Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (16): 3152-3161.doi: 10.3864/j.issn.0578-1752.2016.16.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Influences of Actinomycete Strain JXJ-0136 on the Growth of Brassica chinensis and Vigna unguiculata and Its Phosphate Solubilization

ZHANG Bing-huo, LI Han-quan, LUO Juan-yan, YANG Jian-yuan, SHI Hong-qiu, SUN Feng-zhen   

  1. College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, Jiangxi
  • Received:2016-03-23 Online:2016-08-16 Published:2016-08-16

Abstract: 【Objective】The objective of this study is to determine the taxonomic status of an actinomycete strain JXJ-0136, investigate its ability of dissolving insoluble phosphorus, the colonization in the rhizospheric soil of crops, and its influences on the seed germination, seedling growth and yield of vegetables, and to evaluate the application value of strain JXJ-0136 in developing microbial fertilizer.【Method】Taxonomic status of strain JXJ-0136 was determined on the basis of the cultural and morphological characteristics, and the phylogenetic analysis of 16S rRNA gene sequence. Influences of strain JXJ-0136 on the seed germination and seedling growth were studied using agar plate. The field cultivation tests were carried out to investigate the influences of strain JXJ-0136 on the growth and yield of vegetables. The total contents of phosphorus in the soil before and after the field trial were measured to investigate the influence of strain JXJ-0136 on the utilization of phosphorus in the soil by crops. The colonization of strain JXJ-0136 in the rhizospheric soil of the plants was investigated by isolation of the microorganisms in rhizosphere soil. The efficiencies of strain JXJ-0136 to dissolve insoluble inorganic and organic phosphorus were investigated using liquid pure culture. The model vegetables of the study were Brassica chinensis and Vigna unguiculata. 【Result】 Growth of actinomycete strain JXJ-0136 was observed at 6-45℃, pH 4.0-13.0 and 0-4% (w/v) NaCl, with optimal growth at 28℃, pH 8.0 and 1% (w/v) NaCl. Strain JXJ-0136 developed well-branched aerial mycelia on ISP 2 medium. The aerial mycelia was off-white in color. Its spore chains were fascicular with elliptical spores. The 16S rRNA gene sequence was closest to Streptomyces violascens, S. somaliensis, S. hydrogenans, S. albidoflavus and S. daghestanicus with the similarities of 97.98%, 97.71%, 97.30%, 97.23% and 97.03%, respectively. However, strain JXJ-0136 formed different clades on phylogenetic tree. The culture broth of strain JXJ-0136 enhanced the seed germination and the seedling growth significantly. After addition of 0.2%-0.8% broth culture of strain JXJ-0136, the seed germination rate, plant height and root length of B. chinensis were 3.55%-12.61%, 13.91%-53.03% and 7.37%-51.92% higher than those of the controls, respectively. The seed germination rate, plant height and root length of V. unguiculata were 4.71%-21.18%, 3.60%-22.33% and 2.37%-20.08% higher than these of the controls, respectively. The field cultivation tests indicated that strain JXJ-0136 could colonize in the rhizospheric soil of the plants, and promoted crops to utilize phosphorus in the soil, and enhanced the yields of the crops. After inoculating with 5 mL broth culture of strain JXJ-0136 to each plant, the soil total phosphorus contents of B. chinensis and V. unguiculata decreased by (23.56±2.65)% and (37.10±1.98)%, respectively, at the end of the tests, which were (1.77±0.29) and (2.70±0.15) times of the controls (P<0.01). The yields of B. chinensis and V. unguiculata increased by (27.59±6.15)% and (70.29±5.15)% (P<0.01) than the controls, respectively. After inoculating strain JXJ-0136 and culturing for 5 days under liquid pure culture condition, the pH values of inorganic and organic phosphorus cultures decreased to 5.0 and 6.0 initially from pH 7.0, respectively, and available phosphorus in the cultures of inorganic and organic phosphorus increased by (73.94±0.94) and (7.12±0.28) mg (P<0.01), respectively. 【Conclusion】Actinomycete JXJ-0136 is a member of the genus Streptomyces. With good properties including increasing the seed germination, plant height and root length of seedling, colonizing in rhizospheric soil, increasing the content of the available phosphorus in the soil, enhancing the crops to utilize the phosphorus in the soil and promoting the growth and yields of crops, strain JXJ-0136 has a potential application value in developing microbial fertilizer.

Key words: microbial fertilizer, actinomycete JXJ-0136, Streptomyces, Brassica chinensis, Vigna unguiculata, phosphoric solubilization

[1]    Liu M, Klemens E, Zhang B, Stephanie I J H, Li Z P, Zhang T L, Sabine R. Effect of intensive inorganic fertilizer application on microbial properties in a paddy soil of subtropical China. Agricultural Sciences in China, 2011, 10(11): 1758-1764.
[2]    徐明岗. 中国土壤肥力演变. 北京: 中国农业科学与技术出版社, 2006.
Xu M G. The Evolution of China’s Soil Fertility. Beijing: China Agricultural Science and Technology Press, 2006. (in Chinese)
[3]    Kibblewhite M G, Ritz K, Swift M J. Soil health in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363: 685-701.
[4]    Geisseler D, Scow K M. Long-term effects of mineral fertilizers on soil microorganisms-A review. Soil Biology & Biochemistry, 2014, 75: 54-63.
[5]    Ayala S, Rao E V. Perspective of soil fertility management with a focus on fertilizer use for crop productivity. Current Science, 2002, 82(7): 797-807.
[6]    Hu J L, Lin X G, Wang J H, Dai J, Cui X C, Chen R R, Zhang J B. Arbuscular mycorrhizal fungus enhances crop yield and P-uptake of maize (Zea mays L.): A field case study on a sandy loam soil as affected by long-term P-deficiency fertilization. Soil Biology and Biochemistry, 2009, 41(12): 2460-2465.
[7]    Williams A, Börjesson G, Hedlund K. The effects of 55 years of different inorganic fertiliser regimes on soil properties and microbial community composition. Soil Biology and Biochemistry, 2013, 67: 41-46.
[8]    Kaur G, Reddy M S. Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere,2015, 25(3): 428-437.
[9]    Weller D M. Pseudomonas biocontrol agents of soilbornepathogens: Looking back over 30 years. Phytopathology, 2007, 97(2): 250-256.
[10]   Singh H, Reddy M S. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. European Journal of Soil Biology, 2011, 47: 30-34.
[12]   Hamdali H, Hafidi M, Virolle M J, Ouhdouch Y. Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. Applied Soil Ecology, 2008, 40(3): 510-517.
[13]   尹莘耘, 荀培琪, 林声远, 邱桂英, 张均康. 5406抗生菌肥料作用机制的研究Ⅱ. 产生抗菌物质的分析研究. 微生物学报, 1965, 11(2): 270-274.
Yin S Y, Xun P Q, Lin S Y, Qiu G Y, Zhang J K. Studies on the mechanisms of antagonistic fertilizer “5406” II. Analysis of the antibiotic substances. Acta Microbiologica Sinica, 1965, 11(2): 270-274. (in Chinese)
[14]   尹莘耘, 张均康, 荀培琪. 5406抗生菌肥料作用机制的研究IV. 抗生菌在土壤中和作物根周围活动情况的研究. 微生物学报, 1965, 11(2): 281-287.
Yin S Y, Zhang J K, Xun P Q. Studies on the mechanisms of antagonistic fertilizer “5406” IV. The status of the antagonist in the soil and around the crop root. Acta Microbiologica Sinica, 1965, 11(2): 281-287. (in Chinese)
[15]   尹莘耘, 荀培琪, 邱桂英, 林声远, 张均康. 5406抗生菌肥料作用机制的研究I. 5406号抗生菌产生刺激物质的分析研究. 微生物学报, 1965, 11(2): 259-269.
Yin S Y, Xun P Q, Qiu G Y, Lin S Y, Zhang J K. Studies on the mechanisms of antagonistic fertilizer “5406” I. Isolation of the stimulating substances. Acta Microbiologica Sinica, 1965, 11(2): 259-269. (in Chinese)
[16]   尹莘耘, 张均康, 荀培琪. 5406抗生菌肥料作用机制的研究Ⅲ. 抗生菌在不同土类中的适应性及其转化氮、磷元素的分析. 微生物学报, 1965, 11(2): 275-280.
Yin S Y, Zhang J K, Xun P Q. Studies on the mechanisms of antagonistic fertilizer “5406” III. Analysis of the adaptability of antagonist “5406” in different types of soils and the conversion of nitrogen and phosphorus. Acta Microbiologica Sinica, 1965, 11(2): 275-280. (in Chinese)
[17]   Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle M J, Ouhdouch Y. Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Applied Soil Ecology, 2008, 38: 12-19.
[18]   Hamdali H, Hafidi M, Virolle M J, Ouhdouch Y. Rock phosphate solubilizing actinomycetes: screening for plant growth promoting activities. World Journal of Microbiology & Biotechnology, 2008, 24(11): 2565-2575.
[19]   陶天申, 岳莹玉, 梁绍芬, 桑金隆, 尹莘耘. 5406抗生菌——泾阳链霉菌新种. 微生物学报, 1979, 19(3): 249-254.
Tao T S, Yue Y Y, Liang S F, Sang J L, Yin S Y. The antibiotic strain 5406-Streptomyces jiangyangensis n. sp. Acta Microbiologica Sinica, 1979, 19(3): 249-254. (in Chinese)
[20]   赵娟, 杜军志, 薛泉宏, 段春梅, 王玲娜, 申光辉, 陈秦, 薛磊. 3株放线菌对甜瓜幼苗的促生与抗性诱导作用. 西北农林科技大学学报 (自然科学版), 2010, 38(2): 109-116.
Zhao J, Du J Z, Xue Q H, Duan C M, Wang L N, Shen G H, Chen Q, Xue L. The growth-promoting effect and resistance induction of 3 antagonistic actinomyces on Cucumis melo L.. Journal of Northwest A &F University (Natural Science Edition), 2010, 38(2): 109-116. (in Chinese)
[21]   赵娟, 薛泉宏, 王玲娜, 段春梅, 薛磊, 毛宁. 多功能放线菌Act12对土传病原真菌的拮抗性及其鉴定. 中国生态农业学报, 2011, 19(2): 394-398.
Zhao J, Xue Q H, Wang L N, Duan C M, Xue L, Mao N. Antagonistic effect of multifunctional actinomycete strain Act12 on soil-borne pathogenic fungi and its identification. Chinese Journal of Eco-Agriculture, 2011, 19(2): 394-398. (in Chinese)
[22]   段佳丽, 薛泉宏, 舒志明, 王东胜, 何斐. 放线菌Act12与腐植酸钾配施对丹参生长及其根域微生态的影响. 生态学报, 2015, 35(6): 1807-1819.
Duan J L, Xue Q H, SHU Z M, Wang D S, He F. Effects of combined application of actinomycetes Act12 bio-control agents and potassium humate on growth and microbial flora in rooting zone of Salvia miltiorrhiza Bge. Acta Ecologica Sinica, 2015, 35(6): 1807-1819. (in Chinese)
[23]   吴艳辉, 赵春田, 裘娟萍. 植物病原菌拮抗放线菌的分离筛选与鉴定. 农药, 2010, 49(2): 146-149.
Wu Y H, Zhao C T, Qiu J P. Isolation, screening and identification of antagonistic actinomycetes inhibiting plant pathogens. Agrochemicals, 2010, 49(2): 146-149. (in Chinese)
[24]   王兰英, 王琴, 骆焱平. 金黄垂直链霉菌HN6对香蕉的防病促生作用. 西北农林科技大学学报 (自然科学版), 2015, 43(5): 163-167.
Wang L Y, Wang Q, Luo Y P. Disease preventing and growth promoting effects of Streptomyces aureoverticillatus strain HN6 on banana. Journal of Northwest A & F University (Natural Science Edition), 2015, 43(5): 163-167. (in Chinese)
[25]   张艳杰, 杨淑, 陈英化, 沈凤英, 乔丹娜, 李亚宁, 刘大群. 玫瑰黄链霉菌防治番茄连作障碍及对土壤微生物区系的影响. 西北农业学报, 2014, 23(8): 122-127.
Zhang Y J, Yang S, Chen Y H, Shen F Y, Qiao D N, Li Y N, Liu D Q. Efficiency of Streptomyces roseoflavus against tomato continuous cropping obstacle and effects to soil microflora. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(8): 122-127. (in Chinese)
[26]   沈婷, 杨华, 戴乐天, 邓照亮, 王世梅. 吸水链霉菌(Streptomyces hygroscopicus) B04固体菌剂对草莓生长及果实品质影响的研究. 农业资源与环境学报, 2016, 33(1): 49-54.
Shen T, Yang H, Dai L T, Deng Z L, Wang S M. Effects of solid fermentation agent of Streptomyces hygroscopicus B04 on strawberry growth and fruit quality. Journal of Agricultural Resources and Environment, 2016, 33(1): 49-54. (in Chinese)
[27]   王兰英, 姚明燕, 骆焱平. 放线菌HN20对黄瓜和生菜的促生作用. 贵州农业科学, 2016, 44(1): 98-100.
Wang L Y, Yao M Y, Luo Y P. Growth-promoting effect of actinomycete HN20 strain on cucumber and lettuce. Guizhou Agricultural Science, 2016, 44(1): 98-100. (in Chinese)
[28]   王世强, 魏赛金, 杨陶陶, 李庆蒙, 涂国全, 倪国荣, 潘晓华. 链霉菌JD211对水稻幼苗促生作用及土壤细菌多样性的影响. 土壤学报, 2015, 52(3): 673-681.
Wang S Q, Wei S J, Yang T T, Li Q M, Tu G Q, Ni G R, Pan X H. Effect of Streptomyces JD211 promoting growth of rice seedlings and diversity of soil bacteria. Acta Pedologica Sinica, 2015, 52(3): 673-681. (in Chinese)
[29]   李堆淑. 细黄链霉菌对黄芩种子萌发特性的影响. 种子, 2015, 34(9): 24-27.
Li D S. Effects of Streptomyces microflavus on seed germination characteristics of Scutellaria baicalensis. Seed, 2015, 34(9): 24-27. (in Chinese)
[30]   张忠良, 何斐, 马军妮, 薛泉宏, 楚金强. 放线菌剂及其与有机肥配施对魔芋的促生作用. 西北农林科技大学学报 (自然科学版), 2016, 44(3): 173-180.
Zhang Z L, He F, Ma J N, Xue Q H, Chu J Q. Growth- promoting effect of actinomycetes agents and organic fertilizer on Amorphophallus konjac. Journal of Northwest A & F University (Natural Science Edition), 2016, 44(3): 173-180. (in Chinese)
[31]   朱金英, 王友平, 郭建军, 张书良, 高春华. 细黄链霉菌 (AMCC 400001) 与有机肥配合施用对设施番茄生长和产量的影响. 北方园艺, 2015(22): 177-181.
Zhu J Y, Wang Y P, Guo J J, Zhang S L, Gao C H. Effect of Streptomyces microflavus (AMCC 400001) and organic fertilizer combined application on the growth and yield of tomato in greenhouse. North Horticulture, 2015(22): 177-181. (in Chinese)
[32]   中华人民共和国农业部种植业管理司. 微生物肥料生产菌株质量评价通用技术要求: NY/T 1847—2010. 2011: 4-5. [2011-10-13].
planting management, Ministry of Agriculture of the People’s Republic of China. General technical requirements for production strain quality of microbial fertilizer: NY/T 1847-2010, 2011: 4-5. [2011-10-13]. (in Chinese)
[33]   申建波, 毛达如. 植物营养研究方法. 3版. 北京: 中国农业大学出版社, 2011.
Shen J B, Mao D R. Research methods of plant nutrition. 3rd ed. Beijing: China Agricultural University Press, 2011. (in Chinese)
[34]   徐丽华, 李文均, 刘志恒, 蒋成林. 放线菌系统学——原理、方法及实践. 北京: 科学出版社, 2007.
Xu L H, Li W J, Liu Z H, Jiang C L. Actinomycete Systematic -Principle, Methods and Practice. Beijing: Science Press, 2007. (in Chinese)
[35]   黄秀梨, 辛明秀. 微生物学实验指导. 2版. 北京: 高等教育出版社, 2008.
Huang X L, Xin M X. Microbiology Experiment Guidance. 2nd ed. Beijing: Higher Education Press, 2008. (in Chinese)
[36]   Shirling E B, Gottlieb D. Methods for characterization of Streptomyces. International Journal of Systematic Bacteriology, 1966, 16(3): 313-340. species
[37]   汪小兰, 田荷珍, 耿承延. 基础化学. 北京: 高等教育出版社, 1995.
Wang X L, Tian H Z, Geng C Y. Basic Chemistry. Beijing: Higher Education Press, 1995. (in Chinese)
[38]   Tresner H D, Hayes J A, Backus E J. Streptomyces wistariopsis sp. nov. a new violet-spored species. International Journal of Systematic Bacteriology, 1969, 19(2): 141-152.
[39]   宋文坚, 曹栋栋, 金宗来, 周伟军. 影响根寄生植物列当种子萌发因素的研究. 种子, 2005, 24(2): 44-47.
Song W J, Cao D D, Jin Z L, Zhou W J. The factors of influencing seed germination of root parasitic plants broomrape. Seed, 2005, 24(2): 44-47. (in Chinese)
[40]   Chen Y P, Pekha P D, Arun A B, Shen F T, Lai W A, Young C C. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 2006, 34: 33-41.
[41]   Hameeda B, Reddy Y H, Rupela O P, Kumar G N, Reddy G. Effect of carbon substrates on rock phosphate solubilization by bacteria from composts and macrofauna. Current Microbiology, 2006, 53(4): 298-302.
[42]   张英, 芦光新, 谢永丽, 姚拓, 荣良燕, 朱颖. 溶磷菌分泌有机酸与溶磷能力相关性研究. 草地学报, 2015, 23(5): 1033-1038.
Zhang Y, Lu G X, Xie Y L, Yao T, Rong L Y, Zhu Y. The relationship between organic acid secreted from phosphorus-solubilizing bacteria and the phosphate-solubizing ability. Acta Agrestia Sinica, 2015, 23(5): 1033-1038. (in Chinese)
[1] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
[2] GONG AnDong, ZHU ZiYu, LU YaNan, WAN HaiYan, WU NanNan, Cheelo Dimuna, GONG ShuangJun, WEN ShuTing, HOU Xiao. Functional Analysis of Burkholderia pyrrocinia WY6-5 on Phosphate Solubilizing, Antifungal and Growth-Promoting Activity of Maize [J]. Scientia Agricultura Sinica, 2019, 52(9): 1574-1586.
[3] GAO Fen-12, WU Yuan-Hua-2, WANG Meng-Liang-1. Action of the Metabolite Produced by Streptomyces cacaoi Strain 182-2 on Alternaria alternata [J]. Scientia Agricultura Sinica, 2013, 46(23): 4933-4940.
[4] LU Cai-Ge, LIU Wei-Cheng-?, LIU Ting, DONG Dan, ZHANG Tao-Tao, LIU De-Wen. The Antifungal Activity and Action Mechanism of Metabolite Produced by Streptomyces lydicus Strain A01 Against Fusarium oxysporum f. sp. conglutinans [J]. Scientia Agricultura Sinica, 2012, 45(18): 3764-3772.
[5] CHEN Qian, GAO Miao, HU Hai-Yan, XU Jing, ZHOU Yi-Qing, SUN Jian-Guang. A Nitrogen-Fixing Bacterium Paenibacillus sp. GD812 Antagonistic Against Plant Pathogenic Fungi [J]. Scientia Agricultura Sinica, 2011, 44(16): 3343-3350.
[6] WANG Jing, HUANG Yun, YAO Jia, LIN Shan, LI Xiao-Lan, QIN Yun. Identification and Control Effects of Two Antagonistic Actinomycetes Against Clubroot [J]. Scientia Agricultura Sinica, 2011, 44(13): 2692-2700 .
[7] XIN Jing-jing,YU Xiu-mei,ZHAO Wei-quan,LIU Da-qun. Analysis of Phytotoxin Ingredients Produced by a New Species, Streptomyces galilaeus, Which Causes Potato Common Scab
[J]. Scientia Agricultura Sinica, 2010, 43(18): 3742-3749 .
[8] ZHANG Meng,LIU Bo,YU Xiu-mei,ZHAO Wei-quan,LIU Da-qun
. Biological Characteristics Analysis of the Pathogens Caused Potato Common Scab in China#br# [J]. Scientia Agricultura Sinica, 2010, 43(12): 2603-2610 .
[9] SUN Jian-guang,ZHANG Yan-chun,XU Jing,HU Hai-yan
. Isolation and Biological Characteristic Investigation on Efficient Nitrogen-Fixing Bacilli
[J]. Scientia Agricultura Sinica, 2009, 42(6): 2043-2051 .
[10] . Genetic Diversity of Potato Scab Pathogens in China Based on 16S rDNA Sequences
[J]. Scientia Agricultura Sinica, 2009, 42(2): 499-504 .
[11] . The relationship between plasma membrane H+-ATPase and accumulation of nitrate in Pakchoi [J]. Scientia Agricultura Sinica, 2008, 41(1): 162-168 .
[12] ,,,,. Studies on selectivity and fitness of Bemisia tabaci B-biotype to different varieties of cowpea, Vigna unguiculata W. [J]. Scientia Agricultura Sinica, 2006, 39(12): 2498-2504 .
[13] ,,,,,. Characterization and Identification on the Pathogen of Potato Scab in China [J]. Scientia Agricultura Sinica, 2006, 39(02): 313-318 .
[14] ,,,,,. Distribution and Remobilization of Nitrate in Two Cultivars of Pakchoi Plant [J]. Scientia Agricultura Sinica, 2005, 38(11): 2277-2282 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!