number(+) 产量性状Yield traits [19]
Os03g0693600 OsIAGLU; OsIAGT1 分蘖数Tiller number(+) 产量性状Yield traits [20]
Os03g0131900 OscpSRP43; PGL3 分蘖数Tiller number(+) 产量性状Yield traits [21]
Os06g0717200 FON1 分蘖数Tiller number(+) 产量性状Yield traits [22]
Os09g0549450 OsNLP4 分蘖数Tiller number(+) 产量性状Yield traits [23]
Os10g0562700 REL2; OsDLT10 分蘖数Tiller number(-) 产量性状Yield traits [24]
Os10g0548700 NRRB; OsRLCK306 分蘖数Tiller number(+) 产量性状Yield traits [25]
Os12g0299700 OsMAB 分蘖数Tiller number(+) 产量性状Yield traits [26]
Os01g0185400 OsCBE1 单株产量Yield per plant(+) 产量性状Yield traits [27]
Os03g0609500 OsLBD38 单株产量Yield per plant(+) 产量性状Yield traits [28]
Os12g0609500 OsHLT1 单株产量Yield per plant(+) 产量性状Yield traits [29]
Os01g0231000 OsIAA3 粒长Grain length(-) 产量性状Yield traits [30]
Os09g0410300 TAF2; qCTS-9 籽粒大小Grain size(+) 产量性状Yield traits [31]
Os01g0276700 OsPK5 千粒重1000-grain weight(+) 产量性状Yield traits [32]
Os01g0286100 OsPIL15 千粒重1000-grain weight(-) 产量性状Yield traits [33]
Os01g0286600 OsPPO1; sprl1 千粒重1000-grain weight(+) 产量性状Yield traits [34]
Os02g0580000 OsFWL3 千粒重1000-grain weight(-) 产量性状Yield traits [35]
Os02g0180400 HHC2 千粒重1000-grain weight(+) 产量性状Yield traits [36]
Os03g0696300 OsNF-YA4; OsHAP2D 千粒重1000-grain weight(-) 产量性状Yield traits [37]
Os05g0136200 OsCIPK17 千粒重1000-grain weight(+) 产量性状Yield traits [38]
Os05g0119200 OsGPRP3 千粒重1000-grain weight(+) 产量性状Yield traits [39]
Os06g0675200 LIN1 千粒重1000-grain weight(-) 产量性状Yield traits [40]
Os07g0464700 OsCYP51H3 千粒重1000-grain weight(+) 产量性状Yield traits [41]
Os12g0178500 OsSWEET7c 千粒重1000-grain weight(+) 产量性状Yield traits [42]
Os12g0552600 qTGW12a 千粒重1000-grain weight(+) 产量性状Yield traits [43]
Os03g0757500 GSA1; UGT83A1 耐盐性Salt tolerance(+);
千粒重1000-grain weight(+)
耐盐性;产量性状
Salt tolerance; yield traits
[44]
Os04g0464200 OsALDH10A5; OsBADH1 耐盐性Salt tolerance(+);
千粒重1000-grain weight(+)
耐盐性;产量性状
Salt tolerance; yield traits
[45]
Os01g0798500 OsY3IP1 耐盐性Salt tolerance(+) 耐盐性Salt tolerance [46]
Os01g0859300 OsABI5; OREB1 耐盐性Salt tolerance(-) 耐盐性Salt tolerance [47]
Os01g0209700 OsGA2ox7 耐盐性Salt tolerance(-) 耐盐性Salt tolerance [48]
Os01g0935500 OsHAK2 耐盐性Salt tolerance(-) 耐盐性Salt tolerance [49]
Os01g0307500 OsHKT1; 5 耐盐性Salt tolerance(+) 耐盐性Salt tolerance [50]
Os02g0195600 ZFP185; OsSAP4 耐盐性Salt tolerance(+) 耐盐性Salt tolerance [51]
Os03g0192500 OsPP45; OsBIPP2C1 耐盐性Salt tolerance(+) 耐盐性Salt tolerance [52]
Os04g0465600 OsMLP423 耐盐性Salt tolerance(+) 耐盐性Salt tolerance [53]
Os04g0682800 AM1 耐盐性Salt tolerance(+) 耐盐性Salt tolerance [54]
Os06g0698785 OsCMO 耐盐性Salt tolerance(+) 耐盐性Salt tolerance [55]
Os08g0206500 OsNF-YC5; OsHAP5F 耐盐性Salt tolerance(+) 耐盐性Salt tolerance [56]
Os12g0162400 OsCBL6 耐盐性Salt tolerance(-) 耐盐性Salt tolerance [57]

Table 5

Genes annotated from variant sites unique to Pokkali-D but shared with Zhongyandao16"

基因编号 Gene ID 基因 Gene 具体表型 Phenotype 性状分类 Trait 参考文献 References
Os02g0110400 OsCPPR1 结实率Seed-setting rate(+) 产量性状Yield traits [58]
Os05g0591600 LOGL8 结实率Seed-setting rate(+) 产量性状Yield traits [59]
Os11g0587000 D27; DWARF27 分蘖数Tiller number(-) 产量性状Yield traits [60]
Os11g0544600 OsChz1 分蘖数Tiller number(+) 产量性状Yield traits [61]
Os02g0831500 OsSUS6 单株产量Yield per plant(+) 产量性状Yield traits [62]
Os05g0591400 OsEBS 单株产量Yield per plant(+) 产量性状Yield traits [63]
Os10g0498700 SPL38; OsMED16 单株产量Yield per plant(-) 产量性状Yield traits [64]
Os11g0586300 OsLESV; FLO9 单株产量Yield per plant(+) 产量性状Yield traits [65]
Os11g0591100 OsGME2 单株产量Yield per plant(+) 产量性状Yield traits [66]
Os11g0544500 OsPML2 单株产量Yield per plant(+) 产量性状Yield traits [67]
Os01g0116600 SPL33; LMM5.1 千粒重1000-grain weight(+) 产量性状Yield traits [68]
Os04g0376300 HTS1; OsPLS4 千粒重1000-grain weight(+) 产量性状Yield traits [69]
Os01g0127200 OsLPR5; OsLPR1-5 耐盐性Salt tolerance(+);
单株产量Yield per plant(+)
耐盐性;产量性状
Salt tolerance; yield traits
[70]
Os01g0126200 OsLPR2; OsLPR1-2 耐盐性Salt tolerance(-) 耐盐性Salt tolerance [71]
Os03g0828100 OsPRPL18; WLP3 耐盐性Salt tolerance(+) 耐盐性Salt tolerance [72]
Os05g0305900 OsSTLK 耐盐性Salt tolerance(+) 耐盐性Salt tolerance [73]
Os05g0590300 STH1; D14L2a 耐盐性Salt tolerance(+) 耐盐性Salt tolerance [74]
[1]
YUAN S, LINQUIST B A, WILSON L T, CASSMAN K G, STUART A M, PEDE V, MIRO B, SAITO K, AGUSTIANI N, ARISTYA V E, et al. Sustainable intensification for a larger global rice bowl. Nature Communications, 2021, 12: 7163.

doi: 10.1038/s41467-021-27424-z pmid: 34887412
[2]
YANG Y Q, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist, 2018, 217(2): 523-539.

doi: 10.1111/nph.14920 pmid: 29205383
[3]
WANG G Z, NI G, FENG G, MBURRILL H, LI J F, ZHANG J L, ZHANG F S. Saline-alkali soil reclamation and utilization in China: Progress and prospects. Frontiers of Agricultural Science and Engineering, 2024, 11(2): 216-228.

doi: 10.15302/J-FASE-2024551
[4]
YANG Q Y, ZHENG Y T, LI X T. Integrative RNA-seq and ATAC-seq analysis unveils antioxidant defense mechanisms in salt-tolerant rice variety Pokkali. BMC Plant Biology, 2025, 25(1): 364.
[5]
XIAO Y L, LI J J, YU J H, MENG Q C, DENG X Y, YI Z L, XIAO G Y. Improvement of bacterial blight and brown planthopper resistance in an elite restorer line Huazhan of Oryza. Field Crops Research, 2016, 186: 47-57.
[6]
ZHANG H, WANG Y X, DENG C, ZHAO S, ZHANG P, FENG J, HUANG W, KANG S J, QIAN Q, XIONG G S, et al. High-quality genome assembly of Huazhan and Tianfeng, the parents of an elite rice hybrid Tian-you-Hua-Zhan. Science China Life Sciences, 2022, 65(2): 398-411.
[7]
DEINLEIN U, STEPHAN A B, HORIE T, LUO W, XU G H, SCHROEDER J I. Plant salt-tolerance mechanisms. Trends in Plant Science, 2014, 19(6): 371-379.

doi: 10.1016/j.tplants.2014.02.001 pmid: 24630845
[8]
XU J, SHANG L G, WANG J J, CHEN M M, FU X, HE H Y, WANG Z A, ZENG D L, ZHU L, HU J, et al. The SEEDLING BIOMASS 1 allele from indica rice enhances yield performance under low-nitrogen environments. Plant Biotechnology Journal, 2021, 19(9): 1681-1683.

doi: 10.1111/pbi.13642 pmid: 34048114
[9]
CHUN Y, FANG J J, SAVELIEVA E M, LOMIN S N, SHANG J Y, SUN Y L, ZHAO J F, KUMAR A, YUAN S J, YAO X F, et al. The cytokinin receptor ohk4/OsHK 4 regulates inflorescence architecture in rice via an ideal plant architecture1/wealthy farmer's panicle-mediated positive feedback circuit. The Plant Cell, 2023, 36(1): 40-64.
[10]
LAN J, LIN Q B, ZHOU C L, REN Y K, LIU X, MIAO R, JING R N, MOU C L, NGUYEN T, ZHU X J, et al. Small grain and semi-dwarf 3, a WRKY transcription factor, negatively regulates plant height and grain size by stabilizing SLR1 expression in rice. Plant Molecular Biology, 2020, 104(4): 429-450.
[11]
ZHAO C Y, LIU C L, ZHANG Y, CUI Y T, HU H T, JAHAN N, LV Y, QIAN Q, GUO L B. A 3-bp deletion of WLS5 gene leads to weak growth and early leaf senescence in rice. Rice, 2019, 12(1): 26.

doi: 10.1186/s12284-019-0288-8 pmid: 31037442
[12]
KOJIMA M, MAKITA N, MIYATA K, YOSHINO M, IWASE A, OHASHI M, SURJANA A, KUDO T, TAKEDA-KAMIYA N, TOYOOKA K, et al. A cell wall-localized cytokinin/purine riboside nucleosidase is involved in apoplastic cytokinin metabolism in Oryza sativa. Proceedings of The National Academy of Sciences of The United States of America, 2023, 120(36): e2217708120.
[13]
ZHANG J, FAN X W, HU Y, ZHOU X C, HE Q, LIANG L W, XING Y Z. Global analysis of CCT family knockout mutants identifies four genes involved in regulating heading date in rice. Journal of Integrative Plant Biology, 2021, 63(5): 913-923.
[14]
HUANG L J, HUA K, XU R, ZENG D L, WANG R C, DONG G J, ZHANG G Z, LU X L, FANG N, WANG D K, et al. The LARGE2-APO1/APO 2 regulatory module controls panicle size and grain number in rice. The Plant Cell, 2021, 33(4): 1212-1228.
[15]
PAN Y H, CHEN L, GUO H F, FENG R, LOU Q J, RASHID M A R, ZHU X Y, QING D J, LIANG H F, GAO L J, et al. Systematic analysis of NB-ARC gene family in rice and functional characterization of GNP12. Frontiers in Genetics, 2022, 13: 887217.
[16]
YAN D W, ZHANG X M, ZHANG L, YE S H, ZENG L J, LIU J Y, LI Q, HE Z H. CURVED CHIMERIC PALEA 1 encoding an EMF1- like protein maintains epigenetic repression of OsMADS58 in rice Palea development. The Plant Journal, 2015, 82(1): 12-24.
[17]
CAO Y, JAIN A, AI H, LIU X L, WANG X W, HU Z, SUN Y F, HU S W, SHEN X, LAN X X, XU G H, SUN S B. OsPDR2 mediates the regulation on the development response and maintenance of Pi homeostasis in rice. Plant Physiology and Biochemistry, 2020, 149: 1-10.
[18]
MAO B G, ZHENG W J, HUANG Z, PENG Y, SHAO Y, LIU C T, TANG L, HU Y Y, LI Y K, HU L M, et al. Rice MutLγ, the MLH1-MLH 3 heterodimer, participates in the formation of type I crossovers and regulation of embryo sac fertility. Plant Biotechnology Journal, 2021, 19(7): 1443-1455.
[19]
WANG J, WAN R J, NIE H P, XUE S W, FANG Z M. OsNPF5.16, a nitrate transporter gene with natural variation, is essential for rice growth and yield. The Crop Journal, 2022, 10(2): 397-406.
[20]
YU X L, WANG H Y, LEUNG D W M, HE Z D, ZHANG J J, PENG X X, LIU E E. Overexpression of OsIAAGLU reveals a role for IAA-glucose conjugation in modulating rice plant architecture. Plant Cell Reports, 2019, 38(6): 731-739.
[21]
LV X G, SHI Y F, XU X, WEI Y L, WANG H M, ZHANG X B, WU J L. Oryza sativa chloroplast signal recognition particle 43 (OscpSRP43) is required for chloroplast development and photosynthesis. PLoS ONE, 2015, 10(11): e0143249.
[22]
SHAO G N, LU Z F, XIONG J S, WANG B, JING Y H, MENG X B, LIU G F, MA H Y, LIANG Y, CHEN F, et al. Tiller bud formation regulators MOC1 and MOC 3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Molecular Plant, 2019, 12(8): 1090-1102.
[23]
YU J, XUAN W, TIAN Y L, FAN L, SUN J, TANG W J, CHEN G M, WANG B X, LIU Y, WU W, et al. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnology Journal, 2021, 19(1): 167-176.
[24]
YU Q, CHEN L, ZHOU W Q, AN Y H, LUO T X, WU Z L, WANG Y Q, XI Y F, YAN L F, HOU S W. RSD 1 is essential for stomatal patterning and files in rice. Frontiers in Plant Science, 2020, 11: 600021.
[25]
YANG S Q, LI W Q, MIAO H, GAN P F, QIAO L, CHANG Y L, SHI C H, CHEN K M. REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice, 2016, 9(1): 37.
[26]
LV Y, LIU C C, LI X X, WANG Y Y, HE H Y, HE W C, CHEN W, YANG L B, DAI X F, CAO X L, et al. A centromere map based on super pan-genome highlights the structure and function of rice centromeres. Journal of Integrative Plant Biology, 2024, 66(2): 196-207.

doi: 10.1111/jipb.13607
[27]
CHOI J, LEE W, AN G, KIM S R. OsCBE1, a substrate receptor of Cullin4-based E3 ubiquitin ligase, functions as a regulator of abiotic stress response and productivity in rice. International Journal of Molecular Sciences, 2021, 22(5): 2487.
[28]
LI C N, ZHU S S, ZHANG H, CHEN L P, CAI M H, WANG J C, CHAI J T, WU F Q, CHENG Z J, GUO X P, et al. OsLBD37 and OsLBD38, two class II type LBD proteins, are involved in the regulation of heading date by controlling the expression of Ehd1 in rice. Biochemical and Biophysical Research Communications, 2017, 486(3): 720-725.
[29]
JI D L, LUO M F, GUO Y J, LI Q X, KONG L X, GE H T, WANG Q, SONG Q L, ZENG X N, MA J F, et al. Efficient scavenging of reactive carbonyl species in chloroplasts is required for light acclimation and fitness of plants. The New Phytologist, 2023, 240(2): 676-693.
[30]
ZHANG Z Y, LI J J, TANG Z S, SUN X M, ZHANG H L, YU J P, YAO G X, LI G L, GUO H F, LI J L, et al. Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3-OsARF 25 interaction to regulate grain length via the auxin signaling pathway in rice. Journal of Experimental Botany, 2018, 69(20): 4723-4737.
[31]
ZHANG L, WANG R C, XING Y D, XU Y F, XIONG D P, WANG Y M, YAO S G. Separable regulation of POW1 in grain size and leaf angle development in rice. Plant Biotechnology Journal, 2021, 19(12): 2517-2531.

doi: 10.1111/pbi.13677 pmid: 34343399
[32]
DONG N N, CHEN L N, AHMAD S, CAI Y C, DUAN Y Q, LI X W, LIU Y Q, JIAO G A, XIE L H, HU S K, et al. Genome-wide analysis and functional characterization of pyruvate kinase (PK) gene family modulating rice yield and quality. International Journal of Molecular Sciences, 2022, 23(23): 15357.
[33]
JI X, DU Y X, LI F, SUN H Z, ZHANG J, LI J Z, PENG T, XIN Z Y, ZHAO Q Z. The basic helix-loop-helix transcription factor, OsPIL15, regulates grain size via directly targeting a purine permease gene OsPUP7 in rice. Plant Biotechnology Journal, 2019, 17(8): 1527-1537.
[34]
LIU X, DENG X J, LI C Y, XIAO Y K, ZHAO K, GUO J, YANG X R, ZHANG H S, CHEN C P, LUO Y T, et al. Mutation of protoporphyrinogen IX oxidase gene causes spotted and rolled leaf and its overexpression generates herbicide resistance in rice. International Journal of Molecular Sciences, 2022, 23(10): 5781.
[35]
XU J, XIONG W T, CAO B B, YAN T Z, LUO T, FAN T T, LUO M Z. Molecular characterization and functional analysis of “fruit-weight2.2-like” gene family in rice. Planta, 2013, 238(4): 643-655.
[36]
SHEN S Y, MA M, BAI C, WANG W Q, ZHU R B, GAO Q, SONG X J. Optimizing rice grain size by attenuating phosphorylation- triggered functional impairment of a chromatin modifier ternary complex. Developmental Cell, 2024, 59(4): 448-464.
[37]
LEE D K, KIM H I, JANG G, CHUNG P J, JEONG J S, KIM Y S, BANG S W, JUNG H, CHOI Y D, KIM J K. The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner. Plant Science, 2015, 241: 199-210.
[38]
GAO C, LU S, ZHOU R, WANG Z H, LI Y, FANG H, WANG B H, CHEN M X, CAO Y Y. The OsCBL8-OsCIPK17 module regulates seedling growth and confers resistance to heat and drought in rice. International Journal of Molecular Sciences, 2022, 23(20): 12451.
[39]
WANG X, YAN X, TIAN X X, ZHANG Z F, WU W W, SHANG J J, OUYANG J X, YAO W, LI S B. Glycine- and proline-rich protein OsGPRP3 regulates grain size and quality in rice. Journal of Agricultural and Food Chemistry, 2020, 68(29): 7581-7590.

doi: 10.1021/acs.jafc.0c01803 pmid: 32579349
[40]
MORITA R, ICHIDA H, ISHII K, HAYASHI Y, ABE H, SHIRAKAWA Y, ICHINOSE K, TSUNEIZUMI K, KAZAMA T, TORIYAMA K, et al. LONG GRAIN 1: A novel gene that regulates grain length in rice. Molecular Breeding, 2019, 39(9): 135.
[41]
JIAO Z L, YIN L J, ZHANG Q M, XU W J, JIA Y X, XIA K F, ZHANG M Y. The putative obtusifoliol 14α-demethylase OsCYP51H3 affects multiple aspects of rice growth and development. Physiologia Plantarum, 2022, 174(5): e13764.
[42]
LI P, WANG L H, LIU H B, YUAN M. Impaired SWEET-mediated sugar transportation impacts starch metabolism in developing rice seeds. The Crop Journal, 2022, 10(1): 98-108.
[43]
DU Z X, HUANG Z, LI J B, BAO J Z, TU H, ZENG C H, WU Z, FU H H, XU J, ZHOU D H, et al. qTGW12a, a naturally varying QTL, regulates grain weight in rice. Theoretical and Applied Genetics, 2021, 134(9): 2767-2776.

doi: 10.1007/s00122-021-03857-4 pmid: 34021769
[44]
DONG N Q, SUN Y W, GUO T, SHI C L, ZHANG Y M, KAN Y, XIANG Y H, ZHANG H, YANG Y B, LI Y C, et al. UDP- glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nature Communications, 2020, 11: 2629.
[45]
TANG W, SUN J Q, LIU J, LIU F F, YAN J, GOU X J, LU B R, LIU Y S. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). Plant Molecular Biology, 2014, 86(4): 443-454.
[46]
MOON H, KIM Y A, SHIN R, PARK C J. Nucleus-encoded thylakoid protein, OsY3IP1, confers enhanced tolerance to saline and alkaline stresses in rice. Rice Science, 2022, 29(3): 225-236.

doi: 10.1016/j.rsci.2021.08.004
[47]
LI Y X, ZHOU J H, LI Z, QIAO J Z, QUAN R D, WANG J, HUANG R F, QIN H. Salt and Aba response erf1 improves seed germination and salt tolerance by repressing ABA signaling in rice. Plant Physiology, 2022, 189(2): 1110-1127.

doi: 10.1093/plphys/kiac125 pmid: 35294556
[48]
ZENG P, XIE T, SHEN J X, LIANG T K, YIN L, LIU K X, HE Y, CHEN M M, TANG H J, CHEN S L, et al. Potassium transporter OsHAK 9 regulates seed germination under salt stress by preventing gibberellin degradation through mediating OsGA2ox7 in rice. Journal of Integrative Plant Biology, 2024, 66(4): 731-748.
[49]
MORITA S, TAMBA N, SHIBASAKA M, SASANO S, KADOIKE T, URASE Y, MARUYAMA M, FUKUOKA A, YANAI J, MASUMURA T, et al. In planta evidence that the HAK transporter OsHAK 2 is involved in Na+ transport in rice. Bioscience, Biotechnology, and Biochemistry, 2023, 87(5): 482-490.
[50]
REN Z H, GAO J P, LI L G, CAI X L, HUANG W, CHAO D Y, ZHU M Z, WANG Z Y, LUAN S, LIN H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37(10): 1141-1146.
[51]
ZHANG Y, LAN H X, SHAO Q L, WANG R Q, CHEN H, TANG H J, ZHANG H S, HUANG J. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa). Journal of Experimental Botany, 2016, 67(1): 315-326.

doi: 10.1093/jxb/erv464 pmid: 26512055
[52]
HU X B, SONG F M, ZHENG Z. Molecular characterization and expression analysis of a rice protein phosphatase 2C gene, OsBIPP2C1 and overexpression in transgenic tobacco conferred enhanced disease resistance and abiotic tolerance. Physiologia Plantarum, 2006, 127(2): 225-236.
[53]
ZHOU Z M, FAN J B, ZHANG J, YANG Y M, ZHANG Y F, ZAN X F, LI X H, WAN J L, GAO X L, CHEN R J, et al. OsMLP 423 is a positive regulator of tolerance to drought and salt stresses in rice. Plants, 2022, 11(13): 1653.
[54]
SHENG P K, TAN J J, JIN M N, WU F Q, ZHOU K N, MA W W, HENG Y Q, WANG J L, GUO X P, ZHANG X, et al. Albino midrib 1, encoding a putative potassium efflux antiporter, affects chloroplast development and drought tolerance in rice. Plant Cell Reports, 2014, 33(9): 1581-1594.

doi: 10.1007/s00299-014-1639-y pmid: 24917171
[55]
YU J D, LI Y X, TANG W, LIU J, LU B R, LIU Y S. The accumulation of glycine betaine is dependent on choline monooxygenase (OsCMO), not on phosphoethanolamine N-Methyltransferase (OsPEAMT1), in rice (Oryza sativa L. ssp. Japonica). Plant Molecular Biology Reporter, 2014, 32(4): 916-922.
[56]
JIN X K, LI X X, XIE Z Z, SUN Y, JIN L, HU T Z, HUANG J L. Nuclear factor OsNF-YC5 modulates rice seed germination by regulating synergistic hormone signaling. Plant Physiology, 2023, 193(4): 2825-2847.
[57]
JIANG M, ZHAO C L, ZHAO M F, LI Y Z, WEN G S. Phylogeny and evolution of calcineurin B-like (CBL) gene family in grass and functional analyses of rice CBLs. Journal of Plant Biology, 2020, 63(2): 117-130.
[58]
ZHENG S Y, DONG J F, LU J Q, LI J, JIANG D G, YU H P, YE S M, BU W L, LIU Z L, ZHOU H, et al. A cytosolic pentatricopeptide repeat protein is essential for tapetal plastid development by regulating OsGLK 1 transcript levels in rice. New Phytologist, 2022, 234(5): 1678-1695.
[59]
CHEN S F, LOU S L, ZHAO X C, ZHANG S J, CHEN L T, HUANG P, LI G D, LI Y Y, LIU Y G, CHEN Y L. Ectopic expression of a male fertility gene, LOGL8, represses LOG and hinders panicle and ovule development. The Crop Journal, 2022, 10(6): 1665-1673.
[60]
LIN H, WANG R X, QIAN Q, YAN M X, MENG X B, FU Z M, YAN C Y, JIANG B, SU Z, LI J Y, et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. The Plant Cell, 2009, 21(5): 1512-1525.
[61]
DU K X, LUO Q, YIN L F, WU J B, LIU Y H, GAN J H, DONG A W, SHEN W H. OsChz 1 acts as a histone chaperone in modulating chromatin organization and genome function in rice. Nature Communications, 2020, 11: 5717.
[62]
FAN C F, WANG G Y, WANG Y M, ZHANG R, WANG Y T, FENG S Q, LUO K M, PENG L C. Sucrose synthase enhances hull size and grain weight by regulating cell division and starch accumulation in transgenic rice. International Journal of Molecular Sciences, 2019, 20(20): 4971.
[63]
DONG X X, WANG X Y, ZHANG L S, YANG Z T, XIN X Y, WU S, SUN C Q, LIU J X, YANG J S, LUO X J. Identification and characterization of OsEBS, a gene involved in enhanced plant biomass and spikelet number in rice. Plant Biotechnology Journal, 2013, 11(9): 1044-1057.

doi: 10.1111/pbi.12097 pmid: 23924074
[64]
JIANG J, YANG G Z, XIN Y F, WANG Z G, YAN W, CHEN Z F, TANG X Y, XIA J X. Overexpression of OsMed16 inhibits the growth of rice and causes spontaneous cell death. Genes, 2021, 12(5): 656.
[65]
DONG N N, JIAO G A, CAO R J, LI S F, ZHAO S L, DUAN Y Q, MA L Y, LI X W, LU F F, WANG H, et al. OsLESV and OsESV1 promote transitory and storage starch biosynthesis to determine rice grain quality and yield. Plant Communications, 2024, 5(7): 100893.
[66]
HÖLLER S, UEDA Y, WU L B, WANG Y X, HAJIREZAEI M R, GHAFFARI M R, VON WIRÉN N, FREI M. Ascorbate biosynthesis and its involvement in stress tolerance and plant development in rice (Oryza sativa L.). Plant Molecular Biology, 2015, 88(6): 545-560.
[67]
ZOU Y, XU E D, FAN Y, ZHANG P J, ZHANG W, CHEN X. OsPML2, a chloroplast envelope localized transporter is involved in manganese homeostasis in rice. Plant Physiology and Biochemistry, 2023, 203: 108054.
[68]
WANG S, LEI C L, WANG J L, MA J, TANG S, WANG C L, ZHAO K J, TIAN P, ZHANG H, QI C Y, et al. SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice. Journal of Experimental Botany, 2017, 68(5): 899-913.

doi: 10.1093/jxb/erx001 pmid: 28199670
[69]
ZHOU D H, LI T, YANG Y L, QU Z Y, OUYANG L J, JIANG Z S, LIN X L, ZHU C L, PENG L Y, FU J R, et al. OsPLS 4 is involved in cuticular wax biosynthesis and affects leaf senescence in rice. Frontiers in Plant Science, 2020, 11: 782.

doi: 10.3389/fpls.2020.00782 pmid: 32595674
[70]
ZHAO J, MENG X, ZHANG Z N, WANG M, NIE F H, LIU Q P. OsLPR5 encoding ferroxidase positively regulates the tolerance to salt stress in rice. International Journal of Molecular Sciences, 2023, 24(9): 8115.
[71]
GU Y, FU C F, ZHANG M, JIN C Q, LI Y Q, CHEN X Y, LI R N, FENG T T, HUANG X Z, AI H. Effects of OsLPR2 gene knockout on rice growth, development, and salt stress tolerance. Agriculture, 2024, 14(10): 1827.
[72]
LU T, YIN W J, ZHANG Y N, ZHU C Y, ZHONG Q Q, LI S F, WANG N, CHEN Z G, YE H F, FANG Y, et al. WLP 3 encodes the ribosomal protein L18 and regulates chloroplast development in rice. Rice, 2023, 16(1): 59.
[73]
LIN F M, LI S, WANG K, TIAN H R, GAO J F, ZHAO Q Z, DU C Q. A leucine-rich repeat receptor-like kinase, OsSTLK, modulates salt tolerance in rice. Plant Science, 2020, 296: 110465.
[74]
XIANG Y H, YU J J, LIAO B, SHAN J X, YE W W, DONG N Q, GUO T, KAN Y, ZHANG H, YANG Y B, et al. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice. Molecular Plant, 2022, 15(12): 1908-1930.
[1] WANG AiDong, LI RuiJie, FENG XiangQian, HONG WeiYuan, LI ZiQiu, ZHANG XiaoGuo, WANG DanYing, CHEN Song. Multi-Angle Imaging and Machine Learning Approaches for Accurate Rice Leaf Area Estimation [J]. Scientia Agricultura Sinica, 2025, 58(9): 1719-1734.
[2] WEI Ping, PAN JuZhong, ZHU DePing, SHAO ShengXue, CHEN ShanShan, WEI YaQian, GAO WeiWei. The Function of OsDREB1J in Regulating Rice Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(8): 1463-1478.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WANG Bin, WU PengHao, LU JianWei, REN Tao, CONG RiHuan, LU ZhiFeng, LI XiaoKun. Water Demand Characteristics of Rice-Oilseed Rape Rotation System in the Middle Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2025, 58(7): 1355-1365.
[5] XIONG JiaNi, LI ZongYue, HU HengLiang, GU TianYu, GAO Yan, PENG JiaShi. Influence of Expressing OsNRAMP5 Under the Driving of the OsLCT1 Promoter on Cadmium Migration to Rice Seeds [J]. Scientia Agricultura Sinica, 2025, 58(7): 1259-1268.
[6] JIN YiDan, HE NiQing, CHENG ZhaoPing, LIN ShaoJun, HUANG FengHuang, BAI KangCheng, ZHANG Tao, WANG WenXiao, YU MinXiang, YANG DeWei. Screening and Identification of Pigm-1 Interaction Proteins for Disease Resistance of Rice Blast [J]. Scientia Agricultura Sinica, 2025, 58(6): 1043-1051.
[7] JIN YaRu, CHEN Bin, WANG XinKai, ZHOU TianTian, LI Xiao, DENG JingJing, YANG YuWen, GUO DongShu, ZHANG BaoLong. Generation of Low-Glutelin Rice (Oryza sativa L.) Germplasm Through Long Fragment Deletion Using CRISPR/Cas9-Mediated Targeted Mutagenesis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1052-1064.
[8] XIAO ChangChun, WEI XinYu, ZENG YueHui, HUANG JianHong, XU XuMing. Accumulation Characteristics of Anthocyanins in Black Rice Under Different Sowing Dates and Its Relationship with Meteorological Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 890-906.
[9] XU YuanYuan, JIA DongSheng, BIN Yu, WEI TaiYun. PGRP6 Negatively Regulates Symbiotic Bacteria to Prevent the Transovarial Transmission of RDV in Nephotettix cincticeps [J]. Scientia Agricultura Sinica, 2025, 58(5): 907-917.
[10] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[11] WANG ShaoHua, SHEN NianQiao, CHU TianRan, WU YongHan, LI KangNing, SHI YanXia, XIE XueWen, LI Lei, FAN TengFei, LI BaoJu, CHAI ALi. Effects of Tomato-Rice Rotation on Physicochemical Properties and Microbial Communities of Soil with Continuous Cropping Obstacles in Cangnan, Zhejiang [J]. Scientia Agricultura Sinica, 2025, 58(4): 692-703.
[12] LI Lu, XIE Zhuang, XIE KeYing, ZHANG Han, ZHAO ZhuoWen, XIANG AoNi, LI QiaoLong, LING YingHua, HE GuangHua, ZHAO FangMing. Construction of Single and Dual-Segment Substitution Lines from Rice CSSL-Z492 and Genetic Dissection of QTL for Grain Size [J]. Scientia Agricultura Sinica, 2025, 58(3): 401-415.
[13] WU ShuYu, HENG YanFang, YU TaiFei, WANG ShiJia, YU SiJia, LI Yuan, HU Zheng, ZHANG Hui, SUN XianJun, LI Liang, JIANG QiYan. Identification of Salt Tolerance in Maize Natural Populations at the Seedling Stage and Analysis of Salt Tolerance-Associated Genes [J]. Scientia Agricultura Sinica, 2025, 58(20): 4085-4099.
[14] QU HaiYue, HAN JieNan, LI Ran, ZHANG Ze, LIU QianQian, HAO ZhuanFang, WENG JianFeng, ZHANG DeGui, ZHOU ZhiQiang, XU ZhenNan, RONG ZiGuo, WANG JuYing, YONG HongJun, LI MingShun. Evaluation of Salt Tolerance in Newly Developed Zhongdan Series Maize Hybrid Varieties and Their Parental Inbred Lines [J]. Scientia Agricultura Sinica, 2025, 58(20): 4100-4116.
[15] ZHAO Jian, REN Tao, FANG YaTing, YANG Xin, SHENG QianNan, LI XiaoKun, ZHU Jun, LU JianWei. Effect of Nitrogen Application on Organic Nitrogen Mineralization Functional Genes in Rapeseed and Wheat Rhizosphere Soils Under Different Rotation Patterns [J]. Scientia Agricultura Sinica, 2025, 58(19): 3919-3931.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!