| [1] |
YUAN S, LINQUIST B A, WILSON L T, CASSMAN K G, STUART A M, PEDE V, MIRO B, SAITO K, AGUSTIANI N, ARISTYA V E, et al. Sustainable intensification for a larger global rice bowl. Nature Communications, 2021, 12: 7163.
doi: 10.1038/s41467-021-27424-z
pmid: 34887412
|
| [2] |
YANG Y Q, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytologist, 2018, 217(2): 523-539.
doi: 10.1111/nph.14920
pmid: 29205383
|
| [3] |
WANG G Z, NI G, FENG G, MBURRILL H, LI J F, ZHANG J L, ZHANG F S. Saline-alkali soil reclamation and utilization in China: Progress and prospects. Frontiers of Agricultural Science and Engineering, 2024, 11(2): 216-228.
doi: 10.15302/J-FASE-2024551
|
| [4] |
YANG Q Y, ZHENG Y T, LI X T. Integrative RNA-seq and ATAC-seq analysis unveils antioxidant defense mechanisms in salt-tolerant rice variety Pokkali. BMC Plant Biology, 2025, 25(1): 364.
|
| [5] |
XIAO Y L, LI J J, YU J H, MENG Q C, DENG X Y, YI Z L, XIAO G Y. Improvement of bacterial blight and brown planthopper resistance in an elite restorer line Huazhan of Oryza. Field Crops Research, 2016, 186: 47-57.
|
| [6] |
ZHANG H, WANG Y X, DENG C, ZHAO S, ZHANG P, FENG J, HUANG W, KANG S J, QIAN Q, XIONG G S, et al. High-quality genome assembly of Huazhan and Tianfeng, the parents of an elite rice hybrid Tian-you-Hua-Zhan. Science China Life Sciences, 2022, 65(2): 398-411.
|
| [7] |
DEINLEIN U, STEPHAN A B, HORIE T, LUO W, XU G H, SCHROEDER J I. Plant salt-tolerance mechanisms. Trends in Plant Science, 2014, 19(6): 371-379.
doi: 10.1016/j.tplants.2014.02.001
pmid: 24630845
|
| [8] |
XU J, SHANG L G, WANG J J, CHEN M M, FU X, HE H Y, WANG Z A, ZENG D L, ZHU L, HU J, et al. The SEEDLING BIOMASS 1 allele from indica rice enhances yield performance under low-nitrogen environments. Plant Biotechnology Journal, 2021, 19(9): 1681-1683.
doi: 10.1111/pbi.13642
pmid: 34048114
|
| [9] |
CHUN Y, FANG J J, SAVELIEVA E M, LOMIN S N, SHANG J Y, SUN Y L, ZHAO J F, KUMAR A, YUAN S J, YAO X F, et al. The cytokinin receptor ohk4/OsHK 4 regulates inflorescence architecture in rice via an ideal plant architecture1/wealthy farmer's panicle-mediated positive feedback circuit. The Plant Cell, 2023, 36(1): 40-64.
|
| [10] |
LAN J, LIN Q B, ZHOU C L, REN Y K, LIU X, MIAO R, JING R N, MOU C L, NGUYEN T, ZHU X J, et al. Small grain and semi-dwarf 3, a WRKY transcription factor, negatively regulates plant height and grain size by stabilizing SLR1 expression in rice. Plant Molecular Biology, 2020, 104(4): 429-450.
|
| [11] |
ZHAO C Y, LIU C L, ZHANG Y, CUI Y T, HU H T, JAHAN N, LV Y, QIAN Q, GUO L B. A 3-bp deletion of WLS5 gene leads to weak growth and early leaf senescence in rice. Rice, 2019, 12(1): 26.
doi: 10.1186/s12284-019-0288-8
pmid: 31037442
|
| [12] |
KOJIMA M, MAKITA N, MIYATA K, YOSHINO M, IWASE A, OHASHI M, SURJANA A, KUDO T, TAKEDA-KAMIYA N, TOYOOKA K, et al. A cell wall-localized cytokinin/purine riboside nucleosidase is involved in apoplastic cytokinin metabolism in Oryza sativa. Proceedings of The National Academy of Sciences of The United States of America, 2023, 120(36): e2217708120.
|
| [13] |
ZHANG J, FAN X W, HU Y, ZHOU X C, HE Q, LIANG L W, XING Y Z. Global analysis of CCT family knockout mutants identifies four genes involved in regulating heading date in rice. Journal of Integrative Plant Biology, 2021, 63(5): 913-923.
|
| [14] |
HUANG L J, HUA K, XU R, ZENG D L, WANG R C, DONG G J, ZHANG G Z, LU X L, FANG N, WANG D K, et al. The LARGE2-APO1/APO 2 regulatory module controls panicle size and grain number in rice. The Plant Cell, 2021, 33(4): 1212-1228.
|
| [15] |
PAN Y H, CHEN L, GUO H F, FENG R, LOU Q J, RASHID M A R, ZHU X Y, QING D J, LIANG H F, GAO L J, et al. Systematic analysis of NB-ARC gene family in rice and functional characterization of GNP12. Frontiers in Genetics, 2022, 13: 887217.
|
| [16] |
YAN D W, ZHANG X M, ZHANG L, YE S H, ZENG L J, LIU J Y, LI Q, HE Z H. CURVED CHIMERIC PALEA 1 encoding an EMF1- like protein maintains epigenetic repression of OsMADS58 in rice Palea development. The Plant Journal, 2015, 82(1): 12-24.
|
| [17] |
CAO Y, JAIN A, AI H, LIU X L, WANG X W, HU Z, SUN Y F, HU S W, SHEN X, LAN X X, XU G H, SUN S B. OsPDR2 mediates the regulation on the development response and maintenance of Pi homeostasis in rice. Plant Physiology and Biochemistry, 2020, 149: 1-10.
|
| [18] |
MAO B G, ZHENG W J, HUANG Z, PENG Y, SHAO Y, LIU C T, TANG L, HU Y Y, LI Y K, HU L M, et al. Rice MutLγ, the MLH1-MLH 3 heterodimer, participates in the formation of type I crossovers and regulation of embryo sac fertility. Plant Biotechnology Journal, 2021, 19(7): 1443-1455.
|
| [19] |
WANG J, WAN R J, NIE H P, XUE S W, FANG Z M. OsNPF5.16, a nitrate transporter gene with natural variation, is essential for rice growth and yield. The Crop Journal, 2022, 10(2): 397-406.
|
| [20] |
YU X L, WANG H Y, LEUNG D W M, HE Z D, ZHANG J J, PENG X X, LIU E E. Overexpression of OsIAAGLU reveals a role for IAA-glucose conjugation in modulating rice plant architecture. Plant Cell Reports, 2019, 38(6): 731-739.
|
| [21] |
LV X G, SHI Y F, XU X, WEI Y L, WANG H M, ZHANG X B, WU J L. Oryza sativa chloroplast signal recognition particle 43 (OscpSRP43) is required for chloroplast development and photosynthesis. PLoS ONE, 2015, 10(11): e0143249.
|
| [22] |
SHAO G N, LU Z F, XIONG J S, WANG B, JING Y H, MENG X B, LIU G F, MA H Y, LIANG Y, CHEN F, et al. Tiller bud formation regulators MOC1 and MOC 3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Molecular Plant, 2019, 12(8): 1090-1102.
|
| [23] |
YU J, XUAN W, TIAN Y L, FAN L, SUN J, TANG W J, CHEN G M, WANG B X, LIU Y, WU W, et al. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnology Journal, 2021, 19(1): 167-176.
|
| [24] |
YU Q, CHEN L, ZHOU W Q, AN Y H, LUO T X, WU Z L, WANG Y Q, XI Y F, YAN L F, HOU S W. RSD 1 is essential for stomatal patterning and files in rice. Frontiers in Plant Science, 2020, 11: 600021.
|
| [25] |
YANG S Q, LI W Q, MIAO H, GAN P F, QIAO L, CHANG Y L, SHI C H, CHEN K M. REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice, 2016, 9(1): 37.
|
| [26] |
LV Y, LIU C C, LI X X, WANG Y Y, HE H Y, HE W C, CHEN W, YANG L B, DAI X F, CAO X L, et al. A centromere map based on super pan-genome highlights the structure and function of rice centromeres. Journal of Integrative Plant Biology, 2024, 66(2): 196-207.
doi: 10.1111/jipb.13607
|
| [27] |
CHOI J, LEE W, AN G, KIM S R. OsCBE1, a substrate receptor of Cullin4-based E3 ubiquitin ligase, functions as a regulator of abiotic stress response and productivity in rice. International Journal of Molecular Sciences, 2021, 22(5): 2487.
|
| [28] |
LI C N, ZHU S S, ZHANG H, CHEN L P, CAI M H, WANG J C, CHAI J T, WU F Q, CHENG Z J, GUO X P, et al. OsLBD37 and OsLBD38, two class II type LBD proteins, are involved in the regulation of heading date by controlling the expression of Ehd1 in rice. Biochemical and Biophysical Research Communications, 2017, 486(3): 720-725.
|
| [29] |
JI D L, LUO M F, GUO Y J, LI Q X, KONG L X, GE H T, WANG Q, SONG Q L, ZENG X N, MA J F, et al. Efficient scavenging of reactive carbonyl species in chloroplasts is required for light acclimation and fitness of plants. The New Phytologist, 2023, 240(2): 676-693.
|
| [30] |
ZHANG Z Y, LI J J, TANG Z S, SUN X M, ZHANG H L, YU J P, YAO G X, LI G L, GUO H F, LI J L, et al. Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3-OsARF 25 interaction to regulate grain length via the auxin signaling pathway in rice. Journal of Experimental Botany, 2018, 69(20): 4723-4737.
|
| [31] |
ZHANG L, WANG R C, XING Y D, XU Y F, XIONG D P, WANG Y M, YAO S G. Separable regulation of POW1 in grain size and leaf angle development in rice. Plant Biotechnology Journal, 2021, 19(12): 2517-2531.
doi: 10.1111/pbi.13677
pmid: 34343399
|
| [32] |
DONG N N, CHEN L N, AHMAD S, CAI Y C, DUAN Y Q, LI X W, LIU Y Q, JIAO G A, XIE L H, HU S K, et al. Genome-wide analysis and functional characterization of pyruvate kinase (PK) gene family modulating rice yield and quality. International Journal of Molecular Sciences, 2022, 23(23): 15357.
|
| [33] |
JI X, DU Y X, LI F, SUN H Z, ZHANG J, LI J Z, PENG T, XIN Z Y, ZHAO Q Z. The basic helix-loop-helix transcription factor, OsPIL15, regulates grain size via directly targeting a purine permease gene OsPUP7 in rice. Plant Biotechnology Journal, 2019, 17(8): 1527-1537.
|
| [34] |
LIU X, DENG X J, LI C Y, XIAO Y K, ZHAO K, GUO J, YANG X R, ZHANG H S, CHEN C P, LUO Y T, et al. Mutation of protoporphyrinogen IX oxidase gene causes spotted and rolled leaf and its overexpression generates herbicide resistance in rice. International Journal of Molecular Sciences, 2022, 23(10): 5781.
|
| [35] |
XU J, XIONG W T, CAO B B, YAN T Z, LUO T, FAN T T, LUO M Z. Molecular characterization and functional analysis of “fruit-weight2.2-like” gene family in rice. Planta, 2013, 238(4): 643-655.
|
| [36] |
SHEN S Y, MA M, BAI C, WANG W Q, ZHU R B, GAO Q, SONG X J. Optimizing rice grain size by attenuating phosphorylation- triggered functional impairment of a chromatin modifier ternary complex. Developmental Cell, 2024, 59(4): 448-464.
|
| [37] |
LEE D K, KIM H I, JANG G, CHUNG P J, JEONG J S, KIM Y S, BANG S W, JUNG H, CHOI Y D, KIM J K. The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner. Plant Science, 2015, 241: 199-210.
|
| [38] |
GAO C, LU S, ZHOU R, WANG Z H, LI Y, FANG H, WANG B H, CHEN M X, CAO Y Y. The OsCBL8-OsCIPK17 module regulates seedling growth and confers resistance to heat and drought in rice. International Journal of Molecular Sciences, 2022, 23(20): 12451.
|
| [39] |
WANG X, YAN X, TIAN X X, ZHANG Z F, WU W W, SHANG J J, OUYANG J X, YAO W, LI S B. Glycine- and proline-rich protein OsGPRP3 regulates grain size and quality in rice. Journal of Agricultural and Food Chemistry, 2020, 68(29): 7581-7590.
doi: 10.1021/acs.jafc.0c01803
pmid: 32579349
|
| [40] |
MORITA R, ICHIDA H, ISHII K, HAYASHI Y, ABE H, SHIRAKAWA Y, ICHINOSE K, TSUNEIZUMI K, KAZAMA T, TORIYAMA K, et al. LONG GRAIN 1: A novel gene that regulates grain length in rice. Molecular Breeding, 2019, 39(9): 135.
|
| [41] |
JIAO Z L, YIN L J, ZHANG Q M, XU W J, JIA Y X, XIA K F, ZHANG M Y. The putative obtusifoliol 14α-demethylase OsCYP51H3 affects multiple aspects of rice growth and development. Physiologia Plantarum, 2022, 174(5): e13764.
|
| [42] |
LI P, WANG L H, LIU H B, YUAN M. Impaired SWEET-mediated sugar transportation impacts starch metabolism in developing rice seeds. The Crop Journal, 2022, 10(1): 98-108.
|
| [43] |
DU Z X, HUANG Z, LI J B, BAO J Z, TU H, ZENG C H, WU Z, FU H H, XU J, ZHOU D H, et al. qTGW12a, a naturally varying QTL, regulates grain weight in rice. Theoretical and Applied Genetics, 2021, 134(9): 2767-2776.
doi: 10.1007/s00122-021-03857-4
pmid: 34021769
|
| [44] |
DONG N Q, SUN Y W, GUO T, SHI C L, ZHANG Y M, KAN Y, XIANG Y H, ZHANG H, YANG Y B, LI Y C, et al. UDP- glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nature Communications, 2020, 11: 2629.
|
| [45] |
TANG W, SUN J Q, LIU J, LIU F F, YAN J, GOU X J, LU B R, LIU Y S. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). Plant Molecular Biology, 2014, 86(4): 443-454.
|
| [46] |
MOON H, KIM Y A, SHIN R, PARK C J. Nucleus-encoded thylakoid protein, OsY3IP1, confers enhanced tolerance to saline and alkaline stresses in rice. Rice Science, 2022, 29(3): 225-236.
doi: 10.1016/j.rsci.2021.08.004
|
| [47] |
LI Y X, ZHOU J H, LI Z, QIAO J Z, QUAN R D, WANG J, HUANG R F, QIN H. Salt and Aba response erf1 improves seed germination and salt tolerance by repressing ABA signaling in rice. Plant Physiology, 2022, 189(2): 1110-1127.
doi: 10.1093/plphys/kiac125
pmid: 35294556
|
| [48] |
ZENG P, XIE T, SHEN J X, LIANG T K, YIN L, LIU K X, HE Y, CHEN M M, TANG H J, CHEN S L, et al. Potassium transporter OsHAK 9 regulates seed germination under salt stress by preventing gibberellin degradation through mediating OsGA2ox7 in rice. Journal of Integrative Plant Biology, 2024, 66(4): 731-748.
|
| [49] |
MORITA S, TAMBA N, SHIBASAKA M, SASANO S, KADOIKE T, URASE Y, MARUYAMA M, FUKUOKA A, YANAI J, MASUMURA T, et al. In planta evidence that the HAK transporter OsHAK 2 is involved in Na+ transport in rice. Bioscience, Biotechnology, and Biochemistry, 2023, 87(5): 482-490.
|
| [50] |
REN Z H, GAO J P, LI L G, CAI X L, HUANG W, CHAO D Y, ZHU M Z, WANG Z Y, LUAN S, LIN H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37(10): 1141-1146.
|
| [51] |
ZHANG Y, LAN H X, SHAO Q L, WANG R Q, CHEN H, TANG H J, ZHANG H S, HUANG J. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa). Journal of Experimental Botany, 2016, 67(1): 315-326.
doi: 10.1093/jxb/erv464
pmid: 26512055
|
| [52] |
HU X B, SONG F M, ZHENG Z. Molecular characterization and expression analysis of a rice protein phosphatase 2C gene, OsBIPP2C1 and overexpression in transgenic tobacco conferred enhanced disease resistance and abiotic tolerance. Physiologia Plantarum, 2006, 127(2): 225-236.
|
| [53] |
ZHOU Z M, FAN J B, ZHANG J, YANG Y M, ZHANG Y F, ZAN X F, LI X H, WAN J L, GAO X L, CHEN R J, et al. OsMLP 423 is a positive regulator of tolerance to drought and salt stresses in rice. Plants, 2022, 11(13): 1653.
|
| [54] |
SHENG P K, TAN J J, JIN M N, WU F Q, ZHOU K N, MA W W, HENG Y Q, WANG J L, GUO X P, ZHANG X, et al. Albino midrib 1, encoding a putative potassium efflux antiporter, affects chloroplast development and drought tolerance in rice. Plant Cell Reports, 2014, 33(9): 1581-1594.
doi: 10.1007/s00299-014-1639-y
pmid: 24917171
|
| [55] |
YU J D, LI Y X, TANG W, LIU J, LU B R, LIU Y S. The accumulation of glycine betaine is dependent on choline monooxygenase (OsCMO), not on phosphoethanolamine N-Methyltransferase (OsPEAMT1), in rice (Oryza sativa L. ssp. Japonica). Plant Molecular Biology Reporter, 2014, 32(4): 916-922.
|
| [56] |
JIN X K, LI X X, XIE Z Z, SUN Y, JIN L, HU T Z, HUANG J L. Nuclear factor OsNF-YC5 modulates rice seed germination by regulating synergistic hormone signaling. Plant Physiology, 2023, 193(4): 2825-2847.
|
| [57] |
JIANG M, ZHAO C L, ZHAO M F, LI Y Z, WEN G S. Phylogeny and evolution of calcineurin B-like (CBL) gene family in grass and functional analyses of rice CBLs. Journal of Plant Biology, 2020, 63(2): 117-130.
|
| [58] |
ZHENG S Y, DONG J F, LU J Q, LI J, JIANG D G, YU H P, YE S M, BU W L, LIU Z L, ZHOU H, et al. A cytosolic pentatricopeptide repeat protein is essential for tapetal plastid development by regulating OsGLK 1 transcript levels in rice. New Phytologist, 2022, 234(5): 1678-1695.
|
| [59] |
CHEN S F, LOU S L, ZHAO X C, ZHANG S J, CHEN L T, HUANG P, LI G D, LI Y Y, LIU Y G, CHEN Y L. Ectopic expression of a male fertility gene, LOGL8, represses LOG and hinders panicle and ovule development. The Crop Journal, 2022, 10(6): 1665-1673.
|
| [60] |
LIN H, WANG R X, QIAN Q, YAN M X, MENG X B, FU Z M, YAN C Y, JIANG B, SU Z, LI J Y, et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. The Plant Cell, 2009, 21(5): 1512-1525.
|
| [61] |
DU K X, LUO Q, YIN L F, WU J B, LIU Y H, GAN J H, DONG A W, SHEN W H. OsChz 1 acts as a histone chaperone in modulating chromatin organization and genome function in rice. Nature Communications, 2020, 11: 5717.
|
| [62] |
FAN C F, WANG G Y, WANG Y M, ZHANG R, WANG Y T, FENG S Q, LUO K M, PENG L C. Sucrose synthase enhances hull size and grain weight by regulating cell division and starch accumulation in transgenic rice. International Journal of Molecular Sciences, 2019, 20(20): 4971.
|
| [63] |
DONG X X, WANG X Y, ZHANG L S, YANG Z T, XIN X Y, WU S, SUN C Q, LIU J X, YANG J S, LUO X J. Identification and characterization of OsEBS, a gene involved in enhanced plant biomass and spikelet number in rice. Plant Biotechnology Journal, 2013, 11(9): 1044-1057.
doi: 10.1111/pbi.12097
pmid: 23924074
|
| [64] |
JIANG J, YANG G Z, XIN Y F, WANG Z G, YAN W, CHEN Z F, TANG X Y, XIA J X. Overexpression of OsMed16 inhibits the growth of rice and causes spontaneous cell death. Genes, 2021, 12(5): 656.
|
| [65] |
DONG N N, JIAO G A, CAO R J, LI S F, ZHAO S L, DUAN Y Q, MA L Y, LI X W, LU F F, WANG H, et al. OsLESV and OsESV1 promote transitory and storage starch biosynthesis to determine rice grain quality and yield. Plant Communications, 2024, 5(7): 100893.
|
| [66] |
HÖLLER S, UEDA Y, WU L B, WANG Y X, HAJIREZAEI M R, GHAFFARI M R, VON WIRÉN N, FREI M. Ascorbate biosynthesis and its involvement in stress tolerance and plant development in rice (Oryza sativa L.). Plant Molecular Biology, 2015, 88(6): 545-560.
|
| [67] |
ZOU Y, XU E D, FAN Y, ZHANG P J, ZHANG W, CHEN X. OsPML2, a chloroplast envelope localized transporter is involved in manganese homeostasis in rice. Plant Physiology and Biochemistry, 2023, 203: 108054.
|
| [68] |
WANG S, LEI C L, WANG J L, MA J, TANG S, WANG C L, ZHAO K J, TIAN P, ZHANG H, QI C Y, et al. SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice. Journal of Experimental Botany, 2017, 68(5): 899-913.
doi: 10.1093/jxb/erx001
pmid: 28199670
|
| [69] |
ZHOU D H, LI T, YANG Y L, QU Z Y, OUYANG L J, JIANG Z S, LIN X L, ZHU C L, PENG L Y, FU J R, et al. OsPLS 4 is involved in cuticular wax biosynthesis and affects leaf senescence in rice. Frontiers in Plant Science, 2020, 11: 782.
doi: 10.3389/fpls.2020.00782
pmid: 32595674
|
| [70] |
ZHAO J, MENG X, ZHANG Z N, WANG M, NIE F H, LIU Q P. OsLPR5 encoding ferroxidase positively regulates the tolerance to salt stress in rice. International Journal of Molecular Sciences, 2023, 24(9): 8115.
|
| [71] |
GU Y, FU C F, ZHANG M, JIN C Q, LI Y Q, CHEN X Y, LI R N, FENG T T, HUANG X Z, AI H. Effects of OsLPR2 gene knockout on rice growth, development, and salt stress tolerance. Agriculture, 2024, 14(10): 1827.
|
| [72] |
LU T, YIN W J, ZHANG Y N, ZHU C Y, ZHONG Q Q, LI S F, WANG N, CHEN Z G, YE H F, FANG Y, et al. WLP 3 encodes the ribosomal protein L18 and regulates chloroplast development in rice. Rice, 2023, 16(1): 59.
|
| [73] |
LIN F M, LI S, WANG K, TIAN H R, GAO J F, ZHAO Q Z, DU C Q. A leucine-rich repeat receptor-like kinase, OsSTLK, modulates salt tolerance in rice. Plant Science, 2020, 296: 110465.
|
| [74] |
XIANG Y H, YU J J, LIAO B, SHAN J X, YE W W, DONG N Q, GUO T, KAN Y, ZHANG H, YANG Y B, et al. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice. Molecular Plant, 2022, 15(12): 1908-1930.
|