Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (24): 4871-4883.doi: 10.3864/j.issn.0578-1752.2024.24.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Physiological Mechanism of Aluminum Tolerance of Rice Root Border Cells and Root Tips Induced by Nano Silica Biomineralization Deposition

FENG YingMing1,2(), NONG Wei1,3, CHEN XingYun1,4, HAN HongXiang1, ZHENG YuXin1, TIAN Xiao1, TANG Jiao1, GUO YiWei1, HUANG ChaoZheng1, LI XueWen1, SHI Lei2, YU Min1()   

  1. 1 Department of Horticulture, Foshan University/International Membrane Biology and Environment Research Center, Foshan 528000, Guangdong, China
    2 College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
    3 Guangdong University of Business and Technology, Zhaoqing 526040, Guangdong, China
    4 School of Biological Science, University of Western Australia, Crawley 6009, Australia
  • Received:2024-06-05 Accepted:2024-09-02 Online:2024-12-16 Published:2024-12-23
  • Contact: YU Min

Abstract:

【Objective】This study aimed to explore the physiological mechanism of silicon alleviating aluminum toxicity in plants, to study the effect of biomineralization structure constructed on rice root border cells and root tips on aluminum stress, so as to provide the theoretical and practical guidance for acid soil mineralization to alleviate aluminum toxicity of plants in southern China. 【Method】Employing rice (Oryza.Sativa L.) as the experimental materials, using root tips and root border cells as the research object, under 100 μmol·L-1 aluminum stress treatment, polyethylenimine induced nano silica to form biomineralization structure on the surface of root tips and root border cells. Four treatments are administered: bare cells without aluminum stress (-Si-Al), bare cells with aluminum stress (-Si+Al), silica-coated cells without aluminum stress (+Si-Al), and silica-coated cells with aluminum stress (+Si+Al). The study examined the cell viability, levels of active oxygen species, and localization of active aluminum in root border cells, as well as the relative elongation of the root tips, levels of active oxygen species, callose content and localization of active aluminum in the root tips. 【Result】Under aluminum stress, compared with non biomineralization, polyethylenimine induced nano silica deposition on the cell wall of root border cells, so the survival rate of root border cells increased by 21.04%, the level of reactive oxygen species decreased by 87.65%, and the relative fluorescence value increased by 77.09% after Morin staining, and then effectively improved cell survival rate, reduced ROS production, and slowed down the programmed cell death; after polyethylenimine induced nano silica deposition in root tip, the relative growth rate of root tip increased by 26.95%, the level of reactive oxygen species decreased by 27.73%, the content of callose increased by 55.29%, and the relative fluorescence value increased by 55.45% after Morin staining, hematoxylin staining also showed that more Al3+ was deposited in the meristematic and transitional zones of root tip, and this indicated that the biomineralization deposition could adsorb more Al3+ on the surface of root tip, prevent Al3+ from entering the root tip to protect, and then alleviate the toxic effect of aluminum on root tip. 【Conclusion】Polyethylenimine induced nano silica deposition on the cell wall endows rice root border cells and root tips with aluminum tolerance, and reduced aluminum accumulation in rice, thus ensuring food safety and human health.

Key words: rice, polyethyleneimine, nano silica, aluminum toxicity, apical, root border cells

Fig. 1

Effect of nano silica deposition on the survival rate of RBCs under aluminum stress 结果取3次独立测量的平均值(mean±SD,n=3),不同小写字母表示处理间存在显著性差异(P<0.05) Values are mean±SD of three independent sets of experiments, and different lowercase letters indicate a significant difference at P<0.05。下同 The same as below"

Fig. 2

Effect of nano silica deposition under aluminum stress on the level of reactive oxygen species in RBCs"

Fig. 3

Effect of nano silica deposition under aluminum stress on the localization of active aluminum in RBCs"

Fig. 4

Effect of nano silica deposition on rice root tips growth under aluminum stress"

Fig. 5

Effect of nano silica deposition under aluminum stress on the metabolism of reactive oxygen species in rice root tips"

Fig. 6

Effect of nano silica deposition on callose content in root tip of rice under aluminum stress"

Fig. 7

Effect of nano silica deposition on active aluminum localization in rice root tips under aluminum stress"

Fig. 8

Hematoxylin staining of rice root tips after nano silica deposition under aluminum stress"

Fig. 9

Physiological mechanism of aluminum tolerance in RBCs and root tip induced by biomineralization deposition of nano silica"

[1]
CHEN J G, LAI Q, ZENG B Q, GUO L B, YE G Y. Progress on molecular mechanism of aluminum resistance in rice. Rice Science, 2020, 27(6): 454-467.

doi: 10.1016/j.rsci.2020.09.003
[2]
赵学强, 潘贤章, 马海艺, 董晓英, 车景, 王超, 时玉, 柳开楼, 沈仁芳. 中国酸性土壤利用的科学问题与策略. 土壤学报, 2023, 60(5): 1248-1263.
ZHAO X Q, PAN X Z, MA H Y, DONG X Y, CHE J, WANG C, SHI Y, LIU K L, SHEN R F. Scientific issues and strategies of acid soil use in China. Acta Pedologica Sinica, 2023, 60(5): 1248-1263. (in Chinese)
[3]
LI X W, LI Y L, MAI J W, TAO L, QU M, LIU J Y, SHEN R F, XU G L, FENG Y M, XIAO H D, WU L S, SHI L, GUO S X, LIANG J, ZHU Y Y, HE Y M, BALU¡KA F, SHABALA S, YU M. Boron alleviates aluminum toxicity by promoting root alkalization in transition zone via polar auxin transport. Plant Physiology, 2018, 177(3): 1254-1266.
[4]
YANG G, QU M, XU G L, LI Y L, LI X W, FENG Y M, XIAO H D, HE Y M, SHABALA S, DEMIDCHIK V, LIU J Y, YU M. pH-Dependent mitigation of aluminum toxicity in pea (Pisum sativum) roots by boron. Plant Science, 2022, 318: 111208.
[5]
冯英明, 罗功荣, 曲梅, 玄祖迎, 李学文, 麦靖文, 喻敏. 硼对豌豆根尖细胞壁组分对铝吸附解吸的影响. 植物营养与肥料学报, 2022, 28(10): 1893-1900.
FENG Y M, LUO G R, QU M, XUAN Z Y, LI X W, MAI J W, YU M. Effects of boron on aluminum adsorption and desorption of cell wall components of pea root tips. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1893-1900. (in Chinese)
[6]
TAO L, XIAO X Y, HUANG Q Y, ZHU H, FENG Y M, LI Y L, LI X W, GUO Z S, LIU J Y, WU F H, et al. Boron supply restores aluminum-blocked auxin transport by the modulation of PIN2 trafficking in the root apical transition zone. The Plant Journal, 2023, 114(1):176-192.
[7]
胡湘云, 王奕文, 方幽文, 邵烨瑶, 姚慧, 唐星宇, 连旖晴, 谭莹, 朱怡杰, 江帆. 酸性土壤下缓解大豆铝胁迫的研究进展. 科学通报, 2023, 68(33): 4517-4531.
HU X Y, WANG Y W, FANG Y W, SHAO Y Y, YAO H, TANG X Y, LIAN Y Q, TAN Y, ZHU Y J, JIANG F, et al. Research progress on alleviating aluminum stress of soybean in acidic soil. Chinese Science Bulletin, 2023, 68(33): 4517-4531. (in Chinese)
[8]
WU H Y, YANG F, LI H P, LI Q B, ZHANG F L, BA Y, CUI L X, SUN L L, LV T C, WANG N, ZHU J Y. Heavy metal pollution and health risk assessment of agricultural soil near a smelter in an industrial city in China. International Journal of Environmental Health Research, 2020, 30(2): 174-186.

doi: 10.1080/09603123.2019.1584666 pmid: 30810352
[9]
JALILI S, EHSANPOUR A A, JAVADIRAD S M. The role of melatonin on caspase-3-like activity and expression of the genes involved in programmed cell death (PCD) induced by in vitro salt stress in alfalfa (Medicago sativa L.) roots. Botanical Studies, 2022, 63(1): 19.
[10]
HUANG J J, HAN R Z, JI F, YU Y Y, WANG R Y, HAI Z X, LIANG W H, WANG H H. Glucose-6-phosphate dehydrogenase and abscisic acid mediate programmed cell death induced by aluminum toxicity in soybean root tips. Journal of Hazardous Materials, 2022, 425: 127964.
[11]
DONIAK M, BARCISZEWSKA M Z, KAŹMIERCZAK J, KAŹMIERCZAK A. The crucial elements of the ‘last step’ of programmed cell death induced by kinetin in root cortex of V. faba ssp. minor seedlings. Plant Cell Reports, 2014, 33(12): 2063-2076.
[12]
FENG Y M, LI X W, GUO S X, CHEN X Y, CHEN T X, HE Y M, SHABALA S, YU M. Extracellular silica nanocoat formed by layer-by-layer (LBL) self-assembly confers aluminum resistance in root border cells of pea (Pisum sativum). Journal of Nanobiotechnology, 2019, 17(1): 53.

doi: 10.1186/s12951-019-0486-y pmid: 30992069
[13]
XIAO Z X, YE M J, GAO Z X, JIANG Y S, ZHANG X Y, NIKOLIC N, LIANG Y C. Silicon reduces aluminum-induced suberization by inhibiting the uptake and transport of aluminum in rice roots and consequently promotes root growth. Plant and Cell Physiology, 2022, 63(3): 340-352.

doi: 10.1093/pcp/pcac001 pmid: 34981810
[14]
NABIPOUR SANJBOD R, CHAMANI E, POURBEYRAMI HIR Y, ESTAJI A. Investigation of the cell structure and organelles during autolytic PCD of Antirrhinum majus “Legend White” petals. Protoplasma, 2023, 260(2): 419-435.
[15]
LEE J, CHOI J, PARK J H, KIM M H, HONG D, CHO H, YANG S H, CHOI I S. Cytoprotective silica coating of individual mammalian cells through bioinspired silicification. Angewandte Chemie International Edition, 2014, 53(31): 8056-8059.
[16]
HE C W, MA J, WANG L J. A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. New Phytologist, 2015, 206(3): 1051-1062.

doi: 10.1111/nph.13282 pmid: 25615017
[17]
FENG Y M, HAN H X, NONG W, TANG J, CHEN X Y, LI X W, SHI L, KRESLAVSKI V D, ALLAKHVERDIEV S I, SHABALA S, SHI W M, YU M. The biomineralization of silica induced stress tolerance in plants: a case study for aluminum toxicity. Plant Signaling & Behavior, 2023, 18(1): 2233179.
[18]
XIA S S, LIU H, CUI Y J, YU H P, RAO Y C, YAN Y P, ZENG D L, HU J, ZHANG G H, GAO Z Y, et al. UDP-N- acetylglucosamine pyrophosphorylase enhances rice survival at high temperature. New Phytologist, 2022, 233(1): 344-359.
[19]
TYAGI W, YUMNAM J S, SEN D, RAI M. Root transcriptome reveals efficient cell signaling and energy conservation key to aluminum toxicity tolerance in acidic soil adapted rice genotype. Scientific Reports, 2020, 10: 4580.

doi: 10.1038/s41598-020-61305-7 pmid: 32165659
[20]
李小冬, 尚以顺, 李世歌, 陈光吉, 裴成江, 孙方, 熊先勤. 异源表达芥菜BjMATE增强紫花苜蓿耐酸铝胁迫的机理. 中国农业科学, 2020, 53(1): 18-28. doi: 10.3864/j.issn.0578-1752.2020.01.002.
LI X D, SHANG Y S, LI S G, CHEN G J, PEI C J, SUN F, XIONG X Q. The mechanism of ectopic expression of Brassica juncea multidrug and toxic compound extrusion(BjMATE) to enhance the resistance to acid and aluminum stress in alfalfa. Scientia Agricultura Sinica, 2020, 53(1): 18-28. doi: 10.3864/j.issn.0578-1752.2020.01.002. (in Chinese)
[21]
ZHANG J, ZOU W H, LI Y, FENG Y Q, ZHANG H, WU Z L, TU Y Y, WANG Y T, CAI X W, PENG L C. Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice. Plant Science, 2015, 239: 84-91.

doi: 10.1016/j.plantsci.2015.07.014 pmid: 26398793
[22]
李淑贤, 刘卫国, 高阳, 刘婷, 周涛, 杜勇利, 杨欢, 张浩, 刘俊豆, 杨文钰. 硅对人工荫蔽胁迫下大豆幼苗生长及光合特性的影响. 中国农业科学, 2018, 51(19): 3663-3672. doi: 10.3864/j.issn.0578-1752.2018.19.004.
LI S X, LIU W G, GAO Y, LIU T, ZHOU T, DU Y L, YANG H, ZHANG H, LIU J D, YANG W Y. Effects of silicon on plant growth and photosynthetic characteristics of soybean seedlings under artificial shade stress. Scientia Agricultura Sinica, 2018, 51(19): 3663-3672. doi: 10.3864/j.issn.0578-1752.2018.19.004. (in Chinese)
[23]
PANG Z H, PENG H Y, LIN S, LIANG Y C. Theory and application of a Si-based defense barrier for plants: Implications for soil-plant- atmosphere system health. Critical Reviews in Environmental Science and Technology, 2024, 54(9): 722-746.
[24]
FENG Y M, KRESLAVSKI V D, SHMAREV A N, IVANOV A A, ZHARMUKHAMEDOV S K, KOSOBRYUKHOV A, YU M, ALLAKHVERDIEV S I, SHABALA S. Effects of iron oxide nanoparticles (Fe3O4) on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum) plants. Plants, 2022, 11(14): 1894.
[25]
HUNG K C, WU J H. Characteristics and thermal decomposition kinetics of wood-SiO2composites derived by the Sol-gel process. Holzforschung, 2017, 71(3): 233-240.
[26]
MA J, CAI H M, HE C W, ZHANG W J, WANG L J. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytologist, 2015, 206(3): 1063-1074.

doi: 10.1111/nph.13276 pmid: 25645894
[27]
MA J, SHENG H C, LI X L, WANG L J. iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells. Plant Physiology and Biochemistry, 2016, 104: 71-80.

doi: 10.1016/j.plaphy.2016.03.024 pmid: 27017433
[28]
TARIQ A, GRACIANO C, SARDANS J, ZENG F J, HUGHES A C, AHMED Z, ULLAH A, ALI S, GAO Y J, PEÑUELAS J. Plant root mechanisms and their effects on carbon and nutrient accumulation in desert ecosystems under changes in land use and climate. New Phytologist, 2024, 242(3): 916-934.
[29]
施卫明, 郑绍建, 金崇伟, 王萌, 丁忠杰, 李光杰. 植物适应土壤逆境的分子机制研究进展. 植物营养与肥料学报, 2024, 30(7): 1329-1338.
SHI W M, ZHENG S J, JIN C W, WANG M, DING Z J, LI G J. Advances in molecular mechanisms of plant adaptation to soil stress. Journal of Plant Nutrition and Fertilizers, 2024, 30(7):1329-1338. (in Chinese)
[30]
佟斌, 詹洁, 王爱勤, 肖冬, 何龙飞. miRNA参与高等植物细胞程序性死亡调控作用的研究进展. 分子植物育种, 2022, http://kns.cnki.net/kcms/detail/46.1068.S.20220104.1521.007.html.
TONG B, ZHAN J, WANG A Q, XIAO D, HE L F. Research progress of miRNA in the regulation of programmed cell death in plants. Molecular Plant Breeding, 2022, http://kns.cnki.net/kcms/detail/46.1068.S.20220104.1521.007.html. (in Chinese)
[31]
蒋丽, 孔莹莹, 韩凝, 边红武, 朱睦元, 王君晖. 植物细胞程序性死亡的分类和膜通透性调控蛋白研究进展. 植物生理学报, 2012, 48(5): 419-424.
JIANG L, KONG Y Y, HAN N, BIAN H W, ZHU M Y, WANG J H. Progress in the classification of plant programmed cell death and the regulatory protein for membrane permeabilization. Plant Physiology Journal, 2012, 48(5): 419-424. (in Chinese)
[32]
黄文静, 何虎翼, 邓伦武, 王爱勤, 李创珍, 韦善清, 何龙飞. 流式细胞仪检测铝胁迫诱导的花生悬浮细胞程序性死亡. 中国油料作物学报, 2014, 36(1): 51-58.

doi: 10.7505/j.issn.1007-9084.2014.01.008
HUANG W J, HE H Y, DENG L W, WANG A Q, LI C Z, WEI S Q, HE L F. Aluminum induced programed cell death of peanut suspension cultures detected by flow cytometry. Chinese Journal of Oil Crop Sciences, 2014, 36(1): 51-58. (in Chinese)
[33]
李金金, 刘昂, 王平, 陈丽梅, 年洪娟. 铝胁迫下丹波黑大豆根尖细胞线粒体参与细胞凋亡的研究. 农业生物技术学报, 2014, 22(6): 712-719.
LI J J, LIU A, WANG P, CHEN L M, NIAN H J. Root tip cell mitochondria involvement in programmed cell death induced by aluminum stress of Tamba black soybean (glycinemax). Journal of Agricultural Biotechnology, 2014, 22(6): 712-719. (in Chinese)
[34]
金天, 徐月美, 邝冠翎, 刘桂东. 缺硼胁迫对枳幼苗根系生长及线粒体功能的影响. 园艺学报, 2024, 51(1): 121-132.

doi: 10.16420/j.issn.0513-353x.2022-1116
JIN T, XU Y M, KUANG G L, LIU G D. Effect of boron deficiency on the root growth and mitochondrial function of trifoliate orange seedlings. Acta Horticulturae Sinica, 2024, 51(1): 121-132. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2022-1116
[35]
JIANG D X, XU H, ZHANG Y F, CHEN G X. Silicon mediated redox homeostasis in the root-apex transition zone of rice plays a key role in aluminum tolerance. Plant Physiology and Biochemistry, 2023, 201: 107871.
[36]
ZHU X, WANG P, BAI Z M, HERDE M, MA Y Q, LI N, LIU S, HUANG C F, CUI R X, MA H Y, et al. Calmodulin-like protein CML 24 interacts with CAMTA2 and WRKY46 to regulate ALMT1-dependent Al resistance in Arabidopsis thaliana. New Phytologist, 2022, 233(6): 2471-2487.
[1] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[2] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
[3] LI RongDe, HE Ping, LUO LiXia, SHI MengYa, HOU Qian, MA ZhenGuo, GUO RuiXing, CHENG HongTao. Current Situation of Breeding and Popularization of Short-Growth- Period Winter Rapeseed Varieties for Rice-Rice-Rapeseed Mode [J]. Scientia Agricultura Sinica, 2024, 57(5): 846-854.
[4] JIANG Wen, LIANG WenXin, PEI Fei, SU AnXiang, MA GaoXing, FANG Donglu, HU QiuHui, MA Ning. Effect of Pleurotus eryngii Powder on Quality Characteristics of Extruded Rice [J]. Scientia Agricultura Sinica, 2024, 57(4): 779-796.
[5] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[6] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[7] ZHU DaWei, ZHENG Xin, YU Jing, MOU RenXiang, CHEN MingXue, SHAO YaFang, ZHANG LinPing. Differences in Physicochemical Characteristics and Eating Quality Between High Taste Northern Japonica Rice and Southern Semi- Glutinous Japonica Rice Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(3): 469-483.
[8] LIAO Ping, WENG WenAn, GAO Hui, ZHANG HongCheng. Application Status and Development Suggestion of Direct-Seeding Rice Cultivation in China [J]. Scientia Agricultura Sinica, 2024, 57(24): 4854-4870.
[9] HU DanDan, SONG HuiJie, DUAN YingHua, WU Yan, HU ZhiHhua, XU XiaoLin, ZHANG WenJu, HE XiaoLin, LIU KaiLou, SU Peng, HUANG QunZhao. Effects of Long-Term Fertilization on Nitrogen Surplus and Deficit and Soil Alkali-Hydrolyzed Nitrogen in Red Soil Double-Cropping Rice System [J]. Scientia Agricultura Sinica, 2024, 57(24): 4907-4918.
[10] DIAO ZhiJuan, CHEN LiZhe, WANG Xun, LU Ling, LIU Yan, ZHANG Jing, XIA Na, TANG DingZhong, LI ShengPing. The Mechanism of Cystathionine-β-Synthase OsCBSX4 in Rice Blast Resistance [J]. Scientia Agricultura Sinica, 2024, 57(23): 4593-4606.
[11] ZHAO Jie, ZHAO LongYuan, PAN NingHui, GUAN LiRong, DU YunLong, LI ChengYun, WANG YunYue, XIE Yong. Hydrolase Gene BGIOSGA023826 Involved in Regulation of Resistance Process to Rice Blast [J]. Scientia Agricultura Sinica, 2024, 57(23): 4607-4618.
[12] XIONG ShangYe, ZHANG Xiang, LIANG BaoHui, YE YangDong, LI YuYang, ZHU Xiao, ZHU ZhiHong, GUAN HuaZhong, ZHANG Shuai, WU JianGuo, HU Jie. Fine Mapping and Analysis of Pyramiding Effects of Rice Brown Planthopper Resistance Genes QBPH1 and QBPH4 [J]. Scientia Agricultura Sinica, 2024, 57(23): 4619-4631.
[13] LIU YiHan, MU QingShan, HE Xiang, CHEN Min, HU Jin, GUAN YaJing. Study on the Involvement of OsFWL3 in the Regulation of Metal Ion Transport and Accumulation in Rice [J]. Scientia Agricultura Sinica, 2024, 57(21): 4161-4174.
[14] CAI YuBiao, ZHANG KunJie, WANG YaXuan, LAI FengXiang, HE JiaChun, WAN PinJun, FU Qiang. Effect of Rice Varieties on the Preference of Nilaparvata lugens to Rice Plants Infested by Chilo suppressalis [J]. Scientia Agricultura Sinica, 2024, 57(20): 3998-4006.
[15] ZHONG ZiChun, WU HongXin, ZHANG Jie, GUO YuJing, HE LiuYan, XU XiaoXia, JIN FengLiang, PANG Rui. Comparative Analysis of the Toll Receptor Gene Families in Three Species of Rice Planthoppers [J]. Scientia Agricultura Sinica, 2024, 57(20): 4007-4021.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!